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Abstract Over the last years, many data-sources have
become available to monitor the marine traffic. This has
motivated the development of support systems to automat-
ically detect vessels’ behaviours of interest. The present
work states a novel approach in this domain following the
Complex Event Processing (CEP) paradigm. As a proof of
concept, a CEP-based system has been developed to timely
detect a set of vessel’s abnormal behaviours by performing
an event-based processing of Automatic Identification Sys-
tem data. Experiments based on real-world and synthetic
data proved the suitability and feasibility of the proposal.

Keywords Complex event processing · Abnormal
behaviour · Automated identification system · Vessel traffic
service

1 Introduction

In this day and age, a huge amount of vessel data is avail-
able due to a varied range of existing sources in the marine
domain such as the Automated Identification System (AIS),
radars, satellites or video-cameras. As a result, Vessel Traffic
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Service (VTS) entities in charge of high-traffic areas have to
deal with such incoming information from all these sources.
This has led to an increasing necessity to develop detection
systems which focus on perceiving and informing about ves-
sels’ abnormal behaviours in order to support a VTS staff
(Nuutinen et al. 2007).

These behaviours may give insight into illegal and/or
dangerous activities (i.e. collisions, smuggling or human
trafficking). Therefore, one important requirement for these
systems is the timely detection of their target behaviours.
However, most of the current anomaly-detection system
in the marine environment hardly address time constrains
to detect their target abnormal behaviours as they usually
follow either a data-based or a rule-based approach.

Regarding time-constrained scenarios, the Complex
Event Processing (CEP) paradigm has arisen as a well-
known solution to develop event-based systems in this type
of environments for the last years (Etzion and Niblett 2010).
A CEP system mainly performs an online processing of pri-
mary events from different and distributed data sources and,
on the basis of those events, makes up derived events repre-
senting pre-defined situations of interest. For that purpose, a
CEP system usually relies on different filtering, correlation
and pattern-based operators so as to perform its processing.

In this frame, most of the data received by a VTS, like
the AIS data, is naturally event-based as each AIS location-
message from a vessel can be seen as an event informing
about a velocity and/or location change of such vessel.
Moreover, most of the vessels’ behaviours and activities that
are interesting for a VTS can be extracted from its received
data streams. Consequently, the present work states that
CEP is a suitable approach to develop anomaly-detection
systems in the marine environment.

As a proof of concept, the present work puts forward a
novel CEP-based system able to timely perceive different
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abnormal behaviours related to the vessels moving in a
VTS’s area of interest. In order to do that, it performs
an event-based processing to the information periodically
reported by the AISs installed in the vessels. Furthermore,
the system also takes into account other contextual events
related to the VTS’s area of interest itself, like the cur-
rent weather conditions, in order to improve the detection
accuracy. As a result, the system delivers a set of early
alerts each time it detects a target behaviour with the aim
of informing the VTS staff by means of some type of dash-
board. In that sense, such dashboard is out of the scope of
the present paper.

Concerning the target behaviours, they have been cho-
sen on the basis of the conclusions of several workshops
where the most interesting situations for the VTS staff were
defined (Roy and Davenport 2009; van Laere and Nilsson
2009; Roy 2008). More specifically, the system centres on
two types of abnormal behaviours,

– The first one comprises those behaviours in which only
a single vessel is involved. In particular, the system
focuses on detecting whether a boat is moving abnor-
mally fast or slow. Perceiving these situations is fairly
important because, under certain circumstances, a too
high or slow vessel might be a sign that such vessel is
carrying out some type of illegal or dangerous activity.

– The second type of behaviour involves more than one
vessel. In more detail, the present system focuses on
detecting situations where two different vessels might
be about to collide with each other. Detecting this type
of dangerous situations is paramount to improve the
safety of the marine traffic.

The adopted CEP approach makes no longer necessary a
previous training or data-gathering step as in former solu-
tions which usually rely on some type of in-disk processing.
On the contrary, the CEP paradigm focuses on processing
the incoming data in an asynchronously and fast way so as
to timely detect the target activities. This feature is specially
important in the VTS domain where it is paramount to detect
the behaviours of interest as soon as possible.

On the whole, the core contribution of this paper is the
description of a novel event-based mechanism capable of
detecting different behaviours of interest involving either
one or more vessels. This has implied the definition of
different event-based patterns.

The remainder of the paper is structured as follows, an
overview of the state of the art of the anomaly detection
systems in the marine environment and the CEP domain is
put forward in Section 2. Next, a detailed explanation of
the CEP anomaly-detection system is stated in Section 3.
Then, Section 4 discusses the results of the different exper-
iments to test the system. Finally, the main conclusions and
the future work are summed up in Section 5.

2 Background

2.1 Maritime abnormal-behaviour detection

As far as anomaly-detection systems in the marine environ-
ment are concerned, it is possible to distinguish two broad
trends.

On one hand, the large amount of available AIS data has
motivated the development of data-driven (aka bottom-up)
solutions. This type of systems focuses on learning normal
behaviours from historical AIS data. Thus, it is possible to
detect situations which are abnormal with respect to the
training data set where expert knowledge is not necessary.
In this frame, several methods have been proposed in order
to generate amodel of normality like gaussian mixture mod-
els (Kowalska and Peel 2012; Will et al. 2011; Garagic
et al. 2009), kernel density estimators (Ristic et al. 2008)
or bayesian networks (Kruger et al. 2012; Lane et al. 2010;
Mascaro et al. 2010). Nevertheless, a common issue of those
solutions is that they rely on a previous training step, so the
accuracy and reliability of the model depends on the rep-
resentativeness of the used dataset. Hence, during the last
years various on-line solutions have arisen to learn normal-
ity models on the fly to avoid the aforementioned training
step (Vespe et al. 2012; Bomberger et al. 2006). Since the
event-based patterns of the CEP approach introduced in the
present paper have been defined by means of expert knowl-
edge, the aforementioned training techniques have not been
used. However, these data-driven solutions can be regarded
as complementary to the CEP paradigm because they could
be used to define event-based patterns. Moreover, the pro-
posed system is capable of detecting a more varied range
of behaviours than the aforementioned on-line solutions as
they usually focus on abnormal velocity variations of a boat.
On the contrary, the introduced CEP-system is capable of
detecting activities of interest not only related to one single
vessel but also those involving more than one boat.

On the other hand, the second line of work follows a
rule-based (aka model-driven) approach. In this case, the
different solutions comprise a set of rules or patterns to
detect a pre-defined group of anomalies on the basis of the
received AIS data (Idiri and Napoli 2012; Roy 2010). Our
proposal could also be viewed as a kind of rule-based sys-
tem as it comprises a set of pre-defined patterns whose goal
is to detect various target behaviours. Nonetheless, most of
the previous methods do not perform an online process-
ing of the incoming AIS data. Still, this data is previously
stored and indexed in a database before being processed
by the system afterwards. In that sense, the proposed CEP
approach allows to timely processing the incoming AIS data
without a previous storage stage and, as a result, it gener-
ates alerts informing about abnormal behaviours with short
delay.
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2.2 Complex event processing

In this day and age, the information flow processing mod-
els have become an important approach so as to cope with
time constraints in a wide range of environments (Cugola
and Margara 2012). In this frame, CEP has played a key
rol.

An overriding line of work in the CEP domain has been
the deployment of event-based systems in the business field
(Luckham 2011). Nevertheless, several CEP-based propos-
als have gone beyond that field and have widened the
CEP’s usage range in several scopes such as advertise-
ment management (Evensen and Meling 2012), road-traffic
monitoring (Terroso-Saenz et al. 2012), context-aware ser-
vices (Terroso-Saenz et al. 2012) or telemedical systems
(Meister 2012). Regarding the marine domain, little event-
based efforts have been undertaken so far. In that sense,
some papers have put forward, as illustrative examples of
their core contributions, event-based solutions to detect cer-
tain situations involving one or more boats like unusual
low speed (Verginadis et al. 2012; Patiniotakis et al. 2013).
Unlike these proposals, the present work introduces a more
detailed solution to perceive marine situations of interest
comprising a more varied range of patterns.

3 CEP anomaly detection system

As Fig. 2 depicts, the proposed system intends to connect a
set of event producers, which in the present domain are the
vessels in a VTS’s area of interest, and the event consumer,
which in this case is some type of back-end service used to
inform the VTS staff of the detected behaviours. The fol-
lowing subsections explain in detail the different elements
of the system.

3.1 Target behaviours

During the last years, various workshops have been held
to define the most interesting activities, situations and/or
behaviours that should detected so as to improve the marine
traffic’s safety (Roy and Davenport 2009; van Laere and
Nilsson 2009; Roy 2008). A recurrent point in those meet-
ings was to detect abnormal vessels’ speeds. Another point
of interest was the early detection of possible collisions
between different vessels. Keeping in mind these results, the
developed system is able to detect three different vessels’
activities,

– The first one occurs when a vessel is moving at abnor-
mally high speed during a certain period of time. Per-
ceiving this situation is fairly important because a too
high value of a vessel’s speed may be a sign that such

vessel is carrying out some type of illegal or dangerous
activity which can put in danger the safety of the sur-
rounding boats specially in areas with high density of
traffic.

– The second behaviour arises when a single boat is doing
abnormally low speed. This situation may be also a sign
of certain suspicious activities. For example, a vessel
loitering during a long period of time might indicate an
illegal-fishing situation.

– The third type of target behaviour involves more than
one vessel. Specifically, the present system focuses on
detecting situations where two different vessels might
be about to collide with each other. Detecting this type
of dangerous situation is paramount in order to improve
the safety of the marine traffic.

Each time the system detects any of these behaviours, it
delivers an alert to the event consumer.

3.2 Event model

One of the most important duties when it comes to develop
a CEP system is to properly define the different events
that the system is intended to process. In CEP, an event
can be defined as “an occurrence within a particular sys-
tem or domain; it is something that has happened, or is
contemplated as having happened in that domain“ (Etzion
and Niblett 2010). Figure 1 shows the hierarchy of events
reporting the occurrences that are interesting in the system’s
domain.

As we can see, all the system’s event types inherit from
root event that contains the attributes that are common to
the rest of events. Those event types can be classified in two
different groups, namely the ones related to the target ves-
sels (vessel event) and the ones related to the area of interest
where these vessels move (context event).

Regarding the vessel event type, the leftmost sub-group
comprises the types location event and filtered location
event. The former unifies the information from the vessels’s
AISs. For that purpose, an adaptation process is perform to
the incoming AIS data as it is explained in Section 3.3.1.
In addition to that, the filtered location event represent
those location events that have been filtered-in by a filter
mechanism to smooth the stream of location events as it is
explained in Section 3.3.2.

The second sub-group of event types is compound of
the velocity event and its two subtypes, current velocity
and average velocity event. While the current velocity event
indicates a boat’s velocity during a recent period of time,
the average velocity event reports a vessel’s velocity during
a longer one. Hence, this group of events report informa-
tion about the movement of the vessels as it is described in
Section 3.3.3
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Fig. 1 Event model for the proposed system

Next, the third vessel event sub-group comprises the
alerts for the three target behaviours. Thus, the collision
alert represents a collision that is about to happen between
two different vessels. The swift movement alert indicates
a situation where a vessel is doing too high speed accord-
ing to certain parameters. Lastly, the loitering alert reports
a situation in which a boat is moving at a too low speed
with respect to certain criteria. These three event types have
their own super types, possible collision alert, possible loi-
tering alert and possible swift movement alert. These super
types represent situations that might develop into the tar-
get abnormal behaviours in the future as it is put forward in
Section 3.3.5.

Finally, the context event group represents meaningful
events about the area of interest which may affect the ves-
sels’ behaviour. In this first version, this group is basically
compound of the weather event. This event type reports the
current weather conditions of the VTS’s area of interest.

3.3 System architecture

As Fig. 2 shows, the introduced CEP system takes as incom-
ing raw events the data reported by the AIS in each target
boat and it performs an event-based processing of them
afterwards by means of its Event Processing Agents (EPAs).

An EPA can be defined as a CEP component in charge of
processing events at a certain abstraction level. As a result,
it generates different derived events (or alerts) reporting the
abnormal behaviours listed in Section 3.1 that are eventually
sent to a VTS dashboard.

For the sake of clarity, Table 1 lists notations used
throughout the paper.

3.3.1 Adaptor EPA

As Fig. 2 shows, this agent is responsible for processing
the vessel’s AIS messages received by the system and unify
them in a unique representation. In particular, the agent
only processes the AIS location reports in spite of the fact
that the AIS description comprises other types of messages
(Navigation Center-United States Coast Guard 2013). Those
location messages contains, among other data, the unique
identifier of the sender vessel, the location’s coordinates, the
current speed of movement and the timestamp at which the
message was generated (Navigation Center-United States
Coast Guard 2013). Therefore, the adaptor agent maps each
location report to a new location event comprising the afore-
mentioned fields and it discards the other types of messages.
Next, the generated events are processes by the upstream
agents.
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Fig. 2 Abnormal detection system schema. The event channels have been labelled with the stream of events that flows through it

3.3.2 Filter EPA

The stream of location events generated by the Adaptor
EPA might comprise a huge amount of events. Therefore,
it is necessary to clean up this stream by discarding the
irrelevant events.

As a result this EPA discards those location events that
do not imply a meaningful movement, otherwise a filtered
location event is created. Furthermore, a time-based watch-
dog (tmax) is also included to avoid event starvation in the
upstream EPAs. All in all, the filtering mechanism can be
described as follows,

le
j
i → f le

j
k (

f le
j
k .timestamp = le

j
i .t imestamp,

f le
j
k .location = le

j
i .location

f le
j
k .speed = le

j
i .speed

) iff

dist
(
le

j
i , f le

j

k−1

)
≥ dmin ∨ (le

j
i .t imestamp

−f le
j

k−1.t imestamp) ≥ tmax

Lastly, Fig. 3a depicts an example of the aforementioned
filtering process.

3.3.3 Velocity EPA

The main goal of this agent is to calculate certain details
of the movement of each vessel by aggregating the filtered
location events coming from the filter EPA.

First of all, this agent calculates the current velocity
(bearing and speed) of each vessel by means of a length-
based sliding window that stores the last two filtered loca-
tions events of each vessel. On the basis of these two events,
the agent makes up a current velocity event instance which
comprises different details of the current movement of its

Table 1 Table of notations

Symbol Meaning

le
j
i The i-th location event of the vessel j.

f le
j
k , The k-th filtered location event of the vessel j.

cve
j
k , ave

j
k The k-th current velocity and average velocity event of the vessel j.

sve
j
k The k-th slow vessel event of the vessel j.

pla
j
k , la

j
k The j-th possible loitering and loitering alert of the vessel j.

pca
ij
k , ca

ij
k The k-th possible collision and collision alert between the vessels i and j.

FLEj Stream of filtered location events of the vessel j.

CV Ej Stream of current velocity events of the vessel j.

W(X)n Length-based sliding window retaining the last n events of the stream X.

W(X)in The i-th event instance contained in the sliding window W(X)n.

W(X)tn Time-based sliding window retaining the events of the stream X generated during the last n time units.

W(X)itn The i-th event instance contained in the sliding window W(X)tn.

xlast The most recent event of type x made up by the system.

x → y The event instance x gives raise to a new event instance y.
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Fig. 3 Example of the event
processing made by the system
for a particular vessel j . a
Location event filtering. b
Current velocity generation. c
Average velocity event
generation

a b c

sender vessel. The way these attributes are calculated is
specified next,

W(FLEj )2 → cve
j
k (

cvek.timestamp= current timestamp,

cvek.initial timestamp= W(FLEj )12.t imestamp,

cvek.f inal timestamp= W(FLEj )22.t imestamp,

cvek.speed= W(FLEj )22.speed,

cvek.bearing=bearing(W(FLEj )12.location,

W(FLEj )22.location),

cvek.cell= cell(W(FLEj )22.location)

cvek.locations= {W(FLEj )12.location,

W(FLEj )22.location}
)

Regarding the new event’s content, the bearing attribute
indicates the bearing in radians of going from the point
W(FLEj )12.location to W(FLEj )22.location following a
straight line. This can be calculated by basic mathematics.

Moreover, the cell attribute is used to position the vessel
in a particular square cell of a location grid. This grid is
compound of different square cells of the same size. Each
cell is labelled with a particular coordinate with respect to a
reference point. This reference point is the same for all the
cells and could be the location of the VTS where the system
is intended to run.

Next, the stream of current velocity events is used by the
velocity EPA to generate the average velocity events. Unlike
the current velocity event type, this type of event intends
to report a more general view of a vessel’s movement. In
order to do that, a time-based sliding window stores the cur-
rent velocity events of each target vessel generated during

the last tn time units. Hence, each time a new current veloc-
ity event is generated, a new average velocity event ave

j
k is

composed as follows,

W(CV Ej )tn → ave
j
k (

avek.timestamp = current timestamp,

avek.initial timestamp = W(CV Ej )1tn.initial timestamp,

avek.f inal timestamp = W(CV Ej )last
tn .f inal timestamp,

avek.speed = avg speed(W(CV Ej )tn)

avek.bearing = avg bearing(W(CV Ej )tn)

)

In this definition, avg speed and avg bearing stands for
ad-hoc aggregation methods in charge of calculating the
average speed and bearing of the events contained in the
aforementioned sliding window.

For the sake of clarity, Fig. 3b-c depicts an example of
how the current and average velocity events are created.

To sum up, the velocity EPA emits two different event
streams each of which informs of the movement of the ves-
sels with different granularities. Whilst the current velocity
events report details about the recent movement of a vessel,
the average velocity events inform about the vessels’ move-
ment in a coarser grain. This two levels of information allow
the system to have a comprehensive view of vessel traffic at
each moment.

3.3.4 Context EPA

In order to improve the system’s accuracy, certain contex-
tual information related to the area of interest has been
taken into account. This information has to do with particu-
lar conditions or circumstances that may affect the vessels’
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behaviour and, thus, should be considered so as to infer
whether a vessel is behaving abnormally or not. Such infor-
mation may be reported by a varied range of data sources,
like sensor networks or web/cloud services.

Consequently, the Context EPA is mainly in charge of
injecting all the information coming from non-AIS sources
to the rest of agents in the form of events. In the present ver-
sion, this EPA focuses on the current weather conditions of
the VTS’s area of interest. This information is a clear exam-
ple of contextual information that might have an impact on
a vessel’s behaviour.

The logic design of this agent is based on the sensor
management module presented in Valdés-Vela and Gomez-
Skarmeta (2010) which was already adapted in Terroso-
Saenz et al. (2012) to generate weather events from an exter-
nal weather-information provider. In brief, such a module
endlessly requests new weather information to the provider.
On the basis of that information, it periodically emits new
weather events whose state attribute indicates the label-
based classification of current weather conditions in the
VTS’s area of interest.

3.3.5 Alert EPA

This EPA generates the alert events informing about the
three target behaviours and delivers them to the dashboard
acting as event consumer.

Abnormal low speed This behaviour is detected by an
incremental event processing comprising two different
steps. The first step centres on detecting vessels moving
slowly by only taking into account its present speed. In this
frame, a vessel’s current speed can be regarded as low from
two different criteria. The former is related to the average
speed of the vessel during a long period of time. In that

sense, if the current speed is meaningfully lower than the
average of the previous measurements then this situation
indicates that the vessel has sharply decelerate. The second
criterion has to do with the vessels’ average speed in the area
where the vessel is currently moving. In that sense, a ves-
sel moving much more slowly than its surrounding vessels
is also a potentially-dangerous behaviour.

If the two aforementioned criteria are accomplished, then
a slow vessel event is generated representing the situation
that a vessel is moving particularly slow.

cve
j
i → sve

j
k (

svek.timestamp = current timestamp,

svek.initial timestamp = cve
j
i .initial timestamp,

svek.f inal timestamp = cve
j
i .f inal timestamp,

svek.locations = cve
j
i .locations

svek.speed = cve
j
i .speed

) iff

cve
j
i .speed <

min(δdec(welast ) ∗ave
j
last .speed, δdec(welast )

∗avg speed(cve
j
i .cell))

0 < δdec(welast ) < 1

According to this definition, the current velocity event
under consideration (cve

j
i ) gives raise to a new slow vehi-

cle event (svek) only if its speed is below the average
speed of both its vessel (ave

j
last .speed) and its current cell

(avg speed(cve
j
i .cell)) giving the decreasing factor δdec.

The particular value of δdec is modified depending
on the current weather conditions reported by the most
recent weather event (welast ). This assignment logic can be
defined as follows,

δdec(welast ) =
{

dec f actor welast .state ⊂ {sunny, cloudy},
dec f actor × 0.2 welast .state ⊂ {f oggy, rainy,windy, snowy}

As we can see, δdec is decreased in case of adverse
weather conditions. This way, a certain vessel’s speed,
which is inferred as low in case of sunny weather, might be
not classified that way in case of rough weather conditions.
By means of this approach, the system takes into account
the fact that a vessel tends to reduce speed if it faces danger-
ous weather conditions and, thus, it should not be classified
as an abnormal movement.

Next, the slow movements perceived in the form of slow
vessel events should be further analysed to detect whether
they last enough to be regarded as persistent situations. Con-

sequently, it is necessary to define a time threshold to filter
out those low-speed situations that are irrelevant because of
their short lifetime.

In terms of events, if a boat moves quite slowly during
a meaningful period of time, it will cause the generation
of many consecutive slow vessel events. Hence, the first
task of this step is to detect long sequences of these events
related to the same vessel and group them in a possible loi-
tering alert instance. As it was already stated in Section 3.2,
this event type is used to represent a situation that is
suspicious of being an abnormal low-speed behaviour but
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it is not confirmed yet. This gathering process can be
described as follow,

{sve
j
last , pla

j

i−1} → pla
j
i (

pla
j
i .t imestamp = current timestamp,

pla
j
i .initial timestamp = pla

j

i−1.initial timestamp,

pla
j
i .f inal timestamp = sve

j
last .f inal timestamp,

pla
j
i .locations = {pla

j

i−1.locations, sve
j
last .locations},

pla
j
i .speed = avg speed

(
sve

j
last , pla

j

i−1

)

) iff

pla
j

i−1.f inal timestamp ≥ sve
j
last .initial timestamp ∧

pla
j

i−1.f inal timestamp < sve
j
last .f inal timestamp

In short, each new slow vessel vessel sve
j
last is fused with

the last possible loitering alert (pla
j

i−1) of the same ves-

sel to create a new one (pla
j
i ) if both events’ time intervals

overlap. Thus, a possible loitering alert gathers the informa-
tion of the slow vessel events that are very close in time and,
as a result, refer to the same situation.

Lastly, in case the reported time interval of a possible
loitering alert is long enough to be considered a meaning-
ful behaviour, a new loitering alert is made up. This new
event is emitted by the alert EPA to the event consumer
afterwards. This definition is shown next,

pla
j
i → la

j
k (

lak.timestamp = pla
j
i .t imestamp,

lak.initial timestamp = pla
j
i .initial timestamp,

lak.f inal timestamp = pla
j
i .f inal timestamp,

lak.locations = pla
j
i .locations,

lak.speed = pla
j
i .speed

) iff

pla
j
i .f inal timestamp−pla

j
i .initial timestamp> tmin

alert

In this definition, tmin
alert indicates the minimum time inter-

val of a possible loitering alert (pla
j
i ) to give raise to a new

loitering alert lak .
In conclusion, this aggregation step intends to deliver

only the alerts informing of behaviours that last a cer-
tain period of time so that they can not be considered as
exceptions but persistent in time. This intends to reduce the
cognitive overload of the VTS staff.

Abnormal high speed The approach to detect abnormal
high speed values is similar than the one for the abnormal
low speed described above.

Firstly, if the system detects that a vessel is moving faster
than its own average speed and the one in its surrounding
area then it makes up a fast vessel event to represent such
situation. In this case, the weather events are not taken into
account.

Secondly, the system aggregates the fast vessel events
that overlap in time giving raise to a possible swift movement
alert. Then, each possible swift movement alert is filtered
depending on its reported time length. Provided that this
time period is over a certain threshold, the system composes
a new swift movement alert which is eventually emitted by
the alert EPA as a system output.

Possible collision In this third case, the system intends
to detect those situations in which two different vessels
are about to collide to each other. Intuitively, this situation
occurs when two different vessels follow such close and
convergent trajectories that, as a result, they will collide to
each other if they do not change their current velocities.

In order to formally describe this situation, we will use
the term closest point of approach (CPA) previously coined
in the Moving Object Databases (MODs) domain (Guting
and Schneider 2005). Basically, a CPA is the location at
which two moving objects have attained their closest pos-
sible distance based on their known positions. This term
has been slightly modified to give raise to the projected
closest point of approach (pCPA). A pCPA is the forecast
location at which two moving objects will attain their clos-
est possible distance if they keep moving with their current
velocities. Unlike the former CPA, a pCPA does not only
rely on the already-known locations of the objects but also
on the future ones according to their current velocities.

As Fig. 4 depicts, the pCPA can be seen as the intersec-
tion point of the forecast trajectories of the two involved
vessels (i and j ). These two trajectories can be calculated
by the last two known locations of each vessel ({ai, bi} and
{aj , bj }). Figure 4 also shows the distance between the cur-
rent position of each vessel and their common pCPA (di

pCPA

and d
j
pCPA). On the basis of these distances and the current

speed of each vessel, it is possible to know the time at which
each vessel will reach their pCPA (t ipCPA and t

j
pCPA) by

using basic calculus.
Consequently, two different vessels i, j might collide to

each other if the two following conditions occur,

1. A pCPA for the two vessels exists and
2. |t ipCPA − t

j
pCPA| ≤ tmax

pCPA

The alert EPA intends to detect these two conditions by
means of the movement information reported by the current
velocity events.

In the first place, the agent correlates the current velocity
events of different pairs of vessels so as to detect whether
they are quite close to each other both in space and time. If
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Fig. 4 Example of a pCPA of two different vessels given their real
and predicted trajectories

both conditions are accomplished, the alert EPA makes up a
new possible collision alert. This first step is defined next,

{cve
j
last , cvei

last } → pca
ij
k (

pca
ij
k .timestamp = current timestamp,

pca
ij
k .locations = {cve

j
last .locations, cvei

last .locations},
pca

ij
k .speeds = {cve

j
last .speed, cvei

last .speed}
) iff

i 	= j ∧
|cve

j
last .cell.x − cvei

last .cell.x| ≤ 1 ∧
|cve

j
last .cell.y − cvei

last .cell.y| ≤ 1 ∧
|cve

j
last .f inal timestamp − cvei

last .f inal timestamp| ≤ tmax
pca

As this definition shows, the alert EPA correlates the
most recent current velocity events of each pair of vessels
(cve

j
wlast , cvei

wlast ) to create a new possible collision alert
pcak . Two vessels are regarded as close to each other in
space if their last current velocity events are in the same or
adjacent cells of the location grid.

On the basis of the information of each pca
ij
k , the alert

EPA calculates the pCPA of the two involved vessels along
with their times to reach it. If the difference between those
times is below a certain threshold tmax

pCPA then a new col-
lision alert is make up. This procedure is described as
follows,

pca
ij
k → ca

ij
l (

ca
ij
l .t imestamp = pca

ij
k .timestamp,

ca
ij
l .locations = pca

ij
k .locations

) iff

|tpCPA(pca
ij
k .locations, pca

ij
k .speeds, i) −

tpCPA(pca
ij
k .locations, pca

ij
k .speeds, j)| ≤ tmax

pCPA

Finally, each ca
ij
l is delivered to the dashboard.

4 Experiment results

In order to test the present system, it was fully implemented
by means of the CEP platform Esper (Espertech 2013).
Esper is a well-established GNU open-source CEP tool that
defines its own stream-oriented Event Processing Language
(EPL). This EPL allows to specify the processing of each
EPA by means of a varied collection of built-in or ad-hoc
resources such as sliding windows, contexts or aggregation
functions.

Next, we evaluated the system in a maritime scenario
comprising real-world datasets. Besides, we compared our
approach with one state-of-the-art anomaly detection sys-
tem for the maritime domain. Finally, in order to study the
potential feasibility of the proposal for other domains, we
tested the system in a road-traffic scenario.

4.1 Maritime case study

4.1.1 Experiment setup

Datasets. Two different datasets were used for this evalua-
tion and both of themwere injected to the system at the same
time. The former was generated by means of two rigid-
hulled inflatable boats (RHIBs). Both RHIBs were ordered
to perform various movements and follow different abnor-
mal behaviours in order to cover a varied range of situations
that may arise in the marine environment during a 7-hour
trial departing from Cowes (England). The two RHIBs were
equipped with data loggers that recorded the vessels’ loca-
tions and speed of movement, among other parameters, at
10-second intervals. As as result, a location log compris-
ing 2332 locations for the first boat and another containing
2327 locations for the second RHIB were created. All these
locations felt into the square of latitude 50.76 to 50.80 and
longitude 1.37 to 1.27 whose length was approximately
6000 × 5000 m.

The second dataset was the real AIS data collected from
an AIS-monitoring web service.1 Due to the slow refresh
date of this type of web services, the data of this second
dataset was gathered in 10-minute intervals, and it also cov-
ered a 7-hour period. This dataset comprised 200 vessels of
different types and sizes and it felt into the square of latitude
50.73 to 50.81 and longitude -1.40 to -1.28.

Settings The system evaluation was conducted on a PC
running a Ubuntu 12.04 operating system with 4GiB of
memory, Intel(R) Core i5 at 3.10GHz and Java Runtime
Environment 7.0 (JRE 7) with 2GiB of allocated memory.

Table 2 lists the default parameters used throughout the
experiment set by expert knowledge. In this frame, the size

1http://vesseltracker.com

http://vesseltracker.com
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Table 2 Values of the system’s parameters for the experiments

Param. Description Holder agent Value

dmin Min. distance between two consecutive location events. Filter EPA 100 m

tmax Max. time between two consecutive location events. Filter EPA 60 s

tn Length of the time window to generate average velocity events. Velocity EPA 300 s

dec f actor Decreasing factor to detect abnormally-low speeds. Alert EPA 0.3

δinc Increasing factor to detect abnormally-high speeds. Alert EPA 1.4

tmin
alert Min. time length of an alert event. Alert EPA 120 s

tmax
pca Max. time gap between to current velocity events to give raise to a possible collision event. Alert EPA 3 s

tmax
pCPA Max. time for two vessels to reach their pCPA to give raise to a collision event. Alert EPA 10 s

of the square cells was 1000 × 1000 m length and the
reference point to make up the location grid was the port
from which the two RHIBs departed. This size allowed to
enclose this port (where the vessels must move quite slow)
in a unique square whereas other open-sea areas (where the
boats are allowed to move more freely) were contained in
other different squares. As a result, the location grid com-
prised 2234 cells, 31 of which were enclosed in the RHIBs’
dataset area.

Reference framework (RF) Our CEP-based solution has
been compared with the maritime anomaly detection sys-
tem described in Kowalska and Peel (2012). In brief, this
framework creates a model of normality from historial AIS
data using Gaussian Processes which do not require expert
knowledge. Then, on the basis of such a model, an anomaly
score for each observation is obtained. For its evaluation,
authors in Kowalska and Peel (2012) make use of the same

RHIB dataset than the present work, so the outcome of both
solutions can be easily compared.

Methodology Since the RHIBs’ dataset was labelled with
the behaviour of each RHIB, it was used to compare the
system’s alerts with the vessels’ actual behaviour so as to
study their accuracy and reliability. Thus, the main goal of
the second dataset was to inject real data to the system so
that it was capable of calculating the cells’ average speed of
the location grid in a realistic way. However, the system’s
alerts related to the vessels of this dataset were no taken into
account in this case study.

4.1.2 Speed-based alerts

Figure 5a shows the evolution of the real speed of the ves-
sel RHIB 1 along with its average speed during the last tn

seconds (see Table 2). These average values are the ones
reported by the average velocity events. The figure also
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Fig. 5 RHIB 1’s (a) and RHIB 2’s (b) speed evolution throughout the trial and time periods during which the vessel did either abnormal low
speed (alsi , purple areas) or abnormal high speed (ahsi , orange areas). The time interval of each period is shown in brackets
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depicts the speed of the cells in the location grid crossed by
the RHIB 1 over the trial. Besides, the x-axis projection of
the purple areas represent the time intervals during which
the RHIB moved at an abnormally low speed, whereas the
projection of the orange ones are the periods during which
the boat moved abnormally fast. These periods covered a
varied range of abnormal behaviours that may occur in a real
environment differing to each other both in length and the
reason why the were considered abnormal.

Table 3 shows the detection rate and the mean time to
detect each of the aforementioned abnormal periods in x/y
format. While x represents the detection rate, y indicates
the detection time in seconds. In that sense, the differ-
ent sampling rates included in the table were generated by
sub-sampling the original RHIBs dataset.

As such a table shows, the system detected all the target
abnormal situations given low sampling rates (10 s). This
is because the current velocity and average velocity events
made up by the system with these sampling rates reported
the vessel’s speed in a fairly fine grain which allowed to
keep track of the vessel’s speed with a great level of detail.
This gave raise to high detection rates. In particular, the
detection rate of the system was over the 88 % in all the
cases as long as the sampling rate was below 60 s as Table 3
depicts.

As the sampling rate was increased, the detection rate of
the system decreased. For instance, increasing the sampling
rate to 480s made the system to detect only 1 out of 13
abnormal behaviours according to Table 3. This decrease is
because, given high sampling rates, the incoming AIS-based

Table 3 Detection rate and mean time to detect (in seconds) the
abnormal-speed periods for RHIB 1

Period Sampling rate (s)

10 60 120 480

als1 1.0/121 1.0/140 1.0/168 0.0/x

als2 1.0/124 0.95/145 0.56/170 0.0/x

als3 1.0/128 1.0/151 1.0/164 0.86/312

ahs1 1.0/124 0.98/149 0.51/166 0.0/x

ahs2 1.0/124 0.92/138 0.49/154 0.0/x

ahs3 1.0/126 1.0/146 0.77/179 0.0/x

ahs4 1.0/124 0.87/165 0.05/189 0.0/x

ahs5 1.0/123 0.89/164 0.01/178 0.0/x

ahs6 1.0/127 1.0/139 0.75/161 0.0/x

ahs7 1.0/126 1.0/169 0.09/162 0.0/x

ahs8 1.0/121 1.0/146 0.90/154 0.0/x

ahs9 1.0/127 0.88/148 0.2/186 0.0/x

ahs10 1.0/121 0.79/156 0.0/x 0.0/x

ahs11 1.0/120 0.99/163 0.85/197 0.0/x

Avg. 1.0/122 0.88/151 0.51/171 0.06/312

location and speed data is less detailed than with lower
sampling rates. This caused that certain parts of the move-
ment of the vessel become invisible for the system as they
were reported neither in the incoming AIS data nor, as as
result, in the velocity events created by the system.

Table 3 also shows that the shorter in time an abnormal
behaviour is, the less likely to be detected by the system if
the sampling rate is increased. For example, the behaviour
ahs10, whose time length was 120 s (from the minute 307
to the minute 309 of trial according to Fig. 5a), was not
detected by the system given the 60-s sampling rate. This
is because such rate was so large that the system did not to
receive enough AIS data related this part of the RHIB 1’s
trajectory so it became invisible for the system. Moreover,
given the 480-s rate, the system only detected the behaviour
als3. This was due to the fact that this behaviour’s length
was about 10 minutes (from minute 171 to minute 181)
which was large enough to be reported (at least partially) by
the AIS data.

Apart from that, Table 3 also shows the mean time to
detect (MTTD) each of the target speed-based abnormal
behaviours. According to this table, the system required
at least 120 seconds to detect any of the RHIB 1’s target
behaviours even with low sampling rates. This is because
of the tmin

alert parameter. As it was explained in Section 3.3.5,
the system needs to aggregate possible-alert events during at
least tmin

alert time units before delivering an alert. Thus, taking
into account that for the present experiments this parameter
was set to 120 seconds as Table 2 shows, the system needed
at least that amount of time to deliver an alert informing of
a behaviour. Furthermore, increasing the sampling rate also
increased the MTTD. This is because a lower rate of incom-
ing AIS data led to a slower generation of derived events
which, in turn, affected to the time required to emit an alert.

As for RHIB 2, Fig. 5b depicts the current and aver-
age speed evolution of the vessel along with the speed of
the crossed cells. In this case, the vessel moved abnormally
slow at two periods of the trial (als1 and als2) because
it remainded stationary in an area where the boats usu-
ally moved faster (as the cells speed indicate in Fig. 5b).
Regarding the abnormally-high speed periods (ahs1−5),
they were labelled that way because they involved sudden
and unexpected accelerations of the vessel in areas where,
in addition, vessels used to move much more slowly.

Table 4 shows the system’s detection rate and time of
the behaviours listed above for various sampling rates. In
this case, the system detected the two abnormally-slow
behaviours (als1−2) given all the sampling rates. As it was
explained before, this was because the time length of these
behaviours was large enough to be included in the AIS data
delivered to the system and, in turn, in the derived velocity
events used to generate the alerts. On the contrary, the sys-
tem was not able to detect any of the high-speed abnormal
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Table 4 Detection rate and mean time to detect (in seconds) the
abnormal-speed periods for RHIB 2

Period Sampling rate (s)

10 60 120 480

als1 1.0/122 1.0/154 1.0/168 1.0/204

als2 1.0/124 1.0/157 1.0/175 1.0/208

ahs1 1.0/128 1.0/145 0.42/163 0.0/x

ahs2 1.0/121 1.0/149 0.39/168 0.0/x

ahs3 1.0/122 1.0/151 0.66/170 0.0/x

ahs4 1.0/129 0.95/165 0.47/181 0.0/x

ahs5 1.0/127 1.0/178 1.0/186 0.0/x

Avg. 1.0/125 0.99/157 0.71/173 0.29/206

behaviours (ahs1−5) given the 480-s rate as the system did
not receive enough AIS data of the vessel related to these
behaviours to detect them.

Finally, Table 4 also depicts that the system needed at
least 120 seconds in all the cases. As it was previously
explained, this has to do with the tmin

alert parameter. Neverthe-
less, the system was able to detect most of the behaviours in
less than 200 seconds.

4.1.3 Collision alerts

Over the trial, the two RHIBs were ordered to approach to
each other at different locations and following several tra-
jectories and speeds in order to simulate risky situations
where the two vessels might collide to each other. As a
result, Table 5 depicts these situations along with their time
lengths and occurrence time.

Table 6 shows the detection rate achieved by the sys-
tem for those possible-collision behaviours given different
sampling rates of the incoming AIS data. Since the suspi-
cious behaviours only lasted short time periods (only a few
seconds) the system achieved a high detection rate given
a low sampling rate (10s). The rationale of this is that a
low sampling rate allows the system to control the location,

Table 5 List of possible-collision behaviours involving RHIB 1 and
RHIB 2 generated in the trial

Collision Length (s) Trial’s time instant

C-I 20 3 m

C-II 24 111 m

C-III 23 117 m

C-IV 19 157 m

C-V 14 176 m

C-VI 20 193 m

C-VII 8 197 m

Table 6 Detection rate and mean time to detect (in seconds) the
possible-collision behaviours involving RHIB 1 and RHIB 2

Collision Sampling rate (s)

10 15 20 30

C-I 1.0/4 0.75/12 0.01/19 0.0/x

C-II 1.0/6 0.81/13 0.07/17 0.0/x

C-III 1.0/8 0.76/16 0.06/21 0.0/x

C-IV 1.0/6 0.45/11 0.0/x 0.0/x

C-V 0.91/11 0.03/13 0.0/x 0.0/x

C-VI 1.0/9 0.79/15 0.0/x 0.0/x

C-VII 0.42/7 0.0/x 0.0/x 0.0/x

Avg. 0.90/7.3 0.51/13.7 0.02/19 0.0/x

speed and bearing of each vessel in a quite accurate way.
Therefore, the more accurate and detailed these parameters
are, the more likely the system to detect a possible collision
is.

For the same reason, like the speed-based alerts, increas-
ing the sampling rate made certain parts of the vessels’ tra-
jectory invisible for the system as they were not included in
the AIS data that the system took as input. Considering that
each of the possible collisions only lasted a few seconds,
this lack of data remarkably reduced the collision-detection
capabilities of the system.

Lastly, Table 6 also depicts the time the system
required to detect each of the possible-collision behaviours.
Although the time was affected by the sampling rate, the
system was able to emit an alert only a few seconds after
the suspicious behaviour had started. More specially, given
a 10-s sampling rate, the system emitted a collision alert in
less than 10 seconds after the situation started in most of the
cases. Despite the fact that this amount of time might not be
short enough to avoid the collision, at least it would be use-
ful for a VTS staff to send its emergency resources to the
alerted collision point as soon as possible.

4.1.4 Scalability study

The capability of the system to process different rates of
AIS data was also studied given the memory constrains of
the deployment platform. For that purpose, the two RHIB’s
traces were cloned to make up new pairs of artificial vessels.
This was done by translating the original traces’ points. As
a result, it was possible to configure the number of vessels
reporting their AIS data to the system by generating more
or fewer artificial vessels.

Table 7 shows the maximum number of vessels the sys-
tem was able to deal with given different sampling rates.
As expected, the sampling rate meaningfully influenced the
achieved values as it has a direct impact on the flow of
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Table 7 Maximum number of vessels that the system was able to
process given different sampling rates

Sampling rate (s) Max. number of vessels

10 8943

60 9321

120 10476

480 12057

Avg. 10194

incoming events of the system. In more detail, system was
able to process, on average, the raw events of roughly 10000
vessels at the same time. These results are quite promis-
ing if we consider the memory restrictions defined in the
execution environment.

4.1.5 Comparative with reference framework

According to Kowalska and Peel (2012), the RF was able
to detect three tracks of unusual behaviour from the RHIB
dataset representing 1) drug smuggling, 2) human smug-
gling and 3) terrorism. In all the cases the involved vessel
was the RHIB 1.

Figure 6 shows as coloured areas the time period cov-
ered by the aforementioned behaviours. For example, the
drug smuggling behaviour detected by the RF started at the
minute 120 of the trial and ended at minute 124. Figure 6
also depicts as dots the time instants at which our CEP sys-
tem generated any speed-based alert involving RHIB 1. For
each of the three RF behaviours we can make the following
remarks,

– During the drug smuggling period (120 m-124 m), the
CEP system firstly made up a set of loitering alerts
between minutes 118-122. Next, it detected an abnor-
mal high speed giving rise to several swift-movement
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Fig. 6 Abnormal behaviours detected by the RF along with the loiter-
ing alerts (LA) and the swift movevement alerts (SMA) generated by
the system at the same time period

alerts during 123-125 m. This sequence of alerts is con-
sistent with the RF outcome because it identified the
potential drug smuggling scenario as period during with
RHIB was moving very slowly followed by a sudden
acceleration of the vessel to pick up some packages
dropped into the sea by another vessel.

– The potential terrorism scenario (135 m-141 m) is per-
ceived by the RF as a sudden acceleration of RHIB
to drop some explosives near a ferry. As we can see
from Fig. 6, during the same period the CEP system
generated a set of consecutive swift-movement alerts
informing of such an acceleration of RHIB 1.

– Finally, the people smuggling case (270 m-277 m) is
detected by the RF when RHIB speeded to the shore to
pick up some people and quickly returned to its original
path. At the same instant, our CEP solution also made
up a set of consecutive swift-movement alerts informing
of the RHIB 1’s speed-up to aproach the shore.

All in all, we can see that there exists a strong correlation
between the three abnormal behaviours perceived by the RF
and the alerts generated by CEP system. In that sense, the
CEP system generated a set of alerts informing of abnor-
mal speed of the target vessel during the same time periods
covered by the behaviours. Nevertheless, a major difference
exists between the two approaches. Whilst the RF needs to
process long parts of a vessel’s track to perceive the abnor-
mality, the CEP system generates earlier alerts as it only
needs to process a few locations to perceive an abnormal
speed.

Consequently, both approaches complement one another.
Firstly, the CEP system can be used to provide early alerts
about potential abnormal behaviours and, such suspicious
situations can be confirmed by the RF later on. Hence, a
VTS staff can be informer in a more timely and detailed
manner.

4.2 Road-traffic case study

Dataset In order to test our solution in a completely differ-
ent environment, the brinkhoff simulator (Brinkhoff 2002)
was used to make up a synthetic dataset containing different
trajectories on the road map of San Fransico (USA). In this
dataset, 5000 moving objects of 5 different types were sim-
ulated for a 400-time-unit period. At each time step, each
moving object generated one location. In addition to that,
the simulator was modified so that the speed of each mov-
ing object was always the maximum allowed of each edge.
Finally, we used the default time and distance units of the
generator.

Settings For this study, we used the same configuration
for the system than the maritime case study (see Table 2).
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However, for the cell grill, its reference point was the cen-
ter of the San Francisco map and its cell size was set to
100x100m. This way, the number of cells in this case study
was similar than the maritime one.

Methodology In order to evaluate our solution, we defined
three measurements from the trajectories generated by the
brinkhoff simulator.

– Firstly, the number of speed increments (NSI) indicates
the number of pairs of consecutive edges of a vehicle’s
trajectory whose assigned maximum speed increase at
least 40 %.

– Secondly, the number of speed decrements (NSD)
counts the number of pairs of consecutive edges of a
trajectory whose assigned maximum speed decrease at
least 30 %. This measurement, along with the NSI, will
be used to test the accuracy of the speed-based alerts.

– Lastly, the number of potential collisions (NPC) of a
vehicle’s trajectory indicates the number of times such
a vehicle goes across a node (acting as crossroads) an
another different vehicle also crosses the same node
with a time difference less than tmax

pCPA time units. Thus,
this measurement evaluates the accuracy of the collision
alerts of the system.

4.2.1 Speed-based alerts

Figure 7 depicts the number of swift-movement and loiter-
ing alerts generated by the system given the different NSIs
and NSDs of the experiment. For instance, for those trajec-
tories comprising 10 NSIs the system generated, on average,
15 swift-movement alerts.

As we can see from Fig. 7, there exists a strong corre-
lation between the NSI/NSD of a vehicle’s trajectory and
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Fig. 7 Number of swift-movement and loitering alerts generated by
system with respect to the NSI/NSD of a vehicle’s trajectory

the number of speed-based alerts it gave rise. Nonetheless,
the system usually generated more alerts than NSI/NSD.
This is mainly because of the cell grill. As it was stated
in Section 3.3.5, the average speed of the vehicles in each
cell is taken into account by the system to decide whether a
particular vehicle in such a cell is moving too fast or slow.
However, in the road-traffic scenario, a particular cell might
include several edges (roads) in its spatial area, and the max-
imum speed of each of these edges might be different to the
others in the same cell. This might cause the average speed
of the cell to be much higher or slower than the maximum
speed of some of its edges. Consequently, all the vehicles
driving along these edges will give rise to extra loitering of
swift-movement alerts. These extra alerts explain why the
system generates more alerts for a vehicle than its NSI/NSD.

4.2.2 Collision alerts

Regarding the collision alerts, Fig. 8 shows the number of
these alerts generated by the system with respect to the
NPC of each trajectory. For example, for those trajectories
comprising 3 NPCs, the system generated, on average, 6
different collision alerts.

From Fig. 8 we can see that a strong correlation also
exists between the NPC and the number of collision alerts
generated by the system. Moreover, the system tended to
generate more collision alerts for a vehicle than the NPC
of its trajectory. That is because the system perceived cer-
tain movements of pairs of vehicles as potential collisions
when such vehicles are actually moving along edges that
do not intersect at all, and thus, a collision risk does not
really exist.

To sum up, this case study has shown the potential fea-
sibility of the proposal in a completely different scenario
where the movement of the target objects is constrained by
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a road network. Despite the fact that the accuracy of the
system decreases with respect to the maritime case study,
results show that it may be used by certain traffic informa-
tion services to generate alerts in certain areas of the road
network where the early detection of traffic problems is
paramount.

5 Conclusion

The present work introduces the CEP paradigm as a novel
approach to timely detect vessels’ abnormal behaviours.
To begin with, a set of three target behaviours has been
identified from the results of different marine-surveillance
workshops. Secondly, a CEP-based system devoted to detect
these behaviours was developed as a proof of concept. This
system has been designed to run as part of the infras-
tructure of a VTS, and it performs a event-based pro-
cessing of the AIS data and the weather conditions. As
output, the CEP system emits various abnormal-behaviour
alerts.

The system has been tested in two case studies represent-
ing different types of movement. In the maritime one, results
have shown, unsurprisingly, that there exists a strong depen-
dency of the system to the sampling rate of the incoming
AIS data and the time length of the target behaviours. More-
over, the experiment has shown a potential application of
the solution to enrich other machine-learning proposals and
provide them with early alerts of dangerous behaviours. In
the road traffic case study, despite the network-constrained
movement of the vehicles, the proposal has been able to
detect several abnormal behaviours. Consequently, it might
be used as a lightweight mechanism in critical areas where
the detection of traffic problems must be done as soon as
possible.

Further work will follow a twofold course of action. On
the one hand, the system will be improved so as to pro-
cess new geographical information related to regions of
interest like fishing areas, ports or harbours. The second
line of work will focus on the detection of new abnor-
mal behaviours by making use of not only AIS data but
also the aforementioned new data sources. This way, it is
intended to come up with a CEP-based system that, by
processing a varied range of event sources, will be able
to offer a useful and almost real-time service to the VTS
staff.
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