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Abstract Configuration fragments developed separately and
focusing on different aspects, such as availability, security or
performance of a system need to be integrated into a consistent
system configuration to avoid system malfunctions. The main
challenges of such integration are due to the overlapping entities
and the integration relations between the entities of the different
configuration fragments. In this paper we propose amodel based
approach for a consistent integration of configuration fragments
into a system configuration. We use and extend the model
weaving technique to capture the semantics of the relations
between the entities of the configuration fragments.Moreover,
we generate automatically the constraints corresponding to
these semantic relations to complete the target system config-
uration profile. These constraints can be used to guard the
configuration consistency during runtime modifications.
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1 Introduction

In order to handle complexity, large computing systems are
generally built using the principle of separation of concerns.

Different services/aspects are considered separately before in-
tegration. For instance, software and hardware aspects of a
computing system may be considered separately before inte-
gration, or the functional, availability, performance or security
aspects can be considered separately before integration. The
separation of concerns principle eases the development pro-
cess and increases reusability even if the integration may pose
its own challenges. As the different aspects/services are con-
sidered separately their respective configurations are also de-
veloped separately. These configurations, used for manage-
ment purposes, need to be integrated as well into a consistent
system configuration in order to avoid conflicting manage-
ment actions or actions from one aspect that may lead to
malfunctioning of other aspects. The complexity of this inte-
gration stems from the potential overlap between the entities
of the different aspect configurations (i.e. different logical rep-
resentations of the same entity) and from the complex rela-
tionships among the entities of these different configurations,
also referred to in this paper as configuration fragments. The
integrated system configuration should reflect properly the
relations and constraints between the entities of the different
fragments and ensures that the resulting system meets the
required properties of the different aspects in question, like
availability, performance, security, etc.

We tackle the problem of integration of configuration frag-
ments with a model driven approach based on the concept of
model weaving (Del Fabro et al. 2005a). Model weaving al-
lows for relating different models – in our case representing
configuration fragments and referred to as configuration frag-
ment models – by defining links between their entities. These
links form a weaving model which conforms to a weaving
metamodel. Model weaving has been widely used for model
integration, model transformation, model merging, etc. (Reiter
et al. 2005; Bernstein 2003; Jossic et al. 2007; Del Fabro and
Valduriez 2007). However the focus so far has been primarily
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on the static mapping of entities without considering the
semantics of these relations. In our approach we take into
account the semantics of these relations and target some
desired properties of the resulting system configuration
model. Our approach generates a consistent system configu-
ration model which contains all the entities from the configu-
ration fragment models, the constraints of each configuration
fragment as well as the constraints reflecting the desired
properties of the integration. The latter are generated
automatically to capture the targeted properties entailed by
the weaving links.

We use the Service Availability Forum (SA Forum)
middleware (SAF 2010a) as a running example in describing
our approach. The SA Forummiddleware has been developed
by a consortium of telecommunication and computing com-
panies to support the development of Highly Available (HA)
systems from Commercial-Off-The-Shelf (COTS) compo-
nents. It consists of several services and frameworks, which
represent and control specific aspects of the system and col-
laborate with each other (SAF 2010a; Toeroe and Tam 2012).
Many of these services and frameworks that we refer to as
services in the rest of this paper, require a configuration that
specifies the organization and the characteristics of the system
and/or application resources under their control. We focus on
the configurations of two SA Forum services: the Availability
Management Framework (AMF)(SAF 2010b), which man-
ages the redundant software entities for maintaining the avail-
ability of application services, and the Platform Management
(PLM) service (SAF 2010c) which is responsible for provid-
ing a logical view of the platform entities (hardware and low
level software entities) of the system. Thus, they represent
different aspects of a system and should be considered as
configuration fragments. The configurations for these services
are described using UML profiles. We capture the structure
and the semantics of the relations between these profiles
in a weaving model, which is later used to generate the
system configuration including the constraints reflecting
the targeted properties of the integration. Defining the re-
lations between the profiles at a higher level of abstraction
through a weaving model has several advantages such as
reusability of the link types, increasing the extensibility
(by allowing more models to be added) and automating
the integration process (Del Fabro et al. 2005a, 2005b).

The rest of this paper is organized into six sections. In
Section 2 we describe the example used throughout the paper.
We discuss our approach for integrating configuration
fragments (configuration models) in Section 3 while in
Section 4 we focus on the automated generation of the
constraints that reflect the relations between entities from
the different fragments. In Section 5 we discuss the im-
plementation of our approach, its scalability, extendibility
and usability. Related work is reviewed in Section 6 before
concluding in Section 7.

2 Running example

In this section we introduce a motivating scenario, also used as
a running example to illustrate our approach for the integration
of configuration fragments and constraint generation. Asmen-
tioned in the introduction, the SA Forum middleware consists
of several services and frameworks andmany of these services
require a configuration for managing any application
(resources) under the control of the middleware. These con-
figuration fragments – generally developed separately – need
to be integrated in a consistent manner while targeting certain
properties, such as the high availability of the services provid-
ed by the application. In this paper we focus on the AMF and
PLM services, their respective configurations, the relations
between these configuration fragments and their integration.

2.1 Availability management framework (AMF)

AMF is responsible for maintaining the availability of appli-
cation services by managing and coordinating the redundant
software entities that compose this managed application (SAF
2010b). This management is based on the AMF configuration
of the application, which describes the organization and the
characteristics of the resources composing this application. A
simplified example of an AMF configuration of an application
is shown on the left side of Fig. 1. In an AMF configuration
the service provider entities are called Service Units (SUs).
The workload provisioned by an SU is represented as a
Service Instance (SI). A group of redundant SUs providing
and protecting the same SIs forms a Service Group (SG). An
application may consist of a number of SGs. At runtime to
provide and protect an SI, AMF assigns it in the active and
standby roles to the SUs of the SG. In case of the failure of the
SU with the active assignment AMF dynamically moves the
active assignment from the faulty SU to the standby. Each SU
is instantiated on an AMF Node, which is a logical container
of SUs. SUs and SGs can be configured to be hosted on a
particular group of AMF nodes referred to as a Node Group
(NG). This means that such an SU/SG (the SUs of the SG) can
be instantiated only on the Nodes of that Node Group (Toeroe
and Tam 2012; SAF 2010b). An AMF configuration consists
of these entities, their types and their attributes.

A complete description of AMF configurations is out of the
scope of this paper, we only introduced the elements required
for the understanding of the rest of the paper. More informa-
tion on AMF configurations can be found in (SAF 2010b).

The concepts in an AMF configuration, their relationships,
and the related constraints have been captured in an AMF
configuration metamodel. A portion of this metamodel is
shown on the right side of Fig.1. Subsequently, an AMF
UML profile has been defined by mapping the AMF config-
uration metamodel to the UMLmetamodel (OMG 2011). The
complete definitions of the AMF configuration metamodel
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and the respective AMF UML profile are discussed in (Salehi
et al. 2010). In our configuration integration approach we use
this AMF UML profile as input.

2.2 Platform management (PLM)

The PLM service is responsible for providing a logical view of
the platform entities of the system, which includes the
Hardware Elements (HEs) and the low level software entities
also known as the Execution Environments (EEs) (SAF
2010c). A PLM configuration represents their logical view.
The PLM service manages the platform entities. A simple
example of a PLM configuration is shown on the left side of
Fig. 2.

In a PLM configuration PLM EEs represent software envi-
ronments that can execute other software. A PLMEE can be an
Operating System (OS), a Virtual Machine Monitor (VMM)
i.e. a hypervisor or a Virtual Machine (VM) (Toeroe and Tam
2012; SAF 2010c). A PLM HE with computational capabili-
ties can host a VMM or an OS. An OS can be parent of other
PLM EEs, i.e. VMMs, and VMs can be hosted on VMMs.

As for the AMF we have defined a PLMmetamodel, which
captures the PLM configuration concepts, their relationships
and their constraints. A portion of the PLM configuration
metamodel is shown on the right side of Fig. 2. The PLM
metamodel is based on the PLM specification in (SAF
2010c)., but further refines the standard PLM concepts and
their relationships. For instance, the PlmEE is specialized into
PlmEEVM, PlmEEVMM, and PlmEEOS. The relationship
among these concepts has also been redefined: The relationship
between the PlmEEVM and the PlmEEVMM is now defined
through the PlmDependency. On the left side in the sample
PLM model we use dashed lines between the VMs and their
current hosting VMM, which is one of the VMMs listed in the
dependency (not shown in the figure). The PlmEEVM has an
association with its PlmEEOS. The PlmEEOS may have an
association with a PlmEEVMM, i.e. host it.

These refinements are required to handle appropriately
virtualized environments and cloud architectures. Multiple
layers of PlmHEs may exist in a PLM configuration, e.g. in
the configuration of Fig.2 there are HEHosts which are hosting
the VMMs and the host OSwhile these Hosts themselves reside
on HERacks. Following the same approach as for the AMF
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UMLprofile, we defined the PLMUML profile bymapping the
PLM configuration metamodel to the UML metaclasses, with
the closest semantics.

2.3 The integration relations among the fragments

According to the SA Forum specifications (SAF 2010b; SAF
2010c), each AMF Node is eventually hosted on (mapped to)
a PlmEE so that the software entities of the AmfNode can be
executed and provide services. This is basically the connec-
tion point between the two configuration fragments. In our
work we assume this PlmEE is an OS instance installed on a
VM instance. Therefore, an AMF Node is mapped to a
PlmEEVM, and this is how the two configurations are put into
relation. The question is whether any mapping between the
AMF Nodes and the PLM EEs is acceptable?

We hereafter address this question through some examples
explaining the specific property of the system that should be
targeted in the integration of configuration fragments.

2.3.1 Hardware disjointness of service providers for enabling
availability

Figure 3 shows a simple example in which the AMF configu-
ration from Fig. 1 is put into relation with the PLM configura-
tion of Fig. 2 by mapping AMFNode1 and AMFNode2 to
EEVM2 and EEVM1, respectively. These twoVMs are running
on the same VMM and PLM HE (HEHost1). At this point the
PLMHE as well as the VMM represent single points of failure.
If this HEHost1 crashes both service providers, SU1 and SU2
will be lost and a service outage will be inevitable. Even if in the
initial PLM configuration the VMs (EEVM1 and EEVM2) are
hosted on different EEVMMs, at runtime the VMs may migrate
and end up on the same VMM and HE at the same time. So, if

the goal is to avoid any single point of failure due to the hosting
hardware, we need to make sure that the service providers (SUs)
of an SG will never be hosted on the same host.

2.3.2 Hardware affinity of service providers for fast
communication

As mentioned earlier in Section 2.1 AMF manages redundant
service providers (SUs) to avoid service outage due to SU failure.
When the SU with the active assignment fails, AMF shifts the
active assignment to the standby SU. To be able to use the stand-
by SUs, the state of the active and the standby providers need to
be synchronized so that in case of service failure the assignment
of the service can be shifted without any service interruption. The
active and standby SUs of an SG need to synchronize continu-
ously and this state synchronization introduces some communi-
cation overhead causing latency in the normal behavior. The la-
tency increases when the hosts of the SUs are farther from each
other. E.g. in Fig. 4 SU1 is eventually hosted on HEHost2 and
HERack2 while SU2 is eventually hosted on HEHost1 and
HERack1. As the two SUs are residing on different HERacks,
the latency is higher compared to the configuration in which the
SUs are on the same HERack. Therefore, to assure an efficient
communication (state synchronization) among the SUs of an SG
and reduce this latency, the SUs should be placed closely together.

2.3.3 A combination of hardware availability and affinity

Each of the previous examples (hardware disjointness or affinity)
shows an example of a property that may be targeted by a par-
ticular approach of integration of the configuration fragments.
Moreover, more complex properties may be required such as the
conjunction of both hardware affinity and disjointness, i.e. the
SUs should be hosted on different hosts but the hosts should also
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keep certain proximity such as being in the same rack or site to
assure the fast synchronization among the redundant SUs.

These examples of relations between the entities of the con-
figuration fragments are examples of consistency rules which
need to be captured and taken into account at the integration of
the fragments. Moreover, these targeted relations/consistency
rules will become constraints that will guard the consistency of
the system configuration against runtime modifications.

3 The integration of configuration fragments

In this section we first discuss the challenges of the integration
before introducing our model based integration approach.

3.1 The challenges

3.1.1 Overlapping entities

A configuration fragment is a logical representation of the
resources for themanagement of their organization. A resource

may exist in multiple configuration fragments with different
logical representations. An example of a resource withmultiple
representations is a Virtual Machine (VM). As shown in Fig. 5
a VM is represented in the AMF configuration as an AMF
Node and the same VM in the PLM configuration is represent-
ed as an EEVM.

Managing or modifying the overlapping entities (e.g. the
entities withmultiple logical representations) independently in
each configuration fragment will lead to inconsistency in the
system as they all affect the same resource. Thus, these logical
representations of the same entity need to be related.

3.1.2 Integration relations between configuration fragments

The integration of configuration fragments usually targets
certain properties for the system configuration. These
properties depend and may involve more than one aspect
of the system and thus require the capturing and the de-
scription of the required relations between these aspects.
The hardware disjointness and affinity relations discussed
previously are such examples. They need to be described
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and enforced by the integration to ensure properties like
availability or lower latency for the system.

The relations between the configuration fragments need to
be defined properly and according to the required properties.
These relations should be enforced by the integration to define
a consistent system configuration that exhibits the targeted
properties.

3.2 The overall approach

To integrate configuration fragments we extend the model
weaving technique. In this technique a model called the weav-
ing model is used to capture the mappings between the entities
of the metamodels. As any model in the model driven para-
digm the weaving model conforms to a metamodel, i.e. the
weaving metamodel. The weaving metamodel describes the
types of the mappings that can be used in the weaving model.
It also describes the types of entities which can be connected
through these mapping types, i.e. the link end types. The in-
stances of the mapping types (or link types) are used in the
weaving model to connect the models’/metamodels’ entities.
The weaving model can have different applications such as
defining traceability, tool interoperability, model transforma-
tion, etc.

As discussed earlier, for the integration of configuration
fragments we need to capture more complicated relations
among the fragments than just the entity mappings.
Therefore, we extend the weaving concept in order to capture
the semantics of the relations among the configuration frag-
ment entities and use this semantics for the integration of the
fragment models.

In our integration approach the configuration fragments
and their metamodels are represented as the source models
and source metamodels. For example, the AMF and PLM
configuration models are the source models and their UML
profiles are the source metamodels. We also use a system
configuration metamodel that is called the target metamodel
and at this stage it is a union of the source metamodels without
any relationship between them. Through the weaving we in-
tegrate the source models and generate a system configura-
tion, i.e. the target model.

We extend the weaving metamodel with special link types
and we create a weaving model by defining the links between
the configuration entities of the source and target metamodels.
The weaving model is a static representation of the relations
among the entities, therefore it is translated to an executable
format using a Higher Order Transformation (HOT) (Tisi et al.
2009). The result of the HOT transformation is another trans-
formation called Final Transformationwhich takes the source
configuration models (e.g. the AMF and PLM configuration
models) as the input and generates the target configuration
model (i.e. the system configuration model) as the output.
The overall process of the configuration integration through

model weaving is shown in Fig. 6. In the following we sum-
marize this process.

3.3 Extending the generic weaving metamodel

As mentioned earlier a weaving metamodel defines the link
types and the link end types that can be used in the weaving
model. Figure 7 shows part of a generic weaving metamodel
(Del Fabro et al. 2005a, 2006) represented with lighter color
elements. We extended this metamodel in order to capture the
special relations between the configuration fragments. The
elements extending the metamodel are shown in darker color
in Fig. 7. In the following we explain these extensions in more
details.

3.3.1 WLinkEnd specializations

SourceEnd and TargetEnd In the generic weaving
metamodel the WLink represents the generic link type which
maps the WLinkEnds. For configuration integration we
need to add a direction to the links and distinguish the
source and target ends of the links as we have source
models as input and we want to create the target model
as output. Therefore, we consider the WLinkEnd as an
abstract class and specialize it into the SourceEnd which
is used to represent the configuration entities from the
source models and the TargetEnd to represent the created/
modified configuration entities which will appear in the target
model (i.e. the system configuration). To make sure that in
each link we have at least one SourceEnd and one
TargetEnd constraint C1 is defined on the WLink. This con-
straint is expressed in OCL as:

Context WLink
Inv C1: Self.end->exists (e1, e2: WLinkEnd |
e 1 . o c l I s K i n d O f ( S o u r c e E n d ) A N D
e2.oclIsKindOf (TargetEnd))

The entities of the source configuration metamodels that
are specified as the SourceEnd are called the Source entities.
The entities of the target metamodel appear in the TargetEnd
and are called the Target entities. They are linked to the Source
entities by the WLink.

Leader and peer The SourceEnd is specialized further into
Leader and Peer link ends in the weaving metamodel to cap-
ture the influence of the configuration entities on each other.
More specifically when a configuration entity is specified as a
Peer and it is linked to a Target entity it means that the Target
entity is created/modified with respect to the Peer Source en-
tity (or Peer entity for short) however if the Peer entity also
appears in the target model (i.e. created through the same or
another link), these entities (the Peer and the Target entities)
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would have equal influence on each other in the target model.
In the other words if either of them changes later in the target
model, it can impact the other one.

Similar to the Peer link end type, the Leader link end is
another specialization of the SourceEnd. Configuration enti-
ties specified as the Leader Source entities (Leader entities for
short) also create/modify the Target entities but in contrast to

the Peer entities, if the Leader entities appear in the target
model (i.e. created through other links), only the Leader enti-
ties can influence the Target entities in the target model and
not the other way around. This means that later in the target
model if the Leader entities change, this change impacts their
created/modified Target entities but if those Target entities
change, they cannot impact the Leader entities.
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3.3.2 WLink specializations

PeerLink The PeerLink represents the relation of the Peer
Source entities and their Target entities. Defining a PeerLink
among the Peer and Target entities means that even though the
Peer entities are used to create/modify the Target entities the
relation is not unidirectional. In the target model the relation is
bidirectional, that is, the Target entities can have equal impact
on the Source entities and vice versa. They are all in a Peer
relation with respect to the constraints implied by the creation/
modification rule.

A structural constraint, C2 is defined for the PeerLink to
assure that the PeerLink has only Peer link end as its SourceEnd.

Context PeerLink
Inv C2: Self.end->forAll (e: WLinkEnd |
e.oclIsKindOf(SourceEnd) implies
e.oclIsTypeOf(Peer))

EqualCorrespondence In the configuration integration it
happens that many entities from the source models are just
copied to the target model. The EqualCorrespondence link
type, inspired by (Jossic et al. 2007), is defined to map
the Source entities to their identical Target entities.
EqualCorrespondence is a specialization of the PeerLink so
the Peer link end is used as the SourceEnd for this link type
and the TargetEnd is the other link end for this link type.

LedLink The LedLink represents the relation of the Leader
Source entities and the Target entities. It means that when a
LedLink is defined among the Leader and Target entities, the
Leader entities create/modify the Target entities and such im-
pact or affection among the entities (i.e. Leader entities impact
the Target entities) needs to be maintained in the target model
among the involved entities.

A structural constraint, C3 is defined for the LedLink to
assure that the LedLink has only Leader link end as its
SourceEnd. This constraint is expressed in OCL as:

Context LedLink
Inv C3: Self.end->forAll (e: WLinkEnd |
e.oclIsKindOf(SourceEnd) implies
e.oclIsTypeOf(Leader))

DisjointDistribution The DisjointDistribution link type is
defined to capture the hardware-disjointness property for the
target configuration. DisjointDistribution is an extension
of the LedLink and therefore the Leader link end and
also the TargetEnd needs to be specified for the link.
This link type has an attribute called DisjointLevel of an
enumeration type OrderedLevel. The OrderedLevel enumera-
tion has the items of Host, Chassis, Rack, Site, and
Geographic which define the levels of disjointness that might

be required for the configuration entities. E.g. for the scenario
we explained earlier, if the DisjointLevel attribute is set to
Host, then the linked entities should be configured on different
Hosts. If this attribute is set to Rack, for instance, the linked
entities must be configured for different Racks. The values of
the OrderedLevel type are defined according to the Open
Virtualization Format specification (DMTF 2013).

CollocatedDistribution The CollocatedDistribution link type
is defined similarly to the DisjointDistribution but with another
purpose; to capture the collocation requirement in the relations
between the entities of the fragments. CollocatedDistributaion
is also specialized from LedLink and has a CollocationLevel
attribute. This link guarantees that the target entities are con-
figured for groups of collocated source entities. For example,
in the usecase of Section 2 if the SUs are required to be con-
figured on the HEs of the same Rack, the CollocationLevel is
set to the required level, i.e. Rack.

DisjointCollocatedDistribution In Section 2 we mentioned
that both the availability and affinity of the service providers
may be required. However, these properties can be conflicting
and should not be considered independently if both are re-
quired. To capture such relation another link type is added
which inherits from both CollocatedDistribution and
DisjointDistribution and thus has the properties of both. To
make sure that the two concepts are not introducing any con-
flict, we make sure that each concept is applied in a different
level. This means that the level of providing availability through
DisjointDistribution should be different from the affinity level
provided by the CollocatedDistribution. The DisjointLevel and
CorelationLevel attributes allow us to make such distinction.
However, the levels cannot be selected arbitrarily and need to
respect a rule. To define this rule we again followed the OVF
specification (DMTF 2013) which indicates that the collocation
property should be provided in a higher level than the
disjointness. This means that for example if the disjointness is
provided at Host level, then the collocation level can be
Chassis, Rack, Site or Geographic. This rule can be specified
with an OCL constraint in the weaving metamodel as follows:

Context DisjointCollocatedDistribution
Inv C4: OrderedLevel.allInstances()- >
indexOf(self .DisjointLevel) < OrderedLevel.
allIns tances()- > indexO f (self.
CollocationLevel)

3.4 Creating the links in the weaving model

Once the required link types have been defined in the weaving
metamodel, they can be used in the weaving model for relat-
ing entities of the source metamodels to the entities of the
target (system configuration) metamodel. The weaving model
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includes instances of links (instances of link types) associated
with their respective link ends. Examples of these links are
described in the following for EqualCorrespondence and
DisjointDistribution link types.

The DisjointDistribution link type of the weaving
metamodel is used to represent the disjointness relation be-
tween the relevant entities.

In the case of the integration of the AMF and PLM configu-
rations, if we assume a fixed hardware platform and accordingly
the PLM configuration is fixed and cannot be changed as part of
the integration, then the AMF entities (i.e. the Nodes, NGs and
SUs) should be configured according to the entities of the rele-
vant PLM configuration (i.e. VMs and HEs) to satisfy the hard-
ware disjointness constraint. Thus, in the DisjointDistribution
link the PlmEEVM and PlmHE entities of the PLM configura-
tion metamodel are the Leader SourceEnd and the AmfNode,
AmfNG, and AmfSU are the TargetEnds. The application of this
link type with Host disjointness is as follows:

<<WLink>>DisjointDistributionHEDisjointSUs
<DisjointLevel>

OrderedLevel Host
<Source>

<<Leader>> PlmEEVM
<<Leader>> PlmHE

<Target>
<<TargetEnd>> AmfNode
<<TargetEnd>> AmfNG
<<TargetEnd>> AmfSU

In more details this link indicates that the AmfNode,
AmfNGs and AmfSU entities in the target model are created
or modified with respect to the PlmEEVM and PlmHEHost.
These creations/modifications should happen in such a way
that Host disjoint is provided for the AmfSUs. The
CollocatedDistribution is used in a similar manner. We are
not going to discuss it in details.

An instance of the EqualCorrespondence link type is used
to map an entity of a source metamodel to a similar entity of
the target metamodel. Some semi-automated methods such as
the technique introduced in (Del Fabro and Valduriez 2007)
can be applied to automate the creation of the mappings based
on the similarity (such as string or type similarity) of the en-
tities. Such automation can be applied only after all other types
of links have been defined in the weaving model.

<<WLink>> EqualCorrespondence EqualVMs
<Source> <<Peer>> PlmEEVM
<Target> <<TargetEnd>> SystemEEVM

In the next section we explain how the links are translated
to transformation rules to create the target model with respect
to the semantics of the relations (links).

3.5 Generating the system configuration from the weaving
model

To be able to generate a system configuration model it is
necessary to translate the weaving model into an executable
format. This translation takes place using an HOT, which itself
is a transformation. The HOT translates the links of the weav-
ing model into transformation rules. The output of the HOT is
the Final Transformation as shown in Fig. 6. An excerpt of the
HOT for creating the module section in ATL is shown below.

create OUT: ATL from IN: AMW, sourceModel1:
MOF, sourceModel2: MOF, targetModel: MOF ;

rule ModuleCreation {
from

amw: AMW!Model
to

atl: ATL!Module(
isRefining <− false,
name <− ‘ModelTransform’,
inModels<−Set{amw.source
Model1,amw.sourceModel2},
outModels <− amw.targetModel,
elements <− Set{amw.Wlink},) }

The inModels specifies the input metamodels for the gen-
erated transformation while the outModel indicates the output
metamodel of the final transformation (amw.target that is the
UML profile for system configuration). The elements of the
final transformation is created by transforming the set of
Wlinks of the weaving model (Set{amw.Wlink}). Each link
type and its linkEnds of the Wmodel are translated to the
elements of the transformation model with other HOT rules.

The translation of the DisjointDistribution link, for instance,
results in several transformation rules (expressed in ATL) in the
Final Transformation. This translation is done with respect to
the algorithm which we introduced previously in (Jahanbanifar
et al. 2014) to create hardware disjoint groups of VMs and the
respective AmfNodeGroups to configure the AmfSUs on the
AmfNodeGroups. The high level overview of these ATL rules
and a brief description of each are provided hereafter:

rule NodeVM_AssociationCreation(id:
Sequence(Integer))
rule VMG_Creation()
rule NG_Creation(vmg: Sequence(OclAny))
rule SUNG_AssociationCreation(su:AMF!AmfSU,
index:Integer)

The NodeVM_AssociationCreation rule creates a relation
(an association) between each distinct pair of PlmEEVM and
AmfNode, e.g. associating an AmfNode to the most similar
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PlmEEVM regarding the capacity of the two entities. The
association of a PlmEEVM to an AmfNode entity can be seen
as an attribute of the AmfNode in the target model. This rela-
tion is the basic connection between the entities of the two
configuration models.

rule Node_VM_Association_Creation(id:
Sequence(Integer)){

to
target: System!Association (memberEnd<
− Set{p1,p2}),
p1: System!Property(

name <− ‘src’,
type <−AMF!Node.allInstances
From(‘IN1’)-> select(

c|c.hasStereotype(‘AMF::AmfNo-
de’))-> select(s|s.ID=id)

)
p2: System!Property(

name<− ‘dst’,
type<− PLM!Node.allInstances
From(‘IN2’)->select(

c|c.hasStereotype(‘PLM::PlmEE-
VM’))-> select(s|s.ID=id)

) }

The VMG_Creation rule is used to generate the Host hard-
ware disjoint VM Groups (VMGs) based on the input PLM
configuration model according to Algorithm 1 introduced in
(Jahanbanifar et al. 2014). The isolation of this calculation in a
rule makes its modification or replacement by another algo-
rithm easy and avoids touching the rest of the transformation
model. This rule creates VMGs (each of which is a sequence
of VMs) collected in a VMGSet (which is a sequence of
sequences in ATL). The VMGSet and its VMGs do not appear
in the target configuration but are used to create an NGSet and
its NGs.

The NG_Creation rule creates the AmfNGs in the target
model based on the previously created VMGs of the
VMGSet and adds the relevant AmfNode entities to the cre-
ated the AmfNG. In our translation we assume that we do not
have the AmfNG entities in the AMF model, so we create
them in the target model. Alternatively if the AMF model
contains the AmfNGs, we would need to re-configure them
instead of creating new ones, which may be limited by addi-
tional constraints.

rule NG_Creation(vmg: Sequence(OclAny)){
to

target:System!Class(
name <−’NG’+ thisModule.VMGSet->
indexOf(vmg) ),

t1: System! AmfNG (base_Class <− target)

do {
thisModule.NGSet<−thisModule.NGSet->
union(Sequence{target});
for(vm in vmg){thisModule.NGN_
Association_Creation(vm,target)};
} }

Algorithm 1 Defining HE-disjoint groups of VMs

Input: HW_Dependency from the PLM configuration
Output: Set of HE-disjoint VGs in VMGSet and a set of unused VMs in

leftovers
1: A: = set of all VMs in PLM configuration
2: Leftovers: = {}
3: VMGSet: = {}
4: // Identify the HEs related to each VMi based on HW_

Dependency from the PLM configuration
5: for each VMi in A do
6: HE-VMi: = {HEs related to VMi in HW_Dependency}
7: end for
8: // Select among remaining VMs the VM associated with the

lowest number of HEs in HW_Dependency and remove from
set A the VMs that are not HE-disjoint with it

9: // n is the counter of the VMGs
10: n: = 0
11: repeat
12: select VMi from A such that |HE-VMi| ≤ |HE-VMj| for any

VMj in A
13: n: = n + 1
14: VMGn: = {VMi}
15: HE-VMGn: = HE-VMi
16: A: = A – {VMi}
17: for each VMj in A do
18: if HE-VMj = HE-VMGn then
19: VMGn = VMGn ∪ {VMj}
20: A = A – {VMj}
21: else if HE-VMj ∩ HE-VMGn ≠ {} then
22: Leftovers: = Leftovers ∪ {VMj}
23: A = A – {VMj}
24: end if
25: end for
26: VMGSet: = VMGSet ∪ {VMGn}
27: until A = {}
28: //Adding the leftover VMs to formed VMGs iff they intersect

with only one VMG with respect to their HEs
29: for each VMi in Leftovers do
30: // k is the counter of VMGs with which VMi has common HEs
31: k: = 0
32: for each VMGj in VMGSet do
33: if HE-VMi ∩ HE-VMGj ≠ {} then
34: k++
35: temp: = j
36: end if
37: end for
38: if k = 1 then
39: VMGtemp = VMGtemp ∪ {VMi}
40: HE-VMGtemps: = HE-VMGtemp ∪ HE-VMi
41: Leftovers: = Leftovers – {VMi}
42: end if
43: end for
44: return VMGSet

Finally, the SUNG_AssociationCreation rule is used to es-
tablish the relation (association) between the AmfSUs of each
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AmfSG and an AmfNG entity which was created by the pre-
vious rule. In this work we do not consider any criteria for
matching the AmfSUs to AmfNGs. This rule can be extended
in the future by adding different heuristics for selecting the
most appropriate AmfNG for each AmfSU based on some
criteria (such as the number of AmfSUs in the AmfSG, etc..).

rule SUNG_AssociationCreation(su:AMF!AmfSU,
index:Integer){

to
t a r g e t : S y s t e m ! A s s o c i a t i o n
(memberEnd<− Set{p1,p2}),
t1: System!SUSG(base_Association <−
target),
p1: System!Property(

name <− ‘src’,
–accessing the created SU in the
target model
type<−thisModule.resolveTemp
(su,’targetSide’)),

p2: System!Property(
name<− ‘dst’,
type<−thisModule.NGSet->at
(index) ) }

The Final Transformation generated from the HOT takes the
configuration fragment models as input and generates a system
configuration model as output. The generated configuration
will have all the entities of both input models and also the
new entities and relations among the entities of the fragments
capturing the targeted properties entailed by the weaving links.

4 Constraint generation from the integration

The transformation rules in the Final Transformation are gen-
erated by considering the special relations among the entities
of the configuration fragments. These relations guarantee the
targeted properties of the system configuration, i.e. the consis-
tency of the system configuration with respect to the targeted
properties such as availability and affinity.

Although this integration semantics is taken care of in the
process of generating the system configuration model, it is not
reflected in the system configuration profile. This integration
semantics needs to be defined as integration constraints in the
system configuration profile in order to guard the consistency
of system configuration models against unsafe runtime modi-
fications. The integration constraints (i.e. originating from the
transformation rules and describing the semantics of the rela-
tion between the fragments) in addition to the union of the
constraints of the fragments form the system configuration con-
straints. The transformation rules of the Final Transformation
can be reused to generate automatically the integration

constraints. The configuration designer does not have to define
them manually as they are already embedded in the transfor-
mation rules. In this section we describe how the integration
constraints can be extracted. We describe our approach for the
generation of OCL constraints from the ATL transformation
rules. Figure 8 shows the constraint generation from the Final
Transformation and the completion of the system configuration
profile.

An ATL transformation model consists of rules and
helpers. There are three types of transformation rules in
ATL: matched rules, lazy rules and called rules. The most
commonly used rule type is the matched rule, which generates
the target entities from the source entities defined by the
source pattern of the rule. A matched rule is executed for all
the occurrences of its source pattern. In contrast to the
matched rule, a lazy rule is executed only when it is invoked.
Finally, called rules are used to create target entities from
imperative code. To be executed the called rules need to be
invoked from an imperative code, which can be the action
block of a matched rule, or from within another called rule.
Helpers in the context of ATL are similar to methods. The
helpers can be called from different points of an ATL program.

4.1 Entity derivation tree

Each target entity or its attribute is created by some transfor-
mation rules and helpers. If the entity is created in a rule and its
attributes are created in some other rules, we consider the
attribute creation as an entity modification. By following the
transformation rules and helper invocations for the creation/
modification of each target entity we can specify the process
of its creation/modification as a derivation tree. At the root of
the tree there is a target entity and at each level of the tree the
nodes are the entities which are used to create their parent
node and the edges are the operations that are applied on the
nodes to create the parent node. An operation can be a
rule/helper invocation, a filter or guard expression, or a piece
of imperative code in the rules. At the last level of the tree are
the leaves (entities) which already exist in the target model or
the source models. Although the derivation tree can be created
for each target entity, we are interested only in the target enti-
ties that are created/modified using some operations.

Traversing this tree from the root to the leaves helps in
identifying the entities and operations that are used to create/
modify a target entity. On the other hand, exploring the tree
from the leaves to the root describes how a target entity is
created/modified from the operations, the effect of which
needs to be captured as constraints between the entities of
the system configuration.

Figure 9 shows a very simple example of a derivation tree for
creating the SystemEEVM from the PlmEEVM.A simple trans-
formation rule called VM_Transformation is used to copy the
PlmEEVMentities from the PLMconfiguration fragments to the
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system configuration and create the SystemEEVM entities. This
rule is the translation of the EqualVMs link in Section 3.4 (i.e. an
EqualCorrespondence weaving link). Let assume that we want
only the VMs with Memory of 512 MB or higher to be used for
the target entity creation. Therefore the source pattern used in the
VM_Transformation rule uses a filter on the entities of the
source. Starting from the target entity and following the trans-
formation rule creating it, we reach the source entity to which the
filter operation was applied. This is shown as Traversing
direction in Fig. 9. The target entity node (SystemEEVM) is
created from the filtered source node (PlmEEVM) which is
shown as Entity creation direction in the figure. The filter is an
example of an operation that can be applied to source entities, it
is shown on the edge connecting the nodes. Other operations can
be helpers, called rules, or lazy rules.

rule VM_Transformation {
from source:PLM!PlmEEVM(source.Memory>

512)
to target: System! SystemEEVM(

Memory<− source.Memory ) }

More examples of derivation trees are shown in Fig. 10,
which is based on the DisjointDistribution link and its respec-
tive transformation rules. Figure 10 (a) shows the derivation tree
of the modification of the AmfNode entity to map it to a VM in
the PLM configuration fragment (the association between the
AmfNode and PlmEEVM is considered as an attribute of the

AmfNode). This tree has only one level and the operation on the
edge between the root (AmfNode) and the leaf (PlmEEVM) is
the rule NodeVM_AssociationCreation rule, i.e. a called rule
which selects a distinct PlmEEVM for the AmfNode possibly
based on some other criteria such as the capacity of the VM.

Figure 10(b) is the derivation tree for the creation of the
AmfNG. This tree has two levels: level 1 includes the
AmfNode and the VMG tree nodes on which the NG_creation
operation (i.e. a called rule for creating NGs from the VMGs)
was applied at this level. As the AmfNode exists in the system
model, it is a leaf node of tree. On the other hand noVMG entity
exists in the source or the target models. It is an entity
which is only created and used in the transformation rules
as an auxiliary entity. The VMG entity represented by the
VMG node of the tree is created from the PlmHe,
PlmDependency and PlmEEVM entities of the system mod-
el. To preserve any constraint implied by these operations in
relation to the AmfNG, we need to include in our derivation
tree these as well. Thus these entities are shown as the tree
nodes in level 2 of the derivation tree. The VMG_Creation
(i.e. a called rule) and the HE_Checking (i.e. a helper) are
the operations applied on the nodes of level 2 to create their
parent which is the VMG.

Figure 10(c) shows the derivation tree for the modification
of the AmfSU entity (the association between the AmfSU
and AmfNG is considered as an attribute of the AmfSU).
This tree has only one level and the operation on the edge
between the root (AmfSU) and the leaf (AmfNG) is the
rule SUNG_AssociationCreation rule (i.e. a called rule
which selects a distinct NG for the AmfSUs).

4.2 Translation of the ATL operations to the OCL
expressions

Once a derivation tree is created, from the operations applied
on the nodes of each level we need to derive an appropriate
OCL expression.

System Configura�on 
Profile

System  
Configura�on Model

Final
Transforma�on

Added to Conforms to

HOT
ATL2OCL OCL Expressions

Conforms to

OCL MetamodelATL Metamodel

Conforms to

Fig. 8 Generation of OCL
constraints from the ATL
transformation

SystemEEVM

PlmEEVM

Filtering VMs 
En�ty crea�on 
direc�on

Traversing
direc�on

Fig. 9 An example of derivation tree for SystemEEVM
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The context of a generated OCL expression at each level is
the parent entity if this entity exists in the target model. E,g. for
tree (a) of Fig. 10, AmfNode is the parent node and it is a
target entity, which exists in the target model, therefore the
context of the generated OCL expression from this tree is
AmfNode.

However at any level of the tree if a parent does not exist in
the target model (i.e. the parent is an auxiliary entity which is
only used in the transformation) then the parent entity cannot
be the context of the OCL expression generated for its subtree.
(Note that this cannot happen to the root of the tree,
which is a target entity and therefore it is always in the
target model.) In such cases the context is the same as for
the level above, e.g. the parent of this parent. An example
of this case is the VMG entity in tree (b) of Fig. 10,
which is created from the PlmHE, PlmDependency and
PlmEEVM entities, but the VMG entity does not exist
in the target model. So the context of the OCL expression
created from the VMG_Creation and HE_Checking cannot be
the VMG and is defined as for the level above, i.e. the parent
of the VMG entity in the tree, which is the AmfNG.

To derive the OCL expression, we have categorized the
ATL operations and the OCL expression respectively into
types and define the types mapping. Table 1 summarizes the
ATL operation types we identified for common ATL opera-
tions and the mappings of these ATL operation types to OCL
expression types. These mappings are then defined as an HOT
transformation (i.e. the ATL2OCL transformation of Fig. 8).
Thus, we reuse the mappings for similar operations. The OCL

expressions resulting from applying this mapping to the deri-
vation trees of Fig. 10 are shown in Table 2.

4.3 Role definition for the constrained entities

In addition to the generation of the OCL expressions we can
also capture the role of constrained entities in the constraints.
We previously extended the OCL by defining Leader/
Follower/Peer roles for the constrained entities to show the
influence of the entities over each other (Jahanbanifar et al.
2015a). Figure 11 shows the extension of the constraints with
the leadership information.

As we used a similar leadership concept in the weaving
process, the Leader/Follower/Peer role of constrained entities
in the integration constraints can be obtained automatically:
The entities specified as the Leader SourceEnd of the LedLink
take the Leader role and entities specified as the TargetEnd of
the LedLink have the Follower role in the constraint generated
from the LedLink and its transformation rules.

In the other link types, the SourceEnd is Peer and therefore,
both the Peer Source entities and the Target entities of the link
will have the Peer role in the LeadershipInfo of the generated
constraint as they have equal influence over each other in the
target model.

In the DisjointDistribution weaving link between the AMF
and PLM configurations, the PlmEEVM and the PlmHE (the
Leader Source entities) have an influence on the AmfNode,
AmfNG and AmfSU (the Target entities). Accordingly in the
generated constraint the PlmEEVM and the PlmHE entities

AmfNG

AmfSU

SUNG_Associa�onCrea�on

(c)

VMG

PlmEEVM

NG_Crea�on

HE_Checking/ VMG_Crea�on

AmfNode

PlmHE PlmDependency

(b)

AmfNG

(a)

PlmEEVM

AmfNode

NodeVM_Associa�onCrea�on 

Fig. 10 The derivation trees for
the AmfNode, AmfNG, and
AmfSU

Table 1 The mapping of ATL
operations to OCL expressions ATL Operation Type OCL Expression Type

Type operations in the filters (operations on primitive or
collection types e.g. select, iterate, so on)

Type operations as the invariant of constraint

Matched rules with iterative binding of entities’ attributes
(e.g. for loop)

Defined by allInstances or forAll expressions

Variables in the Using section Defined by let expression

Helpers, Lazy rules, Called rules Defined as the Body of Query operations
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have the Leader role and can affect theAmfNodes, AmfNGs and
the AmfSUs which have the Follower role in the LeadershipInfo
of the corresponding constraints.

It is worth mentioning that the roles of the constrained
entities may change with the application scenario. More spe-
cifically we may define the Leader/Follower/Peer roles for the
entities for the initial design time of a configuration to meet
the setup and deployment requirements. However after the
system is deployed and the requirements change we may be
limited in the changes allowed. Therefore the roles of the
entities in the constraint may change although the OCL con-
straint remains unchanged. Defining the roles for the entities
through the LeadershipInfo has this advantage that we can
define and change the roles whenever it is needed without
affecting the constraints themselves.

The LeadershipInfo can also be defined for the other con-
straints of the system configuration (i.e. the constraints of the
configuration fragments). Knowing the roles helps us to rec-
ognize the necessity and the order in which the constraints
need to be checked as explained in (Jahanbanifar et al. 2015a).

5 Discussion and assessment

5.1 Implementation and scalability

We have implemented our approach using the Atlas Model
Weaver (AMW) (Del Fabro et al. 2005b, 2006; Eclipse 2010),
and the Eclipse Modeling Framework (EMF) (Eclipse 2014).
We enriched the generic weaving metamodel of the AMW de-
fined in KM3 (Jouault and Bézivin 2006) with the extensions
discussed in Section 3.We used ATL (Jouault et al. 2008) as our
model transformation language for the implementation of the
transformations. The algorithm defined in (Jahanbanifar et al.
2014) is used as an instance for the implementation of the
DisjointDistribution link, however it can be replaced with alter-
native algorithms.

We have worked with relatively small size configuration
fragments to demonstrate the ideas and the concepts in our
approach. The scalability of our approach in terms of model
size is not an issue as demonstrated by the experiments con-
ducted in (Del Fabro and Valduriez 2009) with AMW for
model weaving and transformations generation. Indeed in
(Del Fabro and Valduriez 2009) the authors varied their model
sizes, in terms of elements, classes, attributes, from small to
large and demonstrated the scalability of the model weaving

Table 2 The OCL expressions resulting from the derivation trees of Fig. 10

Tree ATL Operation Operation Description OCL Expression

a NodeVM_ Association Creation -It maps each VM to a distinct Node
-It requires PlmEEVM

Context AmfNode
Inv: self.allInstances- > forAll(N1,N2| N1 <> N2 implies

N1.vm <>N2.vm )

b Applied on Level2: VMG_
Creation, HE_Checking

-They are called to create the VMG
-They require the PlmHE, the

PlmDependency and the PlmEEVM

Context AmfNG::Disjointness(Ng1,Ng2):Boolean
Body:
If ( Ng1.node - > iterate (N; VMM1: PlmEEVMM | VMM1-

> including (N.vm.dependency.supplier))- > iterate
(VMM; HE1: PlmHE | HE1- > including (VMM.he))

- > intersection(Ng2.node - > iterate (N; VMM2: PlmEEVMM
|VMM2- > including (N.vm.dependency.supplier) )- >
iterate (VMM; HE2: PlmHE | HE2- > including (VMM.he))
- > isEmpty() )

then return True else return False endIf

Applied on Level1: NG_Creation -It is called to create the NGs
-It requires the VMG and the AmfNode

Context AmfNG
Inv: self.allInstances- > forAll(Ng1,Ng2|Disjointness

(Ng1,Ng2) = True)

c SUNG_AssociationCreation -It modifies the SUs.
-It iterates over the SUs of each SG to

associate each SU with a distinct NG

Context AmfSU
Inv: self.allInstances- > forAll(Su1,Su2| Su1.sg = Su2.sg

implies Su1.ng <>Su2.ng )

Note that for tree (b) Level 2 defines the Disjointness method in the context of the AmfNG, which is referenced at Level 1

Fig. 11 OCL constraint enriched by the LeadershipInfo
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and transformation generation techniques. The processing re-
mains in terms of seconds.

Modeling configuration fragments separately and merging
them to define the system configuration according to certain
semantic relationships is a simple and powerful process along
the lines of well-known software engineering principle of sep-
aration of concern.

5.2 Application domain

Although we explained our approach in the context of the SA
Forum, we believe it is generally applicable to model integra-
tion in any domain. Our approach is based on the model
weaving technique and focuses on the semantics of the rela-
tions in the weaving. Examples of such semantics are the HW-
disjointness property (to ensure hardware redundancy for re-
dundant software entities to increase the availability of the
system), the HW-collocation property (to decrease the com-
munication latency due to state synchronization) or the com-
bination of the two. Our approach can be applied for instance
in the automotive domain where several components are de-
veloped separately and integrated, according to some semantic
relations, to form the system. (Nechypurenko et al. 2007)
looked into the merging techniques in this domain to reduce
the complexity of developing automotive systems from a dif-
ferent angle including the usage of constraint solvers.

5.3 Reusability and extensibility

Defining special link types in the weaving metamodel allows
for the development of more abstract mappings. Abstracting
concepts is an intrinsic feature of metamodeling, which is
discussed widely in the literature. This advantage becomes
bolder in the case of configuration integration from two per-
spectives: First it increases the reusability of link types since
the defined link types can be used in future mappings when
other configuration fragments need to be added. As those
configuration fragments belong to the same system, there is
a fair chance that they require similar link types for their
mappings (e.g. using the BEqualCorrespondence^ link type).
The second advantage of the abstract definition of link types is
that it allows for the selection of the desirable interpretation
and implementation for the mapping. This means that the
declarative definition of the link types can be translated ac-
cording to the features of the system. Let us consider the
BDisjointDistribution^ link type. We interpreted this link with
the assumption that we have a predefined PLM configuration
with specific entities that are fixed and cannot be modified; on
the other hand we forced the AMF to use the newly defined
VM groups by changing the AMF configuration. While an-
other interpretation of the BDisjointDistribution^may consider
the AMF configuration as fixed and unchangeable model and
using other heuristics try to change the PLM configuration in a

way to still provide hardware redundancy for redundant soft-
ware entities.

The fact that model transformation is used to translate the
weaving model into an executable format does not fade away
the benefits of the weaving model. The reason is that the links
of the weaving model help us to capture the transformation
patterns and reuse them rather than defining all the rules man-
ually. Another reason for selecting the model weaving tech-
nique over the direct model transformation is the extensibility
of the weaving for integrating additional models with less
manual effort. With model weaving we can simply add more
models as input into the weaving process and the respective
transformation rules will be generated automatically, while
adding more models directly into a transformation requires
considerable time and effort to develop the new transforma-
tions rules.

5.4 Usability

Our approach as illustrated in Figs. 6 and 8 requires
metamodels, models, and transformation. For a given domain,
like SA Forum, one has to come up first with the configuration
metamodels. This is usually achieved by a domain expert
knowledgeable in MDD or with the help of MDD experts.
Extending the weaving metamodel requires similar expertise.
These metamodels are designed only once and used as many
times as needed. A configuration fragment model is an in-
stance of one of these metamodels, creating such an instance
is not a complex task for a user with some modeling knowl-
edge. In our case it is basically coming upwith a class diagram
that conforms to the metamodel. A domain expert can design
the weaving model that captures the semantics of the integra-
tion at a high level of abstraction. This is an advantage which
reduces the risks of errors; however this model is not execut-
able and one has to come up with a transformation (Final
Transformation) to realize this semantic weaving of the input
models. Therefore, the weaving model has to be translated
into an ATL transformation, and this is achieved with a high
order transformation (WModel2Final HOT) written once by a
modeling expert. Once the metamodels and the weaving
models are created and the ATL transformation is generated
one can integrate as many configuration fragments as needed.
Users interested in integrating configuration fragments with
the defined semantics only need to define the input models.

Note that the integration semantics is not defined initially in
the system configuration profile. Usually, the configuration
designer has to define them manually. Reusing the transfor-
mation rules for the generation of the integration constraints,
as shown in Fig. 8, is another advantage of our work. This
automated constraint generation reduces the risk of miss-
interpretation by different configuration designers of the inte-
gration relations.
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The fact that we use the Final Transformation instead of the
WModel2Final HOT for constraint generation implies that
this constraint generation technique can be used for ATL
transformations in general and is not restricted only to weav-
ing and integration transformations.

6 Related work

The idea of data mapping and data integration has beenwidely
investigated in the literature (Omelayenko 2002; Maedche
et al. 2002; Spaccapietra and Parent 1994). Defining the map-
ping between models and model integration can be seen as the
successor of the data mapping research. A number of ap-
proaches have defined model management operations (such
as merging, subtracting, integration, etc.) focusing on the
mapping definition between the models and proposing the
operations for manipulating the model mappings and the
models for different scenarios.

In Rondo (Melnik et al. 2003) the model management op-
erators, such as merge, match, extract, are defined for solving
the mapping problem of metadata in XML schemata format.
However the defined operators can only create mappings with
respect to fixed semantics and they are not flexible enough to
represent domain specific mappings. A set of generic model
management operations are introduced in (Bernstein 2003)
and the author explains how these operations can be applied
to the models and their mappings for different application
scenarios. The operations are defined in algebra, while the
implementation and execution of the abstract operators are left
to the users.

A more specific study on defining model management op-
erations for integrating heterogeneous models is discussed in
(Reiter et al. 2005). The authors introduce weaving and sew-
ing processes and a set of operators for each process. Their
input models are the aspect models and the relations between
the models are the cross-cutting concepts of the models. Their
weaving process is defined by specific operations (i.e. over-
rides, references, and prune) between entities and using con-
straints as pre/post conditions for selecting the entities. Their
sewing process connects models using mediators (defined by
synchronize or depend operators) without affecting the model
entities. However, their weaving concept is different from
what we described in this paper and their weaving operators
for connecting the model entities are restricted while integrat-
ing configuration models may require broader range of con-
nections and links between entities. The integration approach
should be extensible to allow the definition of different types
of connections with respect to the required properties of the
system. We used and extended the weaving concept intro-
duced in (Del Fabro et al. 2005a) which allows for the defini-
tion of the extensible corresponding entities that can be trans-
lated and executed with model transformations.

In (Jossic et al. 2007; Del Fabro and Valduriez 2007) model
weaving is used for integrating software architecture models.
The mapping links between the entities of the models are
created and then filtered based on some similarities, such as
type or name, between the linked entities. Basically, the links
are used to map similar entities. In our work however the links
between the entities represent the semantics of the relations
between the entities and they are more complex and carry
target system properties (such as HWavailability and/or affin-
ity in the case of AMF and PLM configuration models).

We also capture this semantics as constraints in the in-
tegration process. These constraints are used for checking
the consistency of the target model when changes are made
at runtime.

7 Conclusion

As systems can be developed by the integration of different
aspects, services, or components developed separately, the
system configuration can be obtained from the integration of
the configurations of these different aspects or artifacts devel-
oped separately as well. Although developed independently
these configuration fragments are interrelated as they repre-
sent and potentially act on the same system entities. Moreover,
the integration may target specific properties, such as avail-
ability or affinity, etc. Therefore, the configuration fragments
need to be integrated carefully to form together a consistent
system configuration with respect to fragment internal prop-
erties and targeted system configuration properties.

We tackled this problem with a model driven approach
using model weaving. We used configuration samples from
the SA Forum middleware for illustration purposes. Our ap-
proach to integrate configuration fragments takes into account
the properties of the target system configuration. We used the
weaving model to capture the mapping between the elements
of the different configuration profiles. We introduced new link
types to capture the special relations, i.e. integration seman-
tics, between the entities of these profiles in a weaving model,
i.e. they are added to the weaving metamodel. Using a set of
ATL transformations we generate a consistent system config-
uration from the weaving. Although this integration semantics
is taken care of in the process of generating the system con-
figuration model, it is not reflected in the system configuration
profile. This integration semantics needs to be defined as in-
tegration constraints in the system configuration profile in
order to guard the consistency of system configuration models
against unsafe runtime modifications. This is achieved auto-
matically in our approach.

Our approach for integrating configuration fragments
allows for the reuse and the extension of the system con-
figuration generation process as the link types were de-
fined once and reused for the mapping of different entities
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of the configuration fragments. In the future other profiles
can also be added to the process using the same or new
link types. The automated generation of system configura-
tions from different input configurations is another advan-
tage, which results in saving time and efforts needed for
the task.

The work reported in this paper is part of a larger project
aiming at the integration of configuration fragments into a
consistent system configuration, validating efficiently runtime
modifications to preserve this consistency (Jahanbanifar et al.
2015a), and adjusting automatically when this consistency is
violated by the proposed modifications (Jahanbanifar et al.
2016).
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