
Inf Syst Front (2016) 18:429–455
DOI 10.1007/s10796-015-9558-1

Normative requirements for regulatory compliance:
An abstract formal framework

Mustafa Hashmi1 ·Guido Governatori1 ·Moe Thandar Wynn2

Published online: 24 May 2015
© Springer Science+Business Media New York 2015

Abstract By definition, regulatory rules (in legal context
called norms) intend to achieve specific behaviour from
business processes, and might be relevant to the whole or
part of a business process. They can impose conditions on
different aspects of process models, e.g., control-flow, data
and resources etc. Based on the rules sets, norms can be clas-
sified into various classes and sub-classes according to their
effects. This paper presents an abstract framework consist-
ing of a list of norms and a generic compliance checking
approach on the idea of (possible) execution of processes.
The proposed framework is independent of any existing
formalism, and provides a conceptually rich and exhaus-
tive ontology and semantics of norms needed for business
process compliance checking. Apart from the other uses,
the proposed framework can be used to compare different
compliance management frameworks (CMFs).

Keywords Norms · Normative requirements · Norms
compliance · Business process regulatory compliance ·
Compliance frameworks

� Mustafa Hashmi
mustafa.hashmi@nicta.com.au

Guido Governatori
guido.governatori@nicta.com.au

Moe Thandar Wynn
m.wynn@qut.edu.au

1 NICTA Queensland, 70-72-Bowen St. Spring Hill,
Brisbane, Australia

2 Queensland University of Technology (QUT), 2-George St.
Brisbane, Australia

1 Introduction

In today’s highly regulated corporate environment compli-
ance has become an unavoidable activity for every enter-
prise. Compliance, in its broader sense, can be understood
as enterprise’s ability to meeting all the governing regula-
tions enforced on its business operations. The demand for
reporting compliance pressurises enterprises to streamline
their business operations in accordance with the governing
regulations. This demand has become even stronger because
of big corporate scandals e.g., Enron, American Insurance
Group etc., which resulted in the emergence of regulatory
acts1,2 and quality standards3. These acts and standards
place restrictions and provide guidelines for enterprises to
streamline their processes, and impose severe financial and
criminal penalties otherwise.

Enterprises, public and private alike, are adopting SOA
(Service-Oriented Architecture) based technologies to bring
innovations into their business operations; and to offer their
core compentencies as Web Service (WS). Often physically
independent, web services are collections of interrelated
services orchestrated to provide a specific functionality;
and web services are designed by combining (possibly)
disparate and often incongruous business processes from
different enterprises (Elgammal et al. 2011). In such a
dynamic setting, the ability to trust that one another’s inter-
nal processes that form the core of successful invocation of
web services are compliant with regulations becomes even
more crucial.

1The US government. Sarbaes-Oxley Act, Public Law 107-204, 116
Stat. 745, 2002.
2Banking Committee on Banking Supervision (SCBS), BASEL-II
Accord, 2004.
3ISO-9000: www.iso.org/iso/iso 9000

mailto:mustafa.hashmi@nicta.com.au
mailto:guido.governatori@nicta.com.au
mailto:m.wynn@qut.edu.au
www.iso.org/iso/iso_9000


430 Inf Syst Front (2016) 18:429–455

Business processes provide a high-level view on how
business operations can be performed to achieve a desired
outcome. Hence it is particularly important that business
processes operate within the defined boundaries of the regu-
lations (in legal context) called norms. Aiming to control the
behaviour of business processes, norms impose restrictions
on how activities should be carried out, and impose penal-
ties for any divergent behaviour. Consider, for example, a
procurement process of a government agency which handles
the dynamic selection of contractors to place orders, which
is implemented as a web service. Using such a web service,
the agency can quickly place an order, receive and evaluate
the quotes from suppliers. This is subject to certain regula-
tions, as such the procurement web service must be verified
whether it is compliant with the relevant regulations before
it can be deployed. Hence, a process reflecting the behaviour
of a web service can be used to verify the effectiveness of
the regulations and policy controls.

Governatori and Sadiq (2009) define business process
compliance as the relationships between the formal specifi-
cations of a business process and the formal specifications
of a set of normative constraints, where a process is com-
pliant if the specifications of the processes do not violated
the constraints formalising the norms. Accordingly, we have
to provide (1) a formal model for the representation of
business processes, (2) a formal model for the representa-
tion of the norms and, eventually (3) a bridging mechanism
between the two representations (if they are expressed in
two different formalisms).

In the recent years several works addressed the issue
of (regulatory) compliance in the context of of business
process management, service computing and cloud com-
puting domains (see, (Becker et al. 2012; Fellmann and
Zasada 2014) for recent surveys of existing approaches).
The general idea is to determine whether the constraints
(i.e., norms) imposed by some regulatory framework (rang-
ing from statutory acts, to regulations, to industry standards,
to best practices and internal policies) are met by some
systems.

Regardless how good and feasible these approaches may
be, to the best of our knowledge, the majority of the
approaches neglect the aspect of whether the method they
propose offers a faithful representation of the norms and it is
suitable to reason appropriately with the norm. A non faith-
ful representation of and inappropriate reasoning with the
norm can have significant impact on the effectiveness of an
approach.

The aim of this paper is to offer a formal foundational
framework to evaluate the ability of a compliance frame-
work to representing the norms a system has to comply
with.

The structure and properties of norms have been exten-
sively studied in the fields of Law and Legal Reasoning,

Artificial Intelligence, and Deontic Logic (see, Sartor
(2005) for a comprehensive treatment with a formal and
legal theory perspective). In this paper, we concentrate on
an aspect that, so far, has been left implicit or was captured
in a procedural way by research on business process com-
pliance, namely the description of the meaning of norms, or
more precisely, of the effects of norms, in terms of business
processes.

Since norms prescribe the conditions under which they
are applicable and the effects when they are applied, a norm
may be applicable for a certain period of time i.e., the dura-
tion when a norm enters into force and until when it is
terminated. Hence no matter which process aspects a norm
may be applicable to, norms can be classified according
to their temporal aspect of validity and obligations arising
from the violations of other norms. In this paper, we study
the normative component of business process compliance
and proposed an abstract formal framework comprising a
classification of norms and formal semantics. In the clas-
sification, we examine various types of norms that can be
imposed on different aspects of business processes in terms
of temporal validity of a norms; and effects of violations on
norms. Also, we examine how these norms can be modeled
in a formal way. Our intention is not to propose yet another
compliance checking framework but provide a conceptu-
ally rich foundation for the norms for legal component of
the compliance problem. For this purpose, we provide for-
mal semantics in terms of states determining the temporal
validity, what constitutes a violation, effects of violations on
other norms a process driven SOA system may be subject
to, and the possible ways in which a business process can be
executed.

The contribution of the paper is threefold:

Classification Model: The first contribution is a classifi-
cation model for normative requirements. The classifica-
tion has been obtained in a systematic and exhaustive way
and provides a rich ontology of the various obligations
modalities.

Formal Semantics: The second contribution is a formal
semantics for norms (obligations) in terms of validity of
a norm, what constitutes a violation of a norm and effects
of the violations. The provided semantics are modelled
independent of any specific formalism; and provide the
basis for compliance checking approach.

Conceptual Evaluations: The last contribution is a con-
ceptual evaluation of business process compliance frame-
works using the classification model for normative
requirements presented in Section 3. In the conceptual
evaluation, we examined whether or not the existing
frameworks provide support for all types of normative
requirements proposed in our classification model.



Inf Syst Front (2016) 18:429–455 431

The rest of the paper is organised as follows: next
we provide formal foundations of business processes and
workflow-nets (hereafter WF-nets) followed by a discus-
sion (Section 3) on various types of normative require-
ments together with concrete examples from real-life legal
documents. Then a complaint handling process as case
study (Section 4) is discussed after which an illustration
of the approach on how the compliance checking of the
business processes can be carried out together with an
evaluation based on the set of normative requirements is
given (Section 5). A conceptual evaluation (Section 6) of
the selected compliance management frameworks evalu-
ated based upon an evaluation criteria highlights the major
shortcomings of existing frameworks, and some previous
studies (Section 7) have been discussed. In the last Section
we give closing remarks and some pointers for future
work.

2 Formal foundations of business processes

As we have discussed in the previous section business
process compliance requires a formal model of the rele-
vant business processes and a formal model of the rele-
vant norms. In this section, we provide formal definitions
of processes annotated with compliance requirements. In
Section 3 we complete the picture by providing a for-
mal model of norms based on the notions to be defined
in this section. This would provide both the model of
norms and the bridge between the formalisation of pro-
cesses and that of norms. The final aim is to show the
evolution of system or the environment in which a system
operates, and check that the resulting states (and interme-
diate states) are compatible with the norms. In this section
we show how to start from the notion of business process
model to describe the sequences of states corresponding
to the execution of the process. In the next section we
use sequences of states to provide the semantics of dif-
ferent classes of norms, and to provide the defintions of
what it means to comply with a norm, and to violate
a norm.

Compliance is related to the behaviour of a process,
that is, whether it is possible to correctly execute a busi-
ness process. Compliance is not only about the the actions
(i.e., tasks) undertaken during the execution of a process
but also about their artefacts, and how the actions change
the environment in which a process is situated. To capture
this, we adopt the idea proposed by Sadiq et al. (2007) and
enrich processes by means of semantic annotations, where
an annotation is a formula in a formal language encoding
an effect of a task. Conversely business processes only pro-
vide an abstract view that how the activities are performed,
what activities (tasks) do in the process remains unclear in
particular what effects are produced by a task at a particu-

lar state (or between states) when executed. Since business
processes can be modeled by means of transition systems
using various modeling languages, we adopt Petri-net based
workflow-nets as a transition system to generate different
states (traces) and subsequently semantically annotate these
states with relevant information to know the state of affairs
of the process execution.

In this paper, we make use of workflow-nets (WF-
nets) as defined by van der Aalst (2000), a subclass of
Petri nets (Murata 1989), to represent a business pro-
cess. Definitions 1–4 are necessary to formally define a
WF-Net and its behaviour. For other representations of
a business process one can directly start from Defini-
tion 5 and the rest of the definitions in this section can
be easily modified for other representations of a business
process.

Definition 1 (Petri net) A Petri net is a tuple PN =
(P, T , F ) where P is the set of places, T is the set of tran-
sitions, P ∩ T = ∅ and F ⊆ (P × T ) ∪ (T × P) is the flow
relation.

A Petri net is a collection of two types of nodes: places
and transitions. Arcs connect one type of node to the other.
For a node x ∈ (P ∪ T ), •x denotes the set of inputs to x

and x• denotes the set of outputs of x. The state of a Petri
net is represented by a marking that describes the number of
tokens in each place of a net.

A workflow-net (WF-net) is defined as a subclass of Petri
net with the following structural restrictions (van der Aalst
1998): there is exactly one source place and exactly one end
place and every node in the graph is on a direct path from
the source place to the end place.

Definition 2 (WF-net) Given a Petri net N = (P, T , F ),
the net N is a WF-net if and only if:

1. there is one source place i ∈ P such that •i = ∅.
2. there is one sink place o ∈ P such that o• = ∅.
3. every node x ∈ P ∪ T is on a path from i to o.

Definition 3 (Enabling and Firing Rules of a WF-net)
Given a WF-net N=(P, T , F ), a transition t ∈ T and a
marking M of N , t is enabled at M , denoted as M[t〉, if and
only if, there is at least one token each in all p ∈ •t . If M[t〉
holds and transition t is fired, a new marking M ′ of N is
reached, which removes a token from each p ∈ •t and puts

a token in each p ∈ t•. This is denoted as M
t→ M ′.

Definition 4 (Occurrence Sequence) Given a WF-net
N = (P, T , F ) and markings M, M1, . . . , Mn of N , if

M
t1→ M1

t2→ . . .
tn→ Mn holds then σ = 〈t1, t2, . . . , tn〉 is

an occurrence sequence leading from M to Mn.



432 Inf Syst Front (2016) 18:429–455

The initial marking of a WF-net is i, where there is one
token in the source place i, and the end marking of a WF-net
is o. A trace in a WF-net represents an occurrence sequence
from the initial marking i to the end marking o.

Definition 5 (Labeled WF-net) A labelled WF-net N =
(P, T , F, l) is a WF-net (P,T,F) with some labelling func-
tion l ∈ T � UA, where UA is some universe of activity
labels. Let σv = 〈a1, a2, . . . , an〉 ∈ U ∗

A be a sequence of
activities and M, M ′ be two markings of N . M[σv � M ′ if
and only if there is a sequence σ ∈ T ∗ such that M[σ 〉M ′
and l(σ ) = σv .

With this definition we only have the visible and labelled
transitions in the net. For a set of traces of a WF-net T+(N),
T+ = {σΘ |i[σΘ 〉o} is the set of all visible traces in the
net, where Θ = {σ1, σ2, . . . , σn} is a set of all occurrence
sequences. The idea behind the notion of a labelled WF-net
is that a trace of visible transitions corresponds to a possible
execution sequence of the process, where the visible transi-
tions correspond to the tasks executed by the process. One
may, however, argue that there might some other (invisi-
ble) traces that may still affect the compliance checking of a
business process model. However, invisible traces may con-
sist of tasks representing invisible actions. These invisible
actions are used for routing purposes only and may not rep-
resent any task from a business point of view (Gambini et al.
2011; Wen et al. 2010). In contrast, we use visible traces
because tasks in a trace represent some activity and may
have significance from a business perspective. Also, some
literals representing obligations might be associated to the
tasks of a trace. Hence for compliance checking, we limit
our attention to visible traces only.

Next, we look at how a WF-net can be annotated with
compliance requirements. We begin with the definition of
the language.

Definition 6 (Literal) Let A be the set of all atomic
propositions. The set of literals is L = {a, ¬a|a ∈ A}.

In the rest of the paper we concentrate on consistent set
of literals, where a consistent set of literals can be under-
stood as either a (partial) interpretation (i.e., an assignment
of truth value) or equivalently a (partial) description of a
state.

Definition 7 (Consistent Set) A set of literals L is consis-
tent if and only if L does not contain any pair of literals
l,¬l.

The next step is to enable a process to have states attached
to the tasks depending on which trace they appear in.

Definition 8 (Annotation) Let N be a WF-net and T+
be the set of visible traces of N . An annotation Ann is a
function Ann : T+ × N → 2L such that for every t ∈ T+
and every n ∈ N, Ann(t, n) is a consistent set of literals.

The idea of the above definition is that Ann(t, n) returns
the state obtained after the execution of the n-th task (visible
transition) in the (visible) trace t .

Definition 9 (Annotated WF-net) An annotated WF-net
is a pair (N, Ann), where N = (P, T , F, l) is a labelled
WF-net, and Ann is an annotation function.

Next, we illustrate the concepts behind the definitions
presented in this section with a small example. As stated
earlier, a process can be represented using any process mod-
elling language (e.g., Business Process Modelling Notation
(BPMN), Event Process Chains (EPC) etc.). Such a process
model can be transformed into a Petri net/WF-net by mak-
ing use of translation rules as shown in Dijkman et al. 2008;
Ouyang et al. (2006, 2009). Figure 1 shows a simple BPMN
process (with AND/XOR splits and joins) and its corre-
sponding WF-net. Now, consider the abstract BPMN model
in Fig. 1 as an emergency evacuation process with com-
pliance requirements. Let’s assume that Task A is ‘sound
alarm’, task B is ‘alert people’, task C is ‘inform fire ser-
vices’, task D is ‘contain fire’ and task E is ‘evacuate
place’. Assuming that semantic annotations are written in
some language, we consider the annotations consisting of
two propositions: p meaning ‘the alarm has sounded’ and
q meaning ‘a small fire to contain’. Four possible traces of
this process are as follows:

t1 : 〈A, B, C, D, E〉,
t2 : 〈A, C, B, D, E〉,
t3 : 〈A, C, B, E〉,
t4 : 〈A, B, C, E〉.

After the execution of task A, we have the state ‘alarm
has sounded’ which can be represented as

Ann(t1, 1) = Ann(t2, 1) = Ann(t3, 1) = Ann(t4, 1) = {p}
for all traces. After executing the next two tasks B and C,
also common to all traces, it is possible to have different
annotations for these traces. For example, in traces t1 and t2,
we reach

Ann(t1, 3) = Ann(t2, 3) = {p, q}.
In contrast, we reach the following state for t3 and t4,

Ann(t3, 2) = Ann(t4, 3) = {p, ¬q}.
In t1 and t2, we check whether the fire is small enough

that it can be contained (task D) before evacuating (task E);
otherwise we directly evacuate (task E) in t3 and t4. It can



Inf Syst Front (2016) 18:429–455 433

Fig. 1 Tranformation of the BPMN Model into an equivalent WF-Net

be seen that the information we have after the execution of
tasks B and C varies depending on the trace being examined.
For example from trace t1 we know that the fire is small
enough and it is possible to contain the fire represented as
Ann(t1, 4) = {p, q}. In contrast, trace t3 informs us that it
is not possible to contain the fire thus we have to evacuate,
i.e., Ann(t3, 4) = {p, ¬q}.

Note that different states can be obtained from different
traces although the same tasks were being executed and the
same end state can be reached from different traces. How-
ever, each visible trace uniquely determines the sequence of
states obtained by executing the trace. Thus, in what follows
whenever clear from the context, we use the term trace to
refer to a sequence of tasks, and the corresponding sequence
of states.

Remark 1 It is not the scope of this paper to describe
how the sequences of states corresponding of the execu-
tion of a process are obtained. The task of specifying how
the annotation function Ann is implemented is left to spe-
cific compliance applications. However, one can use the
update semantics approach described in Ghose and Koliadis
(2007) or by using the Event-Calculus (EC) to model the
inertia of effects from a task to the next one as demon-
strated in Goedertier and Vanthienen (2006) or by using
the I-propagation approach for logical state representation
described in Governatori et al. (2008); Hoffmann et al.
(2012).

For example, if we take the process in Fig. 2 and Event-
Calculus tasks can be represented by events, and proposi-
tions by fluents. Accordingly, the effect that p (‘the alarm
has sounded’) holds after the execution of task A (‘to sound

alarm’) can be represented by the domain specific axiom
initiates(p, A, T ), meaning the event A initiates the fluent
p at time T . The same correlation can be modelled by the
formula A → XGp, where X and G are the next and always
operators of Linear Temporal Logic.

3 Normative requirements

The scope of norms is to regulate the behaviour of their
subjects and to define what is legal and what is illegal.
Norms typically describe the conditions under which they
are applicable and the normative effects they produce when
applied. Gordon et al. (2009) provide a comprehensive list
of normative effects. From a compliance perspective, the
normative effects of importance are the deontic effects.
The basic deontic effects are: obligation, prohibition and
permission.4

Let us start by considering the basic definitions for such
concepts:5

Obligation: A situation, an act, or a course of action(s) to
which a bearer is legally bound, and if it is not achieved
or performed results in a violation.

Prohibition: A situation, an act, or a course of action(s)
which a bearer should avoid, and if it is achieved results
in a violation.

4There are other deontic effects, but these can be derived from the
basic ones, see Sartor (2005).
5Here we consider the definition of such concepts given by the
OASIS LegalRuleML working group. The OASIS LegalRuleML glos-
sary is available at http://www.oasis-open.org/apps/org/workgroup/
legalruleml/download.php/48435/Glossary.doc.

http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc
http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc


434 Inf Syst Front (2016) 18:429–455

Permission: Something is permitted if the obligation or
the prohibition to the contrary does not hold.

Figure 2 illustrates the classification of the three basic
deontic effects and the relationship between such effects
and the notions of compensation and violation. The clas-
sification has been obtained by considering the validity of
obligations (or prohibitions), and the effects of violations
on them. Such considerations include whether a violation
can be compensated for and whether an obligation persists
after being violated. Obligations and prohibitions are con-
straints that limit the behaviour of processes. The difference
between obligations and prohibitions and other types of con-
straints is that they can be violated. On the other hand,
permissions are constraints that cannot result in a violation
and thus, permissions do not play a direct role in compli-
ance. Instead, they can be used to determine that there are no
obligations or prohibitions to the contrary, or to derive other
deontic effects. Governatori (2015) gives a normative sce-
nario where some deontic effects enter in force depending
whether a permission is in force or not.

Legal reasoning and legal theory typically assume a
strong relationship between obligations and prohibitions:
the prohibition of A is the obligation of ¬A (the opposite
of A), and then if A is obligatory, then ¬A is forbidden
(Sartor 2005). In this paper we will subscribe to this posi-
tion, given that our focus here is not on how to determine
what is prescribed by a set of norms and how to derive it.
Accordingly, we can restrict our analysis to the notion of an
obligation.

Compliance means to identify whether a process vio-
lates a set of obligations or not. Thus, the first step is
to determine whether and when an obligation is in force.
Hence, an important aspect of the study of obligations is
to understand the lifespan of an obligation and its implica-
tions on the activities carried out in a process. As we have
alluded to above, norms give the conditions of applicabil-
ity of obligations. The next question is how long does an
obligation hold for. A norm can specify that an obligation
is in force at a particular time point only, or more often, a
norm indicates when an obligation comes in force. An obli-
gation is considered to remain in force until it is terminated
or removed. Accordingly, in the first case we will speak
of non-persistent obligations and persistent obligations in
the second.

If a persistent obligation needs to be obeyed for the
whole duration within the interval in which it is in force,
it is categorised as a maintenance obligation. If achieving
the content of the obligation at least once is enough to ful-
fil it, then it is considered an achievement obligation. For
an achievement obligation, another aspect to consider is
whether the obligation could be fulfilled even before the
obligation is actually in force. If this is allowed, then we

have a preemptive obligation, otherwise the obligation is
a non-preemptive obligation. In contrast, a non-persistent
obligation needs to be obeyed for the instance it is in force,
and categorised as a punctual obligation. For punctual obli-
gations the obligation contents are immediately achieved
otherwise a violation is triggered.

An obligation of any type can be violated. A viola-
tion does not always imply the consequent termination
of or impossibility to continue a business process. Cer-
tain violations can be compensated for, and processes with
compensated violations are still compliant Governatori and
Sadiq (2009). For example, contracts typically contain
compensatory clauses specifying penalties and other sanc-
tions triggered by breaches of contract clauses (Governatori
2005). However, not all violations are compensable, and
uncompensated violations mean that a process is not com-
pliant. The effects of a violation on the obligation that has
been violated also need to be considered. If the obligation
persists after being violated, it is considered a perdurant
obligation, if it does not, then we have a non-perdurant
obligation.

Next, formal definitions for these notions are provided
together with examples taken from Acts and other legally
binding documents.

3.1 Modelling obligations

In this section we provide the formal definitions underpin-
ning the notion of compliance. In particular we formally
define the different types of obligations depicted in Fig. 2
in relation to traces of business processes. In this way the
definitions given below provide semantics of the normative
requirements in terms of business processes.

Definition 10 (Obligation in force) Given a WF-net N , let
T+ be the set of visible traces of N . We define a function
Force : T+ × N → 2L.

The function Force associates to each task in a trace
a set of literals, where these literals represent the obliga-
tions in force for that combination of task and trace. These
are among the obligations that the process has to fulfil to
comply with a given normative framework. For example,
Force (t, 3) = {p, q} specifies that p and q are obligatory
in the third task of trace t .

In the rest of the section we are going to give definitions
specifying when a process has to fulfil the various obliga-
tions (depending on their type) to be deemed compliant.

Remark 2 Similar to Remark 1 we are not interested in
the mechanisms that establish which obligations are in
force and when. This is the scope of specific compliance
applications or implementations.



Inf Syst Front (2016) 18:429–455 435

Fig. 2 Normative requirements:
classes and relationship

Definition 11 (Punctual Obligation) Given a WF-net N

and a visible trace t ∈ T+, an obligation o is a punctual
obligation in t if and only if

∃n ∈ N : o /∈ Force(t, n − 1), o /∈ Force(t, n + 1), o ∈ Force(t, n).

The obligation o is in force at n in t . A punctual obli-
gation o in force at n in t is violated if and only if o /∈
Ann(t, n).

Diagram 3.1 Punctual Olbligation

Diagram 3.1 illustrates the nature of a punctual obliga-
tion.

A punctual obligation o (represented as a literal) is in
force on one task n in a trace t , i.e., o ∈ Force(t, n). Notice it
might be the case that there are multiple instances in which
the obligation is force. The obligation is violated if what
the obligation prescribed is not achieved in or by the task
when the obligation enters into force where this is repre-
sented by the literal not being in the set of literals associated
to the task in the trace, i.e., o /∈ Ann(t, n) as shown in the
diagram.

Definition 12 (Persistent Obligation) Given a WF-net N

and a visible trace t ∈ T+, an obligation o is a persistent

obligation in t if and only if

∃n,m ∈ N : n < m, o /∈ Force(t, n − 1),

o /∈ Force(m + 1), ∀k : n ≤ k ≤ m, o ∈ Force(t, k)

The obligation o is in force between n and m.

A persistent obligation is an obligation in force in an
interval (a contiguous set) of tasks in a process. Diagram 3.2
depicts the definition where a persistent obligation o is in
force between n and m at k-th task.

Diagram 3.2 Persistent Obligation

A persistent obligation can be further classified as
achievement and maintenance obligations. The violation
conditions for a persistent obligation can be derived from
the violation conditions of these subclasses.

Definition 13 (Achievement Obligation) Given a WF-net
N and a visible trace t ∈ T+, an obligation o is an achieve-
ment obligation in t if and only if ∃n,m ∈ N, n < m such
that o is a persistent obligation in force between n and m.

An achievement obligation o in force between n and m

in t is violated if and only if

(a) o is pre-emptive and ∀k : k ≤ m, o /∈ Ann(t, k);
(b) o is non-preemptive and ∀k : n ≤ k ≤ m, o /∈

Ann(t, k).



436 Inf Syst Front (2016) 18:429–455

An achievement obligation is in force in a contiguous
set of tasks in a trace. The violation depends on whether
we have a preemptive or a non-preemptive obligation. For
a preemptive obligation o we have a violation if no state
before the last task in which o is in force has o in its
annotations.

Diagram 3.3 depicts the definition of a preemptive obli-
gation in force at task k in a set of contiguous tasks between
n and m, where m is the task when the obligation enters
in force, and m is the deadline by when the obligation has
to be discharged. The obligation o is violated if o does
not in the annotations associated to all tasks preceding m.
Notice that a preemptive obligation can be complied with
even before the obligation is in force. Thus, one might ask
why we bother with the task when the obligation enters in
force. The reasons is that having (or not having) an obliga-
tion at a particular time could be the trigger of other deontic
effects.

Diagram 3.3 Preemptive Obligation

For a non-preemptive obligation, the set of states one has
to consider for determining whether the obligation has been
violated is limited to those defined by the interval in which
the obligation is force, see the pictorial representation of the
non-preemptive case in Diagram 3.4.

Diagram 3.4 Non-Preemptive Obligation

Example 1 Australian Telecommunications Consumers
Protection Code 2012 (TCPC 2012). Article 8.2.1.

A Supplier must take the following actions to enable this
outcome:

(a) Demonstrate fairness, courtesy, objectivity and effi-
ciency: Suppliers must demonstrate, fairness and cour-
tesy, objectivity, and efficiency by:

(i) Acknowledging a Complaint:

A. immediately where the Complaint is made in
person or by telephone;

B. within 2 Working Days of receipt where the
Complaint is made by email; . . . .

The obligation to acknowledge a compliant made in per-
son or by phone (8.2.1.a.i.A) is a punctual obligation, since
it has to be done ‘immediately’ while receiving it (thus it

can be one of the activities done in the task ‘receive com-
plaint’). 8.2.1.a.i.B on the other hand is an achievement
obligation since the clause gives a deadline to achieve it. In
addition it is a non-preemptive obligation. It is not possible
to acknowledge a complaint before having it.

Next we give the examples illustrating the cases of
preemptive obligations.

Example 2 Anti-Money Laundering and Counter-Terrorism
Financing Act 2006. Clause 54 (Timing of reports about
physical currency movements).

(1) A report under Section 53 must be given:

(a) if the movement of the physical currency is to
be effected by a person bringing the physical
currency into Australia with the person—at the
time worked out under subsection (2); or

[. . . ]
(d) in any other case—at any time before the move-

ment of the physical currency takes place.

Clause (d) in this example describes that the preemptive
obligation enters into force when a financial transanction
happens, and the clause explicitly requires the report to
be submitted to the relevant authority before the actual
transaction (phyiscal movement of the currency) occurs.
Notice that in some situations it might be the case that the
transaction never occurres.

Example 3 Australian National Consumer Credit Protection
Act 2009. Schedule 1, Part 2, Section 20: Copy of contract
for debtor.

(1) If a contract document is to be signed by the debtor
and returned to the credit provider, the credit provider
must give the debtor a copy to keep.

(2) A credit provider must, not later than 14 days after a
credit contract is made, give a copy of the contract in
the form in which it was made to the debtor.

(3) Subsection (2) does not apply if the credit provider
has previously given the debtor a copy of the contract
document to keep.

While clause (3) in this example prescribes preemptive
obligation in the sense that it requires that a copy of the
contract document is given to debtor but the obligation
is fulfilled if the creditor provided a copy of the contract
document earlier under clauses (2) of the section.

Definition 14 (Maintenance Obligation) Given a WF-net
N and a visible trace t ∈ T+(N), an obligation o is a main-
tenance obligation in t if and only if ∃n,m ∈ N, n < m such
that o is a persistent obligation in force between n and m.



Inf Syst Front (2016) 18:429–455 437

A maintenance obligation o in force between n and m in
t is violated if and only if

∃k : n ≤ k ≤ m, o ∈ Ann(t, k).

The following Diagram 3.5 illustrates the notion of a
maintenance obligation.

Diagram 3.5 Maintenance Obligation

Similar to an achievement obligation, a maintenance
obligation is in force in an interval. The difference is that
the obligation has to be complied with for all tasks in the
interval, otherwise we have a violation. Another difference
is that deadlines are not required to detect the violation
of maintenance obligations whereas for achievement obli-
gation violations are detected at deadlines (Hashmi et al.
2014).

Example 4 TCPC 2012. Article 8.2.1.
A Supplier must take the following actions to enable this

outcome:

(v) not taking Credit Management action in relation to
a specified disputed amount that is the subject of
an unresolved Complaint in circumstances where the
Supplier is aware that the Complaint has not been
Resolved to the satisfaction of the Consumer and
is being investigated by the Supplier, the TIO or a
relevant recognised third party;

In this example, as it is often the case, a mainte-
nance obligation implements a prohibition. Specifically, it
describes the prohibition to initiate a particular type of activ-
ity until either a particular event takes place or a state is
reached. As in the above example, Telcos operators are
prohibited to take credit management actions until a resolu-
tion of the complaint to the satisfaction of the customer is
reached. The state where a credit management action does
not occur must be maintained for all situations described by
the norm until a resolution occurs.

The next three definitions are meant to capture the notion
of compensation of a violation (see Diagram 3.6). The idea
is that a compensation is a set of penalties or sanctions
imposed on the violator, and fulfilling them makes amends
for the violation. The first step is to define what a compen-
sation is. A compensation is a set of obligations in force
in response to a violation of an obligation (Definitions 15
and 16). Since the compensations are obligations them-
selves they can be violated, and they can be compensable as

well, thus we need a recursive definition for the notion of
compensated obligation (Definition 17).6

Definition 15 (Compensation) A compensation is a func-
tion Comp : L → 2L.

Definition 16 (Compensable Obligation) Given a WF-net
N and a visible trace t ∈ T+(N), an obligation o is com-
pensable in t if and only if Comp(o) �= ∅ and ∀o′ ∈
Comp(o), ∃n ∈ N : o′ ∈ Force(t, n).

Definition 17 (Compensated Obligation) Given a WF-net
N and a visible trace t ∈ T+(N), an obligation o is com-
pensated in t if and only if it is violated and for every
o′ ∈ Comp(o) either:

1. o′ is not violated in t , or
2. o′ is compensated in t .

Diagram 3.6 illustrates the notion of compensation.
Assume that o is a compensable obligation in force in the
interval delimited by n and m. Suppose the obligation is
violated at d (say a deadline). The violation of the obli-
gation triggers the entrance in force of the obligation(s)
compensating the violation of o. In the diagram o′ is one
of compensations of o (since it belongs to Comp(o)), and it
enters in force after d. Besides being a compensation of o′ is
just another obligation, thus it has the properties of the class
of obligations it belongs to.

Diagram 3.6 Compensation Obligation

For a stricter notion, i.e., a compensated compensation
does not amend the violation the compensation was meant to
compensate, we can simply remove the recursive call, thus
removing condition 2 from definition 17.

Compensations can be used for two purposes: to specify
alternatives (i.e., less ideal outcomes) or to capture sanctions
and penalties. Examples 5 and 6 illustrate these two usages
respectively.

Example 5 TCPC 2012. Article 8.1.1.
A Supplier must take the following actions to enable this

outcome:

6Notice that we took the most general definition by not imposing
any temporal requirements for the compensation, thus the compensa-
tion could even precede the violation. Consider the natural language
expression: “I apologise in advance for . . . ”.



438 Inf Syst Front (2016) 18:429–455

(a) Implement a process: implement, operate and comply
with a Complaint handling process that:

(vii) requires all Complaints to be:

A. Resolved in an objective, efficient and
fair manner; and

B. escalated and managed under the Sup-
plier’s internal escalation process if
requested by the Consumer or a for-
mer Customer.

Example 6 YAWL Deed of Assignment, Clause 5.2.7

Each Contributor indemnifies and will defend the Foun-
dation against any claim, liability, loss, damages, cost and
expenses suffered or incurred by the Foundation as a result
of any breach of the warranties given by the Contributor
under clause 5.1.

Clause (B) of Example 5 and Example 6 respectively
illustrate the case of compensation obligation. Clause (B)
of Example 5 prescribes that a complaint should be esca-
lated or managed under the Supplier’s process if a complaint
is not resolved as per the conditions of clause (A) of the
section, allowing the customers to request for the escalation
of their complaints thus compensates the violation of clause
(A); in this case the compensation captures a behaviour
the while not ideal it is still acceptable. While the obliga-
tion in Example 6 mandates the Contributes to compensate
the Foundation for (negative) consequences incurred by the
Foundations in case the conditions in clause 5.1 are vio-
lated. In this case the compensation imposes a sanction or a
penalty.

The final definition is that of a perdurant obligation. The
intuition behind it is that there is a deadline by when the
obligation has to be fulfilled. If it is not fulfilled by the
deadline then a violation is raised, but the obligation is still
in force. Typically, the violation of a perdurant obligation
triggers a penalty, thus if the perdurant obligation is not
fulfilled in time, then the process has to account for the orig-
inal obligation as well as the penalties associated with the
violation.

Definition 18 (Perdurant Obligation) Given a WF-net N

and a visible trace t ∈ T+(N), an achievement obligation o

is a perdurant obligation in t with a deadline d if and only
if o is in force between n and m and n < d < m.

A perdurant obligation o with deadline d in force
between n and m is violated in t if and only

∀j, j ≤ d, o /∈ Ann(t, d)

7http://www.yawlfoundation.org/files/YAWLDeedOfAssignment-
Template.pdf, retrieved on March 28, 2013.

Diagram 3.7 illustrates the notion of a perdurant (pre-
emptive achievment) obligation. The obligation o is a per-
durant with a deadline d is in force between n and m. o is
not in Ann(t, x) for all tasks x before d (d included). Thus
we have a violation. Despite this the obligation remains in
force till m. This means that the process still has to achieve
o to be compliant (typically, in addition to compensations
for the violation of the obligation).

Diagram 3.7 Perdurant Obligation

Remark 3 Definition 18 only describes the perdurant obli-
gation for preemptive achievement obligations. Simple
adjustments can be made to model a similar notion for
non-preemptive and maintenance obligations.

Consider again Example 1. Clauses TCPC 8.2.1.a.i.A and
8.2.1.a.i.B state what are the deadlines to acknowledge a
complaint, but 8.2.1.a.i prescribes that complaints have to
be acknowledged. Thus, if a complaint is not acknowledged
within the prescribed time then either clause A or B is vio-
lated, but the supplier still has the obligation to acknowledge
the complaint. Thus the obligation in clause (i) is a perdurant
obligation.

3.2 Business process compliance

The set of (visible) traces of a given business process
describes the behaviour of the process insofar as it provides
a description of all possible ways in which the process can
be correctly executed. Accordingly, for the purpose of defin-
ing what it means for a process to be compliant, we will
consider a process as the set of its (visible) traces.

Intuitively a process is compliant with a given set of
norms if it does not violate the norms. Given that, in gen-
eral, it is possible to perform a business process in many
different ways, thus we can have two notions of compliance,
namely:

A process is (fully) compliant with a normative system
if it is impossible to violate the norms while executing
the process.

The intuition about the above condition is that no matter
in which way the process is executed, its execution does not
violates the normative system. For the second one, we con-
sider the case that there is an execution of the process that
does not violate the norms.

http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf
http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf


Inf Syst Front (2016) 18:429–455 439

A process is (partially) compliant with a normative
system if it is possible to execute the process without
violating the norms.

Based on the above intuition we can give the following
definitions. We first define when a trace is compliant, and
then extend that notion to cover a process.

Definition 19 (Compliant Trace) Given a WF-net N and
a trace t in T+. Let O(t) be the set of obligations in force in
t , i.e., O(t) = ⋃

n∈N Force(t, n).

1. A trace t is strongly compliant if and only if no obliga-
tion o ∈ O(t) is violated in t .

2. A trace t is weakly compliant if and only if
every violated obligation o ∈ O(t) is compensated
in t .

Definition 20 (Compliant Process) Let N be a WF-net.

1. N is fully compliant if and only if every trace t ∈ T+ is
compliant.

2. N is partially compliant if and only if there exists a
compliant trace t ∈ T+.

Notice that a refinement of Definition 20 is possible.
Thus we can distinguish between strongly and weakly com-
pliant processes. This is simply achieved by passing the
strongly/weakly parameter to the traces. For example a pro-
cess is strongly compliant if all its visible traces are strongly
compliant.

The definitions (Definitions 10–20) given in this section
(apart from Definition 20) can be used across the entire
life-cycle of a process: design-time, run-time and log anal-
ysis. As we pointed out in Remarks 1 and 2 the states and
obligations in force have to be determined by compliance
applications and implementations. For example, the anno-
tations associated to a task at run-time or log-analysis will
be obtained from the running instance or extracted from the
log and the data sources related to the process, while at
design-time such information can be provided by business
analysts or obtained from the schemas of the databases and
data sources linked to the process (Hashmi et al. 2012).

Definition 20 can be used at design time in what is called
compliance-by-design proposed by Sadiq et al. (2007);
Governatori and Sadiq (2009), i.e., verifying before deploy-
ing a process that the process complies with given regu-
lations. Clearly, the definition is not suitable for checking
compliance at run-time (also called conformance) or audit-
ing (log analysis), since it is possible that some of the
possible visible traces are never executed (run-time) or were
not executed (auditing). For these two cases one has to use
Definition 19 instead applied to the executed traces, and to
the traces of instances of a process recorded in a log.

4 Running example: a complaint handling process

In this section we give a short description of the scenario
we are going to analyse in details in Section 5 to illus-
trate the how definitions given in Section 3 can be used to
check whether a business process complies with a particular
normative framework. The scenario is inspired by the inter-
nal complaint handling policy8 from the Land and Property
Management Authority (LPMA), New South Wales, Aus-
tralia. In particular we describe a complaint handling pro-
cess we designed to satisfy the a number of different types
of compliance requirements obtained from the internal pol-
icy document, see Table 1. The first column shows the rule
ID. The natural language description, the specific obliga-
tion type and deontic effects it may produce are given in the
second column. Rule R1, for example, is a non-preemptive,
non-perdurant achievement obligation [OANPP], rule R1

describes that any received complaint must be resolved
at the earliest opportunity. Accordingly, the deontic effect
(or obligation in force) for any received complaint for R1

is the obligation resolve complaint. Whereas R4 specifies
that all the received complaint must be acknowledged for
which two options are provided: (1) immediately acknowl-
edge complaint received in person or by a phone and
(2) within two working days for a written complaint.
Rule R4 stipulates two different obligations i.e., a punc-
tual non-preemptive, perdurant obligation [OPNPP] for (1)
and a non-preemptive, perdurant achievement obligation
[OANPP] for (2) respectively. The deontic effect R4 pro-
duces is to acknowledge a received complaint, see Table 1
for the description, types and deontic effects of the rules
related to the complaint handling process.

Figure 3 depicts the overview of the procedure followed
to resolve a complaint as a BPMN process model. Accord-
ing to the policy guidelines, the first step in the process
is to determine whether the received complaint is an oral
complaint or a written complaint. If it is an oral com-
plaint, a staff member will identify himself and details
are gathered from the complainant before proceeding with
the complaints handling process. The staff member then
verifies whether the received complaint meets the require-
ments of a legitimate complaint as defined in Section 9
of the policy. If the received complaint does not meet
the definition of a complaint, alternative dispute proce-
dures are adopted (which is out of the scope of this
process). After a complaint has been determined as a legit-
imate complaint, the staff member must decide whether
(s)he has the appropriate authority to handle the com-
plaint. If the staff is deemed to have the authority, then

8The policy document is available on the LPMA website:
http://www.lpma.nsw.gov.au/ data/assets/pdf file/0004/25663/
rth Ch26 Aug 2009.pdf

http://www.lpma.nsw.gov.au/__{d}ata/assets/pdf_{f}ile/0004/25663/rth_{C}h26_{A}ug_{2}009.pdf
http://www.lpma.nsw.gov.au/__{d}ata/assets/pdf_{f}ile/0004/25663/rth_{C}h26_{A}ug_{2}009.pdf


440 Inf Syst Front (2016) 18:429–455

Table 1 The compliance requirements of complaints handling process from LPMA, NSW

Rule ID Policy Description (Compliance Controls/Specifications)

R1 Staff receiving a complaint will aim to resolve it at the earliest opportunity or at least confirm that complaint will receive attention.

Type: Obligation, Achievement, Non-Preemptive, Non-Perdurant

Deontic Effect: resolve complaint

R2 Where the client is not satisfied with the initial response to the complaint, they will be given the option to progress the issues

through the formal complaints handling process outlined in the complaints handling procedure.

Type: Obligation, Achievement, Preemptive, Perdurant

Deontic Effect: provide escalation options

R3 Staff will treat all complaints fairly and impartially, as is their obligation under the code of conduct.

Type: Obligation, Maintenance, Perdurant

Deontic Effect: treat fairly

R4 All complaints will be acknowledged:

(1)immediately where complaints are made orally or by phone,

(2)within 2 working days for written complaints.

Type-1: Obligation, Punctual, Non-Preemptive, Perdurant

Type-2: Obligation, Achievement, Non-Preemptive, Perdurant

Deontic Effect: acknowledge complaint

R5 All complainants kept informed about the progress of the matter, particularly if delays occur.

Type: Obligation, Achievement, Non-Preemptive, Non-Perdurant

Deontic Effect: inform progress

R6 Complainants will not be subject to any form of prejudice, lose of services, or be disadvantaged in any way as a result of having

complained.

Type: Obligation, Maintenance, Perdurant

Deontic Effect: ¬disadvantage

R7 Complaints will be treated with an appropriate level of confidentiality. Information about complaints will only be shared on a

need–to–know basis, both within the agency and externally.

Type: Obligation, Maintenance, Perdurant

Deontic Effect: ensure confidentiality

R8 Reasons will be provided for decisions made in relation to complaints received.

Type: Obligation, Achievement, Non-Preemptive, Perdurant

Deontic Effect: provide reasons

R9 If complaints do not meet the conditions in section 9, the department may set limits or conditions on the handling of their complaint.

Type: Permission

Deontic Effect: limit complaint

R10 Unauthorized staff cannot handle complaints (either oral or written).

Type: Prohibition, Maintenance, Perdurant

Deontic Effect: authorized

the complaint will go though the complaints handling pro-
cess with the staff as its handler. Otherwise, the complaint
is referred to an authorised staff and the complainant
is informed. The authorised staff explains the process
and the available options and attempts to resolve the
compliant straight away if it is an oral complaint. If
the complaint is resolved, then the complaint is logged

as resolved and the complainant is informed about the
decision.

For a written complaint, an authorised staff will con-
firm the process within two working days. A complaint is
escalated to a senior staff if it cannot be resolved or the com-
plainant is not satisfied or if the staff decides that it needs
to be escalated. While the complaint is being investigated,



Inf Syst Front (2016) 18:429–455 441

Fig. 3 A complaint handling process from LPMA, NSW Australia

the complainant is being kept informed. When a decision
has been reached, the complainant is informed about the
decision. When the complainant is satisfied with the deci-
sion, the complaint is closed off and archived.

5 Compliance checking approach

Generally compliance rules are written in natural language
(c.f. those that can be found in legal documents or policy
documents). To enable automatic compliance checks, these
rules need to be formalised in a machine-readable format.
In addition, at the same time we need a machine-readable
representation of processes and what the processes do in
the various steps (and the states that would be generated
by the processes when executed). Hence given a business
processes and a set of norms (or compliance rules), check-
ing whether a business process is compliant with the set of
norms amounts to the following operations:

1. To determine the deontic effects (and their type) of the
set of norms;

2. For each task in each trace of the process:

(a) to determine what is the state corresponding to the
task, and

(b) to determine what are the obligations in force for
the task;

(c) to check whether the obligations in force have been
fulfilled, violated (and for compensable obligation,
whether they have been compensated for) or post-
poned the judgement to the next task in the trace,
according to the semantics presented in Section 3.

This means that the problem of business process com-
pliance reduces to that of populating the functions Ann and
Force. As we discussed in the previous sections the aim
of this paper is to provide a conceptually sound founda-
tional framework for the semantics of regulatory complaints
for business process compliance. The scope of this paper is
not to propose a specific set of mechanisms, algorithms, or
formalisms to check whether business processes are com-
pliant, but the definitions given in this paper can be use to
evaluate mechanisms, algorithms and formalisms proposed
to check the compliance of business processes against rele-
vant regulations.

Figure 4 illustrates the key concepts behind our approach
for business process compliance. Rules impose conditions
on the tasks to control the behaviour of processes. Business
processes are annotated with rules for compliance check-
ing purposes. These annotations are usually formalised
rules and the data is parsed in the tasks at design-time.



442 Inf Syst Front (2016) 18:429–455

Fig. 4 Business process compliance: abstract framework

However at design-time, very limited information is avail-
able about the real data that a process operates on. Thus,
for design-time compliance checking, business analysts pro-
vide abstract values and attributes to annotate processes.
These abstract annotations can be used to verify the compli-
ant behaviour of a business process at design-time. Contrary
to that, at run-time processes are annotated with real val-
ues and attributes which are, again, provided by the business
analysts. Regardless of checking the compliance at design-
time or run-time, all we need is visible traces consisting of
annotated tasks of a process.

In the rest of this section we are going to illustrate
how the functions Ann and Force are populated in the
scenario introduced in Section 4. Again, it not the scope
of this paper to propose algorithms or formalisms to check
whether business process complies with a set of compliance
rules. The intention of the paper is to propose a language
independent semantics to describe the properties of the com-
pliance requirements in terms of business processes. It is
up to different formalism to provide appropriate construc-
tions to model compliance. For example, Article 8.2.1 of
TCPC 2012 in Example 4, that prohibits a supplier to ini-
tiate credit management action when there is an unresolved
dispute about credit, can be (roughly) represented in Lin-
ear Temporal Logic by the formula (where U is the Until
operator)

G(creditDispute → (¬creditManagementActionUdisputeResolved))

The until operator of Linear Temporal Logic is evaluated
true if the left hand side of the operator is true for all instants
before an instant where the right hand side of the operator
is true. Thus the until operator respects the semantics for
maintenance obligations

5.1 Compliance checking of the complaint handling
process

We now provide a concrete example of compliance check-
ing based on the complaint handling process shown earlier.
Table 1 describes all the applicable rules on the complaint
handling process. For each rule we have also identified the
obligation triggered by the rule. These rules are of different
types and relevant to one or more tasks in the aforemen-
tioned process. No compliance of every rule can be auto-
matically checked because of several reasons e.g., the rule
has been vaguely described or we have partial information
only etc, see Awad (2010). Rule R1 in the complaint han-
dling process is one such type of rules that has been vaguely
defined. For example, the ‘earliest opportunity’ does not
clearly specify until what time the obligation has to be
fulfilled. However, rule R1 is an achievement obligation
applicable from T3 and the obligation triggered by it remains
in force until the obligation has been fulfilled. The rule R4

is a punctual obligation (for oral complaint) and an achieve-
ment obligation (for written complaint) where the received
complaint has to be acknowledged within 2 working days.



Inf Syst Front (2016) 18:429–455 443

Rules R3, R6, R7 are maintenance obligation applicable
from the beginning of the process. They must be com-
plied with for all the instances of the complaint handling
process.

To determine whether the obligation has been complied
with, regardless when an obligation comes into force and at
which task in the process, one has to consider all the traces
of the process including the task from where the obliga-
tion gets into force. Thus the first step is consider all the
traces for a process. Given that there is a loop inthe process
model, the number of traces is infinite. While this is not a
problem for the theoretical compliance model, for practi-
cal purposes we have to consider a finite number of them.
In practice loops typically have exit conditions, accord-
ingly, we can limit the analysis to the case where each
loop is expanded once, and in case of a nested loop, the
external loop passes from the origin of the loop twice one
where the internal loop is executed and the second when
the internal loop is skipped. The this case the second time,
the effect will be annotated with the exit condition. This
procedure is applied recursively for more deeply nested
loops.

We now list the elements of the (finite) set of traces Tp

generated by the compliant handling process.

t1 = 〈T1, T2, T3, T4〉,
t2 = 〈T1, T2, T3, T5, T6, T13, T14, T15, T16, T17, T18, T19〉,
t3 = 〈T1, T2, T3, T5, T6, T13, T14, T15, T17, T18, T16, T17, T18, T19〉,
t4 = 〈T1, T2, T3, T5, T6, T13, T14, T15, T17, T18, T19〉,
t5 = 〈T1, T2, T3, T5, T6, T14, T15, T16, T17, T18, T19〉,
t6 = 〈T1, T2, T3, T5, T6, T14, T15, T17, T18, T16, T17, T18, T19〉,
t7 = 〈T1, T2, T3, T5, T6, T14, T15, T17, T18, T19〉,
t8 = 〈T1, T2, T3, T5, T6, T7, T8, T9, T10, T11, T12, T16, T17, T18, T19〉,
t9 = 〈T1, T2, T3, T5, T6, T7, T8, T9, T10, T11, T12, T19〉,

t10 = 〈T1, T2, T3, T5, T6, T7, T8, T9, T10, T16, T17, T18, T19〉,
t11 = 〈T1, T2, T3, T5, T6, T7, T8, T9, T10, T16, T17, T18, T16, T17, T18, T19〉,
t12 = 〈T3, T4〉,
t13 = 〈T3, T5, T6, T13, T14, T15, T16, T17, T18, T19〉,
t14 = 〈T3, T5, T6, T13, T14, T15, T17, T18, T16, T17, T18, T19〉,
t15 = 〈T3, T5, T6, T13, T14, T15, T17, T18, T19〉,
t16 = 〈T3, T5, T6, T14, T15, T16, T17, T18, T19〉,
t17 = 〈T3, T5, T6, T14, T15, T16, T17, T18, T16, T17, T18, T19〉,
t18 = 〈T3, T5, T6, T14, T15, T17, T18, T16, T17, T18, T19〉,
t19 = 〈T3, T5, T6, T14, T15, T17, T18, T19〉

The next step is to determine what are the effects of the
tasks in the trace as each task is annotated with one or
more effects (or sets of effects), we refer to these effects as
annotations. Hence we look which literals are relevant to
each task in the trace. We use the Ann function defined in

Section 2. To improve readability, in the rest of this section
we use the annotation function Ann as:

Ann(trace, task, integer) = {set of (consistent) literals}
this means we also include the name of the task in its
signature.

We now take a significative trace, trace t11, to illustrate
how the function populates the states corresponding to the
tasks in a trace. Trace t11 is as follows:

t11 =〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18, T16, T17, T18, T19〉

Based on the information available we show how the
elements of trace t11 are populated9

Ann(t11, T1, 1) = {receive complaint, oral, identify yourself }
Ann(t11, T2, 2) = Ann(t11, T1, 1) ∪ {get details},
Ann(t11, T3, 3) = Ann(t11, T2, 2) ∪ {verify complaint},
Ann(t11, T5, 4) = Ann(t11, T3, 3) ∪ {valid complaint, register complaint},
Ann(t11, T6, 5) = Ann(t11, T5, 4) ∪ {check authority},
Ann(t11, T7, 6) = Ann(t11, T6, 5) ∪ {authorised, acknowledge complaint},
Ann(t11, T8, 7) = Ann(t11, T7, 6) ∪ {explain handling procedure},
Ann(t11, T9, 8) = Ann(t11, T8, 7) ∪ {explain options},
Ann(t11, T10, 9) = Ann(t11, T9, 8) ∪ {attempt resolution},
Ann(t11, T16, 10) = Ann(t11, T10, 9) ∪ {¬resolve complaint, escalate},
Ann(t11, T17, 11) = (Ann(t11, T16, 10) − {escalate}) ∪ {inform progress},
Ann(t11, T18, 12) = Ann(t11, T17, 11) ∪ {inform decision, provide reasons},
Ann(t11, T16, 13) = (Ann(t11, T18, 12) − {inform decision, provide reasons})

∪ {¬satisfied, escalate},
Ann(t11, T17, 14) = Ann(t11, T16, 13) ∪ {provide escalation options},
Ann(t11, T18, 15) = Ann(t11, T17, 14) ∪ {inform decision, provide reasons},
Ann(t11, T19, 16) = (Ann(t11, T18, 15) − {¬resolve complaint, ¬satisfied})

∪ {satisfied, archive, resolve complaint}

The integer and task appearing in the Ann function indi-
cate, respectively, the step of the process and the task (to
be) executed at that step. Apart from its own, each task in
the trace may inherit effects from its previous tasks to deter-
mine the state corres ponding to the task. These effects can
be accumulated as the information grows for every subse-
quent task in the trace. These effects are computed based on
the updated semantics where if the effects of previous tasks
are in conflict with the effects of the current task, the effects
of previous tasks are replaced with current ones. For exam-
ple the state reached after task T2, namely Ann(t11, T2, 2),
accumulates the effects of its previous task T1 and also has
its own effects {get details}. Similarly task T3 accumulates
the effects of tasks T1 and T2 producing Ann(t11, T3, 3). In
other cases, some effects, obtained in previous tasks can be
remove or their truth value can be changed. For example

9The annotations for each task can be given by domain experts or
can be extracted from databases or forms related to the tasks, see
Hashmi et al. (2012).



444 Inf Syst Front (2016) 18:429–455

Table 2 Applicable rules and obligations in force for trace t11

Task, Step Rules Obligations in Force

T1, 1 R1, R3, R6, R7 Force(t11, T1, 1) = {resolve complaint, treat farly,

¬disadvantage, ensure confidentiatly}
T2, 2 Force(t11, T2, 2) = Force(t11, T1, 1)

T3, 3 Force(t11, T3, 3) = Force(t11, T2, 2)

T5, 4 R4, R5 Force(t11, T5, 4) = Force(t11, T3, 3) ∪ {acknowledge complaint,

inform progress}
T6, 5 R10 Force(t11, T6, 5) = Force(t11, T5, 4) ∪ {authorized}
T7, 6 Force(t11, T7, 6) = Force(t11, T6, 5)

T8, 7 Force(t11, T8, 7) = Force(t11, T7, 6)

T9, 8 Force(t11, T9, 8) = Force(t11, T8, 7)

T10, 9 Force(t11, T10, 9) = Force(t11, T9, 8)

T16, 10 R8 Force(t11, T16, 10) = Force(t11, T10, 9) ∪ {provide reasons}
T17, 11 Force(t11, T17, 11) = Force(t11, T16, 10)

T18, 12 Force(t11, T18, 12) = Force(t11, T17, 11) − {provide reasons}
T16, 13 R2, R5, R8 Force(t11, T16, 13) = Force(t11, T18, 12) ∪ {provide escalation options,

provide reasons}
T17, 14 Force(t11, T17, 14) = Force(t11, T16, 13)

T18, 15 Force(t11, T18, 15) = Force(t11, T17, 14)

T19, 16 Force(t11, T19, 16) = Force(t11, T18, 15)

the first time we pass though task t17 (step 11) we remove
the escalate flag which was raised in the previous task indi-
cating the complaint was escalated. The change of polarity
of literals is exemplified at step (16) where the negative
¬resolve complaint and ¬satisfied are removed and
replaced by their positive counterparts, resolve complaint
and satisfied.

Now we look at which rules are applicable to trace t11

on which task and when in order to determine which obli-
gations are in force. Table 2 illustrates when the various
rules become active in trace t11 (when they begin to produce
their deontic effects), and when the various obligations are
in force.

Four rules are effective at T1. Rule R1, whose deontic
effect is an achievement obligation, becomes active as soon
as a complaint is received, and remain active until the com-
plaint is resolved. The other three rules, i.e., R3, R5 and R6,
are for maintenance obligations and never terminate for all
instances of the process. No rules are associated with T2, T3,
tasks T7–T10 and with the tasks in the last three steps of the
trace. Rules R4 and R5 produces achievement obligations,

and their effects enter in force at step 4 (task T5) when
the complaint has been deemed valid. Rule R10 kicks in at
task T6, and its deontic effect is a maintenance obligation
(that the staff is authorized to handle it, or alternatively the
prohibition to handle a handle if not authorized).

Rule R8 is triggered twice. The first time at step 10,
and the corresponding non-preemptive obligation is in force
for that step and the next one, when the obligation is ful-
filled. Thus the obligation provide reasons is no longer in
force for step 12. The new decision in step 13, reinstate
that non-preemptive obligation. The non-preemptiveness of
the obligation implies that the previous discharging instance
does not count for the instance of the obligation in force
from step 13.

It is easy to verify that the trace is compliant for rules
R1, R2, R4, R5, R6, R8, R9 and R10: The achievement obli-
gations triggered by rules R1, R2, R4, R5, R8 are fulfilled,
respectively at steps: 16, 13, 5, 11, and 11 and 15 for the
two instances of R8. The maintenance obligation of rule
R8 is maintained from step 5, when it enters in force to
the end of the process. R9 is trivially complied with since



Inf Syst Front (2016) 18:429–455 445

it is a permission, and it cannot result in a non-compliant sit-
uation. Finally, the maintenance obligations of rules R3, R6

and R7 are not fulfilled. This is due to lack of information of
what their obligations means in term of the given process.

5.2 Evaluation

To conclude this section we report on an evaluation of
the framework against real processes and norms. The pur-
pose of this section is to provide evidence that all types of
obligations are eventually present in real life compliance
scenarios.

The evaluation was carried out using Regorous.10 Regor-
ous is an implementation of the compliance checking
methodology proposed by Sadiq et al. (2007): Governatori
and Sadiq 2009 where the normative provisions relevant to a
process are encoded in PCL Governatori and Rotolo (2010a,
b) and the tasks of a process are annotated with sets of lit-
erals taken from the language used to model the norms.
The Regorous module to check compliance generates the
traces of the given process and cumulates the annotations
attached to the tasks using an update semantics to determine
the state corresponding to a task in a trace (i.e., in case a
literal from the then current task is the complementary of
from a previous task, we remove the old literal and we insert
the new one). PCL offers support for all types of obligations
described in the previous section, and for every steps in a
trace, it retrieves the state corresponding to the task being
examined. Based on state PCL determines the obligations
in force for current task. Finally, it checks if the obligations
have been fulfilled or violated based on the semantics dis-
cussed in the previous section. For the full details of PCL
mechanisms, see Governatori and Rotolo (2010b).

Regorous was tested against the novel Australian
Telecommunication Consumers Protection Code 2012. The
code specifically mandates that every australian entity oper-
ating in the telecommunication sector has to provide a
certification that their day to day operations complies with
the code.

The test was limited to TCPC Section 8 concerning the
management and handling of consumer complaints. The
section was manually mapped to PCL. The section of the
code contains approximately 100 commas, in addition to
approximately 120 terms given in the Definitions and Inter-
pretation section of the code. The mapping resulted in 176
PCL rules, containing 223 distinct PCL (atomic) proposi-
tions (literals). The formalisation of Section 8 required all
types of obligations described in Section 3. Table 3 reports
the number of distinct occurrences and, in parenthesis, the

10Regorous: Compliance Checker, available at https://www.regorous.
com.

Table 3 Number and types of obligations and permissions in Section
8 of TCPC

Punctual Obligation 5 (5)

Achievement Obligation 90 (110)

Preemptive 41 (46)

Non preemptive 49 (64)

Non perdurant 5 (7)

Maintenance Obligation 11 (13)

Prohibition 7 (9)

Non perdurant 1 (4)

Permission 9 (16)

Compensation 2 (2)

total number of instances (some effects can have different
conditions under which they are effective).

The evaluation was carried over in cooperation with an
industry partner operating in the sector of the code. The
PCL formalisation of TCPC Section 8 was reviewed and
informally approved for the purpose of the exercise by the
regulator. The industry partner did not have formalised busi-
ness processes. Thus, we worked with domain experts from
the industry partner (who had not been previously exposed
to BPM technology, but who were familiar with the indus-
try code) to draw process models to capture the existing
complaint handling and management procedures and other
related activities covered by TCPC Section 8. As result
we generated and annotated 6 process models. 5 of the 6
models are limited in size and they can be checked for
compliance in seconds. We were able to identify non com-
pliance issues in the processes and to rectify them. In the
simplest and most frequent cases the modification required
were just to ensure that some type of information was
recorded in the databases associated to the processes. Other
cases needed to addition to simple activities (tasks) either
after or before other tasks (e.g., make customer aware of
documents detailing the escalation procedure after an unsat-
isfactory outcome of a non-escalated complaint). The above
two types of non-compliance were detected by unfulfilled
achievement obligations and they were the results of new
requirements in the 2012 version of the code. Another case
of non-compliance was related to ensuring that a particular
activity does not happens in a part of the process. Finally,
there were some cases where combination of the above
issue were needed (the novel way to handle in person or
by phone complaints) where totally new sub-processes were
designed.

The largest process contains 41 tasks, 12 decision points,
xor splits, (11 binary, 1 ternary). The shortest path in the
model has 6 tasks, while the longest path consists of 33
tasks (with 2 loops), and the longest path without loop is 22

https://www.regorous.com
https://www.regorous.com


446 Inf Syst Front (2016) 18:429–455

task long; in total there are over 1000 traces, and approx-
imately 25000 states. The time taken to verify compliance
for this process amounts approximately to 40 seconds on
MacBook Pro 2.2Ghz Intel Core i7 processor with 8GB of
RAM (limited to 4GB in Eclipse).

6 Conceptual evaluation of existing business
process compliance frameworks

So far we have discussed the different types of obliga-
tions and provided the semantics for each obligation type
in Section 3 and in Section 5 we have illustrated how these
notions can be used to check whether a business process
complies with a relevant set of normative requirements. We
also discussed a number of existing CMFs (c.f. Section 1).
In this section, we present the results of an evaluation con-
ducted on seven CMFs using the classification model we
proposed in Section 3. A summary of the evaluation results
is shown in Table 4.

The evaluation was conducted to gain more under-
standing on the various aspects of a compliance frame-
work especially from the legal knowledge (compliance
requirements) representation perspective. Specifically, we
were interested in knowing that how existing frame-
works support normative requirements; what kinds of
constructs are provided to model norms; which formal-
ism is used, how normative requirements are linked to
processes for compliance checking purposes; and what
is the level of compliance management support in such
frameworks etc.

Next, we first present our evaluation approach and then
we discuss in details the frameworks we used to address
these questions.

6.1 Evaluation approach

The aim of this section is to discuss the evaluation approach
used to conduct the evaluations. We adopted a (systematic)
case study based shallow research approach, which allowed
us to start the evaluations with minimal information avail-
able on the CMFs. We followed a three steps structured
approach where, we first defined the evaluation objectives
and criteria, and then selected the frameworks based on the
defined criteria. The details of each step are as follow:

Evaluation Objectives: Our objective is to examine the
conceptual foundations of existing CMFs. We specifi-
cally look at the conceptual approach a framework pro-
poses to secure compliance, and the support for the nor-
mative requirements: more specifically what constructs
are provided for modeling the norms. In addition, how

the norms are linked to business processes for compliance
checking.

Evaluation Criteria: To select a representative compli-
ance management framework we defined a three steps
framewok evaluation criteria which we used to conduct
the evaluation as:

(a) Level of compliance management: this criterion
describes the level of support a framework pro-
vides. We only selected CMFs which provide full
compliance management support and did not con-
sider those merely provides a compliance checking
algorithm or a modeling language,

(b) Requirements modeling: this criterion allows exam-
ining how frameworks model different types of
compliance requirements, and using which formal
logic. Essentially, this criterion is used to identify
the modeling constructs for a specific obligation
type proposed in a framework. For this purpose,
we provide a classification of normative require-
ments which has been obtained in a systematic and
exhaustive way by considering the aspect of valid-
ity of obligations or prohibitions and the effects of
violation on them,

(c) Requirements linking: this criterion allows identify-
ing how different frameworks link the compliance
requirements with business process models for com-
pliance checking.

Sample Frameworks Collection: Although we reviewed
and analysed several CMFs, we abstained from doing
a systematic literature survey (as in El Kharbili 2012;
Fellmann and Zasada 2014) rather we selected frame-
works based on the expert discussions, and mostly
cited in literature. In addition, we also considered the
evaluation criteria while selecting the evaluated frame-
works. We believe the selected frameworks are best
suited for our evaluation according to the aforementioned
criteria.

6.2 PENELOPE

PENELOPE (Process Entailment from Elicitation of Obli-
gations and Permissions Goedertier and Vanthienen (2006))
is a declarative language that captures obligation and per-
mission constraints imposed on business processes by busi-
ness policies. Aiming to provide design-time compliance
verification capabilities, the language uses an algorithm that
progressively generates the state space and control-flow of
a business process. The state space generated contains a set
of obligations and permissions that are active at a partic-
ular state. The interaction between the generated process
models flows from state to state, and all the states are enu-
merated until no obligation or permission holds at a state



Inf Syst Front (2016) 18:429–455 447

or if there is a violation which cannot be repaired. Once
all the states are computed, the algorithm draws the BPMN
model for a role involved in the business interaction. The
tasks of the process are drawn whenever an obligation set
contains all obligations fulfilled by a role in the activity.
PENELOPE allows the modelling of interactions between
all involved partners and any from a third partner is repre-
sented as a time out event in the generated BPMN model.
In addition, errors and end events are drawn if there is
a violation of an obligation or permission by a role in a
state.

The deontic assignments in the PENELOPE are mod-
elled using event-calculus that provides a rich semantics
to reason about the normative requirements. However, cur-
rently PENELOPE can only support achievement obliga-
tions and permissions while no other obligations types are
explicitly supported. PENELOPE can model achievement
obligations because they permit to explicitly define dead-
lines in the form of precedence rules. Prohibitions are
not considered under close-world assumption (CWA) to
avoid the anomalies that might occur because of incom-
plete knowledge about all the parties involved in business
interactions.

Violations in PENELOPE can only occur in the form
of deadlock situations or temporal conflicts. Deontic con-
flicts cannot occur in PENELOPE generated BPMN model
because the framework does not consider prohibitions or
waived obligations. Moreover, no support for compensation
obligations is provided because PENELOPE does not offer
any mechanism to handle violations and this task is left to
the process modellers.

6.3 Process Compliance Language (PCL)

PCL (Process Compliance Language) by Governatori and
Rotolo (2010a) is a formal framework based on defea-
sible and deontic logic. It provides a conceptually rich
formal foundations to model norms, and is able to effi-
ciently capture the intuition of almost all types of normative
requirements. These norms are modelled in the form of
PCL rules for which the framework provides rich seman-
tics. The state variables and the tasks in the process are
represented by a set of propositional literals. PCL formulas,
also called PCL specifications are written based on a set of
primitive propositions using ¬ negation, ⊗ (a non-boolean
connective modelling violations chains), and deontic opera-
tors representing obligations and permissions. The tasks in
business processes are annotated with PCL specifications
that are either provided by domain experts or are automat-
ically extracted from the schemas of the databases or data
sources linked to the processes using the technique proposed
by Hashmi et al. (2012). These annotations are used to anal-
yse whether the behaviour of an execution path is consistent

with the annotated specifications. For this purpose, a three-
step algorithm is used in which the process graph is first
traversed to find the set of effects for all tasks. These effects
are then used to determine the norms in force for the tasks.
The effects of the tasks and pertaining obligations are then
compared in the last step to find any divergent behaviour.
The compliance of the norms is reported as full, partial, or
not compliant by the algorithm.

The rich combination of defeasible and deontic logic
allows PCL to model all types of obligations as depicted in
Table 4 and other aspects of normative reasoning. This is
because the use of two types of logics where the deontic
logic provides the support to model obligation’s viola-
tions and chains of reparation, while the issue of partial
information and inconsistent prescription is handled by the
defeasible logic (Governatori and Rotolo 2010b). To model
the fundamental obligations, PCL provides three major
constructs: punctual (Op), maintenance (Om), and achieve-
ment (Oa); achievement obligations are further refined in
perdurant/non-perdurant and pre-emptive/non-preemptive.

Violations and obligations arising from the violations are
major concerns in CMFs and PCL provides effective man-
agement of the violations and their compensations. For this
purpose PCL defines a special contrary-to-duty non-boolean
⊗ connective that is used to create reparation chains for
handling multiple violations of obligations.

6.4 DECLARE

Declare (DECLARE 2010) is a prominent framework for
run-time verification of constraint-based declarative mod-
els. Declarative models describe what a model can do by
specifying the business constraints as rules that should not
be violated. The business knowledge in Declare is defined
in terms of constraints using ConDec (Constraint Declara-
tive, Pesic and van der Aalst (2006)11), a language which
provides graphical notations to model the flows of busi-
ness interactions. Declare models (also called templates)
are enacted by a workflow engine verifies the interactions
among the tasks in the model to ensure compliance. The
framework includes two types of constraints i.e., manda-
tory and optional constraints on the process models. In a
Declare model, a process instance can only be active when
there is no violation of mandatory constraints and all con-
straints are fully satisfied at the end of the execution of an
instance. The verification results of each constraint of an
active instance are expressed as satisfied, temporarily vio-
lated, and violated. In case all constraints are satisfied the

11From Nov 2012, the name of ConDec language has been
changed to Declare see. http://www.win.tue.nl/declare/2011/11/
declare-renaming/.

http://www.win.tue.nl/declare/2011/11/declare-renaming/
http://www.win.tue.nl/declare/2011/11/declare-renaming/


448 Inf Syst Front (2016) 18:429–455

activities are not executed any further, but if there is a viola-
tion state no possible further execution would be allowed to
satisfy the constraints. Accordingly, in the temporarily vio-
lated state the constraints are not satisfied, but there would
be a possibility to satisfy the constraints.

Business constraints (norms) in the Declare framework
are modelled by means of Declare expressions which are
classified as existence, relation, choice and negative con-
straints. The majority of these constraints are used to
express obligations while the negative constraints can be
used to express prohibitions. These constraints correspond
to LTL expressions that provide the semantics to the Declare
graphical notation. Currently, only achievement obligations
and prohibitions can be modelled in the Declare Model,
while no other norms types can be explicitly modelled.
Since achievement obligations define deadlines and the
obligation condition must be true at least once, the support
for such obligations is only available because the tasks in
the Declare model with such constraints will be performed
in some future time. However, the different modalities of
persistence and preemptiveness of obligations cannot be
expressed. Expressing maintenance obligation constraints
can be problematic in Declare because the obligation con-
ditions must hold in all instances throughout the execution
of the process. There might be some situations when the
applicable maintenance obligation constraints might not be
present thus there will be deadlocks in the course of inter-
actions among tasks. Declare is able to identify conflicts
among constraints in the model, however it does not provide
any support to handle violations because the expressions are
written in LTL and the non-deterministic behaviour of the
process models. Hence, in case of a violation the interaction
among tasks in the Declare model will be stopped and no
further activity can be performed. Accordingly, it is not pos-
sible to express permissions, compensations and perdurant
obligations.

6.5 Business Process Modeling Notation-Query
(BPMN-Q)

BPMN-Q (Awad et al. 2008, 2011) is a query based
automated compliance checking framework capable of
answering YES/NO type answers to query questions. The
framework can model control-flow, data flow and condi-
tional flow related compliance rules using visual patterns.
These visual patterns are translated into LTL formulas for
checking the structural compliance of a processes model.
The framework adopts a systematic approach to generate the
patterns of compliance rules in the form of query templates.
These templates are used to identify the set of process
models subject to compliance checking in the process repos-
itory. Compliance checking is carried out in several steps.
First, BPMN-Q sub-graphs are extracted from a process

repository using temporal query templates. The query pro-
cessor only extracts processes that structurally match the
query template. These sub-graphs are then reduced by elim-
inating irrelevant activities and gateways, and translated into
a Petri net model to generate the state space. Alongside
the state space generation, BPMN-Q queries are translated
into LTL formulas which are then fed into a model checker
together with the generated state space. In turn, the model
checker yields YES/NO to indicate whether the extracted
process models comply with the query templates.

The framework uses a visual language BPMN-Q to
express various types of compliance rules. The language
provides visual notations similar to the standard BPMN
notations. Currently, the framework is able to handle almost
the same types of obligations as Declare (cf. Table 4). While
BPMN-Q is equipped with the so called global space pres-
ence pattern, this enables the execution of an activity that is
required in all process instances, but this is not the same as
an “activity” that must be performed for every single task in
a process instance.

In BPMN-Q no conceptual or formal constructs for
modelling permissions have been provided. Whereas pro-
hibitions are represented by global space absence to pre-
vent the execution of some activities. Unlike Declare,
BPMN-Q is able to handle violations for which a vio-
lation handling approach has been discussed in Awad
and Weske (2009). Finally, compensations and perdu-
rant obligations are not supported because of using
LTL as the underlying formalism to model compliance
rules.

6.6 SEAFLOWS

SeaFlows (Ly et al. 2010, 2012) is a compliance framework
that can be used for verification of semantics constraints. It
incorporates a graphical language which provides primitives
to capture process related complex business rules. These
compliance rules are modeled in the form of first-order
logic predicates equivalent and instantiable to compliance
rules graphs (CRG). SeaFlow employs a structural compli-
ance checking strategy for the verification of compliance
rules where node relations are verified against the imposed
constraints. The verification is done in three steps: in the
first step a set of structural templates based on the queries
on the relations of nodes in the process models is automat-
ically derived. Then, the process model is checked against
the derived templates to detect any non-compliant struc-
tural templates. The queried templates are then aggregated
and fed into the SeaFlows compliance module for fur-
ther compliance report in the last step. The compliance
results are based on the execution of traces of the pro-
cess models where a process model is fully compliant when
all the activities in the trace comply with the instantiated



Inf Syst Front (2016) 18:429–455 449

rule. Whereas a ‘No’ is returned to indicate rule viola-
tions when no activity in the execution trace satisfies the
rules. To model the compliance rules, the SeaFlows frame-
work adopts a compositional graph-based modelling for-
malism allowing the modelling of the typical antecedent–
consequence structure of rules. These graphs serve as place-
holder for the first order logic representation of the relevant
rules. Although SeaFlows is able to model achievement
obligations which stipulate the occurrence of some event in
the future by means of the occurrence pattern, the frame-
work is not able to capture other types of deontic effects,
e.g., punctual, maintenance, permission, and compensation
(see Table 4. Moreover, compensations and perdurant obli-
gations arising from the violation of the primary obligations
cannot be modeled because first-order logic is not suit-
able to reason about the normative requirements (Herrestad
1991).

6.7 COMPAS

The COMPAS framework (COMPAS 2008) is a compre-
hensive compliance governance framework which provides
an all-around compliance support for service-oriented-
architecture (SOA) based systems. The framework adopts
a model-driven development approach for designing com-
pliant processes/services using a view based modelling
framework and domain specific languages to model the
compliance concerns in process models (Daniel et al.
2009). For compliance checking, business processes are
annotated with compliance constraints in the form of (re-
usable) process fragments. These fragments underline the
required behaviour of the control-flow of a process model,
and are formalised using Linear Temporal Logic (LTL).
Then the annotated process fragments are assessed to val-
idate the compliant behaviour of the process models at
run-time using event logs. A protocol component evalu-
ates the generated event logs to check whether the pro-
cess model complies with the behavior described in the
attached compliance constraints process fragment. If the

monitoring protocol detects any non-compliant behaviour
it reports a violation and publishes it as a violation event.
More recently some advances in the COMPAS framework
(Elgammal et al. 2014) extended the modeling and rea-
soning support for the maintenance obligation, violation
detection and handling. Also, the framework is now able
to provide support for compensations obligations. Similar
to Declare framework (cf. Section 6.4), COMPAS also use
LTL as its underlying logic for modelling the normative
requirements.

6.8 Business process compliance auditing framework

The business process compliance auditing framework
(Ghose and Koliadis 2007) is a compliance checking frame-
work to verify business process compliance against regu-
latory requirements. A local context description of accu-
mulated effects is first defined by the analyst because the
framework evaluates compliance locally at parts of the
process where the effects are applicable. The effects accu-
mulation process involves the derivation of a set of scenario
labels at a point in the process (Hinge et al. 2009). Once the
effects of relevant activities are accumulated and annotated
to processes, the annotated processes are then encoded into
directed graphs called semantic process networks (SPNs).
These networks are used to verify properties related to
the execution ordering of activities using an algorithm that
exhaustively traverses all execution traces of the effect-
annotated process model to check the rule violations. Then
compliance results are reported (in boolean form) to indicate
whether a process model satisfies the applicable compliance
requirements or not.

The compliance requirements in this framework are
annotated onto process models in the form of parsimonious
effect-annotation. These effects annotations are parsed and
modelled using a state-based logic, namely, Computational
Tree Logic (CTL). Currently punctual, maintenance and
compensation, permission and perdurant obligations are not
modelled. It is not clear how the framework will model such

Table 4 Summary of normative requirements support in existing frameworks

Obligations

Framework Punctual Achievement Maintenance Compensation Permissions Perdurant Prohibitions Violations

PENELOPE − + − − − + − −
PCL + + + + + + + +
DECLARE − + − − − − + −
BPMN-Q − + − − − − + +
SEAFLOWS − + − − − − + +
COMPAS − + + + − − + +
AUDITING BPC − + − − − − − −



450 Inf Syst Front (2016) 18:429–455

normative requirements for compliance checking because
no conceptual and formal constructs have been provided.

6.9 Discussion

Table 4 shows the summary of the support provided by dif-
ferent compliance frameworks to model the different types
of normative requirements. A ‘+’ means that the framework
provides direct support for the requirement, and a ‘–’ means
that the notion is not captured.

From the results presented in Table 4, it is clear that the
vast majority of the evaluated CMFs is capable of support-
ing all types of norms and that only a fraction of normative
requirements is widely supported. For example, PENE-
LOPE is only able to support obligations and permissions.
It is unable to model other obligation modalities, and vio-
lations because Event Calculus is not suitable for reasoning
of legal constraints. Contrary to that, PCL supports all types
of norms because of the non-monotonic characteristics of
the formal logic it uses. The combination of defeasible
and deontic logic allows PCL to provide reasoning for
deontic modalities and violations especially for temporally
varying obligations, e.g., achievement obligations and their
persistence over time. However, its language is restricted
to literals. DECLARE, BPMN-Q and COMPAS are LTL
based frameworks, and only address ‘structural compliance’
where the tasks are defined by the constraint models. These
frameworks cannot capture the intuition of all types of obli-
gations, violations, and their compensations. DECLARE
can only support achievement obligations and prohibitions
while BPMN-Q can support achievement and prohibitions
only. Generally it is highly desirable that a formal language
for compliance covers most of the properties and proper-
ties of the environment of the unit under verification (e.g.,
normative requirements). In addition, it should also sup-
port the complex properties from simpler ones, but temporal
logic lacks such support because it has no con-
ceptual relative correspondence to the legal domain,
thus cannot expressively model the properties of the
norms.

The conceptual results portray somewhat a bleak picture
when it comes to see how existing frameworks represent
legal knowledge for compliance checking because none is
able to support all types of normative requirements. This
does not, however, necessarily mean that the framework
does not have the expressive power to model the notion, but
the concept is not considered or analysed in that framework,
including the case where the deontic effects cannot be faith-
fully represented. (Governatori 2015) provides an example
where not paying attention to legal reasoning principles
leads to results opposite to what legally trained profession-
als would conclude. This implies that adopting formalisms
that are non conceptually grounded in legal practice creates

framework that are unreliable and not suitable to be used in
real-life applications.

7 Related work

We divide the related work section into two parts. We first
discuss some papers that address the business process com-
pliance problem and propose various techniques to solve
the problem. We then describe some of the works which
reported their results on the evaluations of existing compli-
ance frameworks and position our work on the evaluation of
compliance frameworks among them.

7.1 Process compliance in SOA/Cloud computing

In the SOA and cloud-computing domains there is con-
siderable amount of approaches focusing on the compli-
ance management of SOA based workflows. Also, these
approaches offered several classifications of business rules
for compliance checking purposes. Accorsi et al. (2011)
classifies compliance rules from regulatory frameworks for
cloud-based compliant workflows. Spanning over nine cate-
gories their classification comprises three main rule classes
relevant to either the control-flow or data-flow of workflow
models. These rules are then formalised in Petri nets for
automated detection of non-compliant behaviour. Whereas
Rodrı̀guez et al. (2013) proposed a SOA-enabled compli-
ance management framework for auditing the compliance
of SOA based processes. The authors used compliance tem-
plates enabling the detection of non-compliant behaviour
of processes. These templates are annotated with the busi-
ness constraints written in first-order-logic. Elgammal et al.
(2010, 2012) provide a taxonomy of high level pattern-
based compliance constraints for business processes. The
compliance patterns are divided into three distinct classes
of patterns; namely atomic, composite, and timed. These
patterns are then formalised using temporal logic for gener-
ating the formal expressions for checking the compliance of
business processes before actual deployment. Orriëns et al.
(2003) dealt with business rules driven business processes as
service composition using various types of composition ele-
ments. The business rules considered in their framework are
related to the structure of a business process. Weigand et al.
(2011) provide a formal characterisation of behavioural
rules for business policy compliance for SOA which is again
useful for checking the structural compliance of business
processes. While Ramezani et al. (2012, 2013) identified 54
control-flow based compliance rules distributed over 10 cat-
egories and 15 temporal rules distributed over 7 categories
and proposed a compliance checking approach. These rules
are mainly intended for compliance checking of business
processes from structural and temporal aspects of a business



Inf Syst Front (2016) 18:429–455 451

process only. In addition, these studies do not address how
to model and reason about the normative component of
compliance. In contrast, the classification we provide can
be used both for structural and non-structural compliance
of business processes. Moreover, we argue that first order
logic is not suitable for modelling the legal norm as used by
Rodrı̀guez et al. (2013).

7.2 Existing compliance approaches

We provide a quick overview of other existing compliance
approaches not examined in Section 6.

Hee et al. (2010) propose a monitoring system for on-the-
fly auditing of a business process. The proposed monitoring
system is built either as labelled transition system with an
infinite state space, or as a coloured petri net with tokens
that grow unboundedly in size. The system operates in par-
allel to the business information system (BIS), and checks
whether the essential business rules are complied with or
interrupts the BIS to prevent the occurrence of a viola-
tion. From a set of business rules, an executable process
model (i.e. a labelled petri net) is generated using a busi-
ness rules language (BRL). The monitoring system tries
to execute the events of the generated process model. If
the monitor is able to execute the event the BIS oper-
ates without any interruptions, otherwise the violation of a
business rule is reported and BIS is interrupted from pro-
cessing the event any further. The proposed approach pro-
vides a good process monitoring mechanism for a deviant
behaviour, the scope of this approach is for modelling
as well as compliance checking support for all different
types of normative requirements because it only supports
a subset of business rules related to the authorisation and
resources.

Ramezani et al. (2013) report a conformance checking
approach based on Petri-Net patterns and alignments. The
authors created a repository of 55 control-flow based com-
pliance rules spanned over 15 distinct categories including
compliance rules for data, resource and organisational rules.
The collected rules were formalised in terms of Petri-
nets rather than logics. For conformance checking, they
employed alignment techniques from van der Aalst et al.
(2012) to analyse if the process is compliant with the for-
malised Petri-Net patterns. If the patterns are consistent with
the compliance rules, the execution behaviour is consistent.
However, if any deviant behaviour is observed a violation of
the rule is reported and the alignment shows the reason(s)
for the deviations. The approach is promising for checking
the compliance of control-flow related rules, but this only
provides the structural compliance of the rules. In addition,
conformance checking of business processes against the
business rules have different specifications and properties
from those of the legal domain. Thus the proposed approach

is not suitable for compliance checking of the normative
requirements.

The works by Elgammal et al. (2014); Mulo et al.
(2013) provide more comprehensive compliance check-
ing frameworks for business processes and incorporate
the whole spectrum of business process aspects. Mulo
et al. (2013) proposes a domain specific language (DSL)
for event-based compliance monitoring for process driven
SOA. The DSL implements the specifications of compli-
ance directives imposed on the business processes. Whereas
Elgammal et al. (2014) propose a compliance request lan-
guage (CRL) grounded on linear temporal logic for design
time compliance checking. Their language includes the
series of compliance requirements patterns for all aspects
of a business process. Although these approaches signif-
icantly improve the compliance checking for the norma-
tive requirements yet have are not able to fully cover all
types of legal norms. For example, the CRL is still not
able to model a punctual obligation and the obligations
perduring after the violations whereas, with the DSL punc-
tual, maintenance, compensation and obligations cannot
be modeled.

Jiang et al. (2013, 2014) proposed a consistency and
compliance-checking framework (CCCF) using the norms
nets (NN) and colored petri nets (CPNs). The NN are used to
formalise the regulatory rules and their relationship whereas
the CPNs semantics implement the compliance checker
toolbox. The CCCF framework provides the information
whether a set of regulations is consistent and whether the
business processes comply with the imposed regulations.
Although the framework is able to provide a reasonable
degree of automated support for verifying the compliance
to regulation, however the transformation of the legal rules
into NNs is interpreted primarily manually. In addition,
from a business process perspective, the transformation of
the model event sequences modeling the behaviour of the
agent i.e., trace generation is also manual making the pro-
posed framework less effective. Another downside of the
framework is that there is no mechanism for modeling
the temporal constraints in CPNs thus the compliance to
regulation with temporal modality cannot be verified.

Letia and Groza (2013) reports a logic-based model
checking approach for compliance verification of the inte-
grated business processes models. The proposed approach
extends the norm temporal logic of Ågotnes et al. (2007)
and introduced obligations and permissions operators into
the temporal logic to model the various compliance require-
ments from HACCP standard12 in the food safety domain.
The compliance checking is performed by a four steps

12The Hazard Analysis Critical Control Point System, available
at http://www.standards.org/standards/listing/haccp, retrieved 20 Feb
2014

 http://www.standards.org/standards/listing/haccp


452 Inf Syst Front (2016) 18:429–455

mechanism, where in the first step the domain knowledge
i.e., the normative requirements, is translated into Norms
Temporal Logic and Attribute Language with Complement
(NTL-ALC) logic, then a WF-net using a Kripke structure
is generated with states which are labeled with the all nor-
mative requirements are specified in the form of normative
formula f pertaining to the state. The each formluma f in
the state in the WF-net is verified if the formula f represent-
ing the norm holds in the state. If f does not hold the state
violating the norm is added to the set of breached states. The
proposed approach allows the integration of subsumption-
based reasoning with the possibility to check the compliance
of various types of norms. By the virtue of the extended
logic NTL-ALC, the proposed approach allows the integra-
tion of abstract and the concrete business processes making
it more explicit in representing the compliance requirements
into business process models. This approach is very close to
our approach presented in this paper, however it has limited
scope in providing the modeling and reasoning support for
all obligations classes discussed in Section 3.

Maggi et al. (2011) examine a declarative conformance
checking framework which models the business knowledge
defined in terms of constraints using a graphical language
to model the flow of business interactions. The framework
allows mandatory and optional constraints and a process
instance is only active when there is no violation of the
mandatory constraints and all the constraints are satisfied at
the end of the instance execution. The business constraints
in this framework are modelled by means of declarative
expressions which are grouped as existence, relations, and
choice and negative constraints. These constraints corre-
spond to the LTL expressions which provide semantics to
the graphical notation. The majority of these constraints
are used to express obligations and prohibitions only.
Whereas not all the classificatory classes of the our pro-
posed classification model can be modeled using their LTL
expressions.

7.3 Existing evaluation frameworks

Becker et al. (2012) offer a literature survey based on
the generalisability and applicability of business pro-
cess compliance frameworks. The evaluation is based on
the reported implementation results from the surveyed
frameworks, while El Kharbili (2012) compares the func-
tional and non-functional capabilities of regulatory com-
pliance management (RCM) solutions from a BPM per-
spective using a large set of evaluation criteria. Similarly,
Cabannilas et al. (2010) study various frameworks using
a four point criteria including the study of modelling lan-
guages that are used to model business processes and
rules. Whereas Fellmann and Zasada (2014) surveyed 84
business process compliance approaches from their scope,

phases of the process lifecycle and the trends of compli-
ance research in variety of domains. The authors classified
the existing compliance approaches using a four dimen-
sions criteria. Elgammal et al. (2010) report a comparative
analysis between formal languages to analysis how the com-
pliance requirements are specified for automatic verification
while (Turki and Bjekovic-Obradovic 2010) investigate the
practice of regulation analysis and the approaches aiming
to achieve and maintain regulatory compliance of given
normative systems from an information systems and ser-
vices perspective. Bonatti et al. (2004) study the existing
approaches to logic and rule-based systems behaviour spec-
ifications from business and security policies rules to iden-
tify the possible usage for rule-based policies in a semantic
web context. Addressing the issue of how to compare
and evaluate compliance monitoring approaches, Ly et al.
(2013) report on an evaluation of five frameworks from var-
ious domains using a set of core compliance management
functionalities derived from the compliance literature and
various case studies. Primarily their evaluation has a limited
scope and lacks generalisability because it covers compli-
ance monitoring frameworks only and excludes design-time
compliance checking frameworks, which is a preferable
compliance checking method these days.

Our evaluation is complementary to and different
fromthese studies because we primarily evaluated existing
CMFs to examine what they can do in terms of provid-
ing round-up compliance, and what constructs they pro-
vide to model different types of normative requirements.
In addition, using the classification of normative require-
ments we also examined whether or not existing CMFs
can provide reasoning support for all types of normative
requirements.

8 Conclusions and outlook

Legal norms have been studies from others fields e.g.
Law and Legal reasoning but in the areas of Business
Process Management and Service-Oriented Architecture
(SOA) less attention has been paid. Since SOA enabled
business process are subject to strict regulations for effec-
tive and transparent operations, in this paper we examine
the various types of normative requirements for determin-
ing whether a business process complies with a normative
documents (where normative document can be understood
in a very broad sense, ranging from policies internal to
an organisation, to best practice policies, to statutory acts).
Primarily, most of the approaches have focused on com-
pliance rules which are useful from a structural compli-
ance of business processes. Also, not many studies address
how to model and reason about the normative component
of compliance.



Inf Syst Front (2016) 18:429–455 453

Contrary to that, in the presented abstract framework,
we studied the normative component of the business pro-
cess compliance problem and provided a classification
model of normative requirements, their formal semantics
in terms of validity of a norm, what constitutes a vio-
lation, and the effects of the violations on the business
processes. This analysis done in the framework was based
on the idea of (possible) executions of a business process.
In addition, for each type of the normative requirements
we have provided concrete examples from clauses of statu-
tory/legislative acts corresponding to the requirements. With
formalised compliance rules, we can specify the different
types of rules describing various deontic modalities e.g.
obligations, permissions etc. As result, business processes
can be annotated with the rules for compliance check-
ing purposes. This means that any system (process-driven
SOA or any other) for checking whether real life business
processes are compliant with real life regulations have to
handle all of such normative requirements. To validate the
effectiveness of our proposed classification of normative
requirements and compliance checking approach, we used
a complaint handling process and other case examples; and
practically demonstrated how the compliance of business
processes can be checked annotated with the compliance
rules.

The reported framework can be used in a number of
ways: (1) it can be used to compare different systems, log-
ics and frameworks for business process compliance. We
have used the classification model to check the concep-
tual foundations of existing compliance frameworks, and
plan to carry out further investigations, (2) it can be used
to study the (formal) properties of the problem of check-
ing whether a business process is compliant. A first step
in this direction is the work by Colombo Tosatto et al.
(2014) proving that whether a structured business process
(without loops) complies with a set of achievement obli-
gations is already an NP-complete problem. Compliance is
conceived as a type of soundness property of process, and
thus the result must be compared to checking the sound-
ness of process, and for the same class of processes (e.g.,
structured without loops) this can be done in linear time
(see, Kiepuszewski et al. (2000)). This opens another area
where the framework can be applied, namely to identify
computationally tractable subclasses of the business process
compliance problem. Since in presenting this framework we
did not restrict ourselves to any particular formalism, the
framework is generic in the sense that any formal language
could fit in the framework despite the fact that we grounded
it on deontic logic in mind. To validate this fact whether
the classes of normative requirements and formal semantics
presented in this work can be efficiently modeled with other
formalisms we proposed a Event-Calculus based norms
modeling framework in Hashmi et al. (2014). We intend to

continue this work using other formal languages e.g., first-
order-logic, temporal logic etc., for more comprehensive
validation.

Acknowledgments This paper revises and extends ASSRI’13
(Hashmi et al. 2013) and AP-BPM 2013 (Hashmi and Governatori
2013) conference papers respectively. NICTA is funded by the Aus-
tralian Government by the Department of Communication and the
Australian Research Council through the ICT center of Excellence
program.

References

Accorsi, R., Lowis, L., & Sato, Y. (2011). Automated Certifi-
cation for Compliant Cloud-based Business Processes. Busi-
ness & Information Systems Engineering, 3(3), 145–154.
doi:10.1007/s12599-011-0155-7.

Ågotnes, T., van der Hoek, W., Rodrı́guez-Aguilar, J.A., Sierra, C.,
& Wooldridge, M. (2007). On the logic of normative systems. In
Normative multi-agent systems, 18.03. - 23.03.2007. http://drops.
dagstuhl.de/opus/volltexte/2007/921.

Awad, A. (2010). A compliance management framework for business
process models. PhD thesis, HPI, Potsdam University, Germany.

Awad, A., & Weske, M. (2009). Visualisation of compliance violations
in business process models. In 5th workshop on business process
intelligence (Vol. 9, pp. 182–193).

Awad, A., Decker, G., & Weske, M. (2008). Efficient compliance
checking using BPMN-Q and temporal logic. In BPM, LNCS (pp.
326–341). Springer.

Awad, A., Weidlich, M., & Weske, M. (2011). Visually specify-
ing compliance rules and explaining their violations for busi-
ness processes. Journal of Visual Languages & Computing, 22
(1), 30–55.

Becker, J., Delfmann, P., Eggert, M., & Schwittay, S. (2012). Gen-
eralizability and applicability of model-based business process
compliance-checking approaches – a state-of-the-art analysis and
research Roadmap. BuR - Business Research Journal, 5(2), 221–
247.

Bonatti, P.A., Shahmehri, N., Duma, C., Olmedilla, D., Nejdl, W.,
Baldoni, M., Baroglio, C., Martelli, A., Coraggio, P., Antoniou,
G., Peer, J., & Fuchs, N.E. (2004). Rule-based policy speci-
fication: state of the art and future work. REWERSE Project
Report-i2-D1.

Cabannilas, C., Resinas, M., & Ruiz-Cortes, A. (2010). Hints on how
to face business process compliance. In III Taller de Procesos de
Negocio e Ingenieria de Servicios PNIS10 in JISBD10 (Vol. 4, pp.
26–32).

Colombo Tosatto, S., Governatori, G., & Kelsen, P. (2014). Business
process regulatory compliance is hard. IEEE Transactions on Ser-
vices Computing PP(99), 1–1. doi:10.1109/TSC.2014.2341236.

COMPAS (2008). Compliance driven models, languages, and archi-
tectures for services. In 7th framework programme for ICT.

Daniel, F., Casati, F., D’Andrea, V., Mulo, E., Zdun, U., Dustdar, S.,
Strauch, S., Schumm, D., Leymann, F., Sebahi, S., de Marchi,
F., & Hacid, M.S. (2009). Business compliance governance in
service-oriented architectures. In International conference on
advanced information networking and applications, 2009. AINA
’09 (pp. 113–120).

DECLARE (2010). Declarative process models. http://www.win.tue.
nl/declare/.

Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and
analysis of business process models in BPMN. Information and
Software Technology, 50(12), 1281–1294.

http://dx.doi.org/10.1007/s12599-011-0155-7
http://drops.dagstuhl.de/opus/volltexte/2007/921
http://drops.dagstuhl.de/opus/volltexte/2007/921
http://dx.doi.org/10.1109/TSC.2014.2341236
http://www.win.tue.nl/declare/
http://www.win.tue.nl/declare/


454 Inf Syst Front (2016) 18:429–455

El Kharbili, M. (2012). Business process regulatory compliance
management solution frameworks: a comparative evaluation. In
APCCM 2012, CRPIT (Vol. 130, pp. 23–32).

Elgammal, A., Turetken, O., Heuvel, W.J., & Papazoglou, M. (2010).
Root-cause analysis of design-time compliance violations on the
basis of property patterns. In P. Maglio, M. Weske, J. Yang, & M.
Fantinato (Eds.), Service-oriented computing, lecture notes in com-
puter science. (Vol. 6470, pp. 17–31). Berlin Heidelberg: Springer.
doi:10.1007/978-3-642-17358-5 2.

Elgammal, A., Turetken, O., van den Heuvel, W.J., & Papazoglou, M.
(2011). On the formal specification of regulatory compliance: a
comparative analysis. In Proceedings of ICSOC’10 (pp. 27–38).

Elgammal, A., Oktay, T., & Heuvel, W.J. (2012). Using patterns
for the analysis and resolution of compliance violations. Inter-
national Journal of Cooperative Information Systems, 21(31).
doi:10.1142/S0218843012400023.

Elgammal, A., Turetken, O., van den Heuvel, W.J., & Papazoglou, M.
(2014). Formalizing and applying compliance patterns for busi-
ness process compliance. Software & Systems Modeling, 1–28.
doi:10.1007/s10270-014-0395-3.

Fellmann, M., & Zasada, A. (2014). State-of-the-art of business pro-
cess compliance approaches. In 22st European conference on
information systems, ECIS 2014, Tel Aviv, Israel, June 9-11, 2014.
http://aisel.aisnet.org/ecis2014/proceedings/track06/8.

Gambini, M., Rosa, M., Migliorini, S., & Hofstede, A.H.M.
(2011). Automated error correction of business process models.
In S. Rinderle-Ma, F. Toumani, & K. Wolf (Eds.), Business process
management, LNCS (Vol. 6896, pp. 148–165). Berlin Heidelberg:
Springer.

Ghose, A., & Koliadis, G. (2007). Auditing business process compli-
ance. In B. Krämer, K.J. Lin, & P. Narasimhan (Eds.), Service-
oriented computing (ICSOC 2007), LNCS (Vol. 4749, pp. 169–
180). New York: Springer. doi:10.1007/978-3-540-74974-5 14.

Goedertier, S., & Vanthienen, J. (2006). Designing compliant busi-
ness processes with obligations and permissions. In J. Eder &
S. Dustdar (Eds.), Business process management workshops, lec-
ture notes in computer science (Vol. 4103, pp. 5–14). Berlin
Heidelberg: Springer. doi:10.1007/11837862 2.

Gordon, T.F., Governatori, G., & Rotolo, A. (2009). Rules and norms:
requirements for rule interchange languages in the legal domain.
In RuleML 2009, LNCS (Vol. 5858, pp. 282–296). Springer.

Governatori, G. (2005). Representing business contracts in RuleML.
International Journal of Cooperative Information Systems, 14(2-
3), 181–216. doi:10.1142/S0218843005001092.

Governatori, G. (2015). Thou Shalt is not you will. In Proceedings of
the 15th international conference on artificial intelligence and law
(ICAIL 2015). ACM. doi:10.1145/2746090.2746105.

Governatori, G., & Rotolo, A. (2010a). A conceptually rich model
of business process compliance. In Proceedings of APCCM ’10.
(Vol. 110, pp. 3–12).

Governatori, G., & Rotolo, A. (2010b). Norm compliance in
business process modeling. In RuleML 2010: 4th inter-
national web rule symposium (pp. 194–209). Springer.
doi:10.1007/978-3-642-16289-3 17.

Governatori, G., & Sadiq, S. (2009). The journey to business pro-
cess compliance. In Handbook of research on business process
management, IGI Global (pp. 426–454).

Governatori, G., Hoffmann, J., Sadiq, S.W., & Weber, I. (2008).
Detecting regulatory compliance for business process models
through semantic annotations. In Business process management
workshops’08 (pp. 5–17).

Hashmi, M., & Governatori, G. (2013). A methodological evalua-
tion of business process compliance management frameworks. In
M. Song, M. Wynn, & J. Liu (Eds.), Asia pacific business pro-
cess management, LNBIP (Vol. 159, pp. 106–115). Switzerland:
Springer.

Hashmi, M., Governatori, G., & Wynn, M.T. (2012). Business pro-
cess data compliance. In Rules on the web: research and appli-
cations - 6th international symposium, RuleML 2012, Mont-
pellier, France, August 27-29, 2012. Proceedings (pp. 32–46).
doi:10.1007/978-3-642-32689-9 4.

Hashmi, M., Governatori, G., & Wynn, M.T. (2013). Normative
requirements for business process compliance. In Service research
and innovation - third Australian Symposium, ASSRI 2013, Sydney,
NSW, Australia, November 27-29, 2013, revised selected papers
(pp. 100–116). doi:10.1007/978-3-319-07950-9 8.

Hashmi, M., Governatori, G., & Wynn, M.T. (2014). Modeling obli-
gations with event-calculus. In Rules on the web. From theory
to applications - 8th International Symposium, RuleML 2014,
Prague, Czech Republic, August 18-20, 2014. Proceedings (pp.
296–310). doi:10.1007/978-3-319-09870-8 22.

Hee, K., Hidders, J., Houben, G.J., Paredaens, J., & Thiran, P.
(2010). On-the-fly auditing of business processes. In K. Jensen,
S. Donatelli, & M. Koutny (Eds.), Transactions on Petri nets and
other models of concurrency IV, LNCS (Vol. 6550, pp. 144–173).
New York: Springer.

Herrestad, H. (1991). Norms and formalization. In: ICAIL’91, ACM,
(pp. 175–184). doi:10.1145/112646.112667.

Hinge, K., Ghose, A., & Koliadis, G. (2009). Process SEER:
A Tool for Semantic Effect Annotation of Business Pro-
cess Models. In EDOC ’09. IEEE international (pp. 54–63).
doi:10.1109/EDOC.2009.24.

Hoffmann, J., Weber, I., & Governatori, G. (2012). On compliance
checking for clausal constraints in annotated process models.
Information Systems Frontiers, 14(2), 155–177.

Jiang, J., Dignum, V., Aldewereld, H., Dignum, F., & Tan, Y.H.
(2013). Norm compliance checking. In Proceedings of the 2013
international conference on autonomous agents and multi-agent
systems, international foundation for autonomous agents and mul-
tiagent systems, Richland, SC, AAMAS ’13 (pp. 1121–1122).
http://dl.acm.org/citation.cfm?id=2484920.2485101.

Jiang, J., Aldewereld, H., Dignum, V., Wang, S., & Baida, Z. (2014).
Regulatory Compliance Of Business Processes. AI & SOCIETY,
(pp. 1–10). doi:10.1007/s00146-014-0536-9.

Kiepuszewski, B., Hofstede, A.H.Mt., & Bussler, C. (2000). On struc-
tured workflow modeling. In Proceedings of the 12th international
conference on advanced information systems engineering, CAiSE
’00 (pp. 431–445). London: Springer.

Letia, I.A., & Groza, A. (2013). Compliance checking of integrated
business processes. Data & Knowledge Engineering, 87(0), 1–18.
doi:10.1016/j.datak.2013.03.002.

Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Goeser, K., Reichert, M.,
& Dadam, P. (2010). SeaFlows toolset - compliance verification
Made Easy. In CAiSE’10 Demos.

Ly, L.T., Rinderle-Ma, S., Göser, K., & Dadam, P. (2012). On enabling
integrated process compliance with semantic constraints in pro-
cess management systems. Information Systems Frontiers, 14(2),
195–219.

Ly, L.T., Maggi, F.M., Montali, M., Rinderle, S., & vanvan der Aalst,
W. (2013). A framework for the systematic comparison and eval-
uation of compliance monitoring approaches. In Proceeding of
EDOC.

Maggi, F., Montali, M., Westergaard, M., & van der Aalst, W. (2011).
Monitoring business constraints with linear temporal logic: an
approach based on coloured automata. In BPM, LNCS 6896 (pp.
132–147). Springer.

Mulo, E., Zdun, U., & Dustdar, S. (2013). Domain-specific lan-
guage for event-based compliance monitoring in process-driven
soas. Service Oriented Computing and Applications, 7(1), 59–73.
doi:10.1007/s11761-012-0121-3.

Murata, T. (1989). Petri nets: properties, analysis and applications.
Proceedings of the IEEE, 77(4), 541–580.

http://dx.doi.org/10.1007/978-3-642-17358-5_2
http://dx.doi.org/10.1142/S0218843012400023
http://dx.doi.org/10.1007/s10270-014-0395-3
http://aisel.aisnet.org/ecis2014/proceedings/track06/8
http://dx.doi.org/10.1007/978-3-540-74974-5_14
http://dx.doi.org/10.1007/11837862_2
http://dx.doi.org/10.1142/S0218843005001092
http://dx.doi.org/10.1145/2746090.2746105
http://dx.doi.org/10.1007/978-3-642-16289-3_17
http://dx.doi.org/10.1007/978-3-642-32689-9_4
http://dx.doi.org/10.1007/978-3-319-07950-9_8
http://dx.doi.org/10.1007/978-3-319-09870-8_22
http://dx.doi.org/10.1145/112646.112667
http://dx.doi.org/10.1109/EDOC.2009.24
http://dl.acm.org/citation.cfm?id=2484920.2485101
http://dx.doi.org/10.1007/s00146-014-0536-9
http://dx.doi.org/10.1016/j.datak.2013.03.002
http://dx.doi.org/10.1007/s11761-012-0121-3


Inf Syst Front (2016) 18:429–455 455

Weigand, H., van den Heuvel, W.J., & Hiel, M. (2011). Business pol-
icy compliance in service-oriented systems. Information Systems,
36(4), 791–807.

Wen, L., Wang, J., van der Aalst, W.M., Huang, B., & Sun, J.
(2010). Mining process models with prime invisible tasks. Data &
Knowledge Engineering, 69(10), 999–1021.

Mustafa Hashmi is a graduate researcher with NICTA Queensland
Research Laboratory, Australia. Mustafa received the Bachelor Degree
(CS) in 2000 from Pakistan and Masters Degree (IT) in 2004 from
Malaysia. Currently, he is pursuing his PhD at Queensland University
of Technology (QUT), Australia. His research interests are in the area
of automation and analysis of business processes, business process
compliance management,normative systems, legal knowledge repre-
sentation, defeasible Logic and defeasible reasoning, non-monotonic
reasoning and their applications to solve complex problems in large
scale enterprises. Since 2011, Mustafa is a member of the technical
committee on OASIS Legal RuleML.

Prof. Guido Governatori received the PhD degree in legal informat-
ics from the University of Bologna, Italy. He is a senior principal
researcher in the Software Systems Research Group at NICTA, where
he leads the research activities on business process compliance. He is
also an adjoint professor in the BPM Group at Queensland Univer-
sity of Technology (QUT), Australia. His research interests include
defeasible reasoning, modal deontic and non-classical logics and their
applications to normative reasoning, agent systems, and business pro-
cess modelling. Prof. Governatori is an editor of the deontic logic
corner of the Journal of Logic and Computation and the agent and
norms section of Artificial Intelligence and Law journal.

Dr. Moe Thandar Wynn is a senior lecturer within the Business Pro-
cess Management Discipline at Queensland University of Technology
(QUT), Brisbane, Australia. She holds a PhD in the area of work-
flow management from Queensland University of Technology (2007).
Her research interests include: Business process modelling, process
automation, business process improvement, and process mining. She
has over 60 publications in journals and international conferences in
the BPM area. Dr. Wynn has secured over 2.4 Million AUD dollars in
competitive grant funding as a chief investigator for 6 grants in the last
five years. Dr. Wynn is a member of IEEE taskforce on Process Min-
ing and a working group member for IEEE standardization of XES log
standard. Since 2011, she has been involved as a researcher within the
NICTA Queensland Research Laboratory.

Orriëns, B., Yang, J., & Papazoglou, M.P. (2003). A framework
for business rule driven service composition. In B. Benatallah,
& M.-C. Shan (Eds.), Technologies for e-services, lecture notes
in computer science (Vol. 2819, pp. 14–27). Berlin Heidelberg:
Springer. doi:10.1007/978-3-540-39406-8 2.

Ouyang, C., Dumas, M., Breutel, S., & ter Hofstede A.H.M.
(2006). Translating Standard Process Models to BPEL. In CAiSE
(pp. 417–432).

Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
& Mendling, J. (2009). From business process models to process-
oriented software systems. ACMTrans Softw EngMethodol, 19(1).

Pesic, M., & van der Aalst, W.M.P. (2006). A declarative approach
for flexible business processes management. In J. Eder, & S. Dust-
dar (Eds.), Business process management workshops, lecture notes
in computer science (Vol. 4103, pp. 169–180). Berlin Heidelberg:
Springer. doi:10.1007/11837862 18.

Ramezani, E., Fahland, D., van der Werf, J., & Mattheis, P. (2012).
Separating compliance management and business process man-
agement. In F. Daniel, K. Barkaoui, & S. Dustdar (Eds.), Business
process management workshops, lecture notes in business infor-
mation processing (Vol. 100, pp. 459–464). Berlin Heidelberg:
Springer. doi:10.1007/978-3-642-28115-0 43.

Ramezani, E., Fahland, D., van Dongen, B.F., & van der Aalst,
W.M.P. (2013). Diagnostic information for compliance checking
of temporal compliance requirements. In CAiSE (pp. 304–320).

Rodrı̀guez, C., Schleicher, D., Daniel, F., Casati, F., Leymann, F., &
Wagner, S. (2013). Soa-enabled compliance management: instru-
menting, assessing, and analyzing service-based business pro-
cesses. Service Oriented Computing and Applications, 7(4), 275–
292. doi:10.1007/s11761-013-0129-3.

Sadiq, S., Governatori, G., & Namiri, K. (2007). Modeling control
objectives for business process compliance. In Proceedings of
BPM’07 (pp. 149–164). Springer. http://portal.acm.org/citation.
cfm?id=1793114.1793130.

Sartor, G. (2005). Legal reasoning: a cognitive approach to the law.
Springer.

Turki, S., & Bjekovic-Obradovic, M. (2010). Compliance in e-
government service engineering: state-of-the-art. In Exploring
services science, LNBIP (pp. 270–275). Springer.

van der Aalst, W.M.P. (1998). The Application of Petri Nets to Work-
flow Management. Journal of Circuits, Systems, and Computers,
8(1), 21–66.

van der Aalst, W.M.P. (2000). Workflow verification: finding control-
flow errors using petri-net-based techniques. In W.M.P. van der
Aalst, J. Desel, & A. Oberweis (Eds.), Business process manage-
ment: models, techniques, and empirical studies.

van der Aalst, W., Adriansyah, A., & van Dongen, B. (2012). Replay-
ing history on process models for conformance checking and
performance analysis. Wiley Int Rev Data Min and Knowl Disc,
2(2), 182–192.

http://dx.doi.org/10.1007/978-3-540-39406-8_2
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1007/978-3-642-28115-0_43
http://dx.doi.org/10.1007/s11761-013-0129-3
http://portal.acm.org/citation.cfm?id=1793114.1793130
http://portal.acm.org/citation.cfm?id=1793114.1793130

	Normative requirements for regulatory compliance: An abstract formal framework
	Abstract
	Introduction
	Formal foundations of business processes
	Normative requirements
	Modelling obligations
	Business process compliance

	Running example: a complaint handling process
	Compliance checking approach
	Compliance checking of the complaint handling process
	Evaluation

	Conceptual evaluation of existing business process compliance frameworks
	Evaluation approach
	PENELOPE
	Process Compliance Language (PCL)
	DECLARE
	Business Process Modeling Notation-Query (BPMN-Q)
	SEAFLOWS
	COMPAS
	Business process compliance auditing framework
	Discussion

	Related work
	Process compliance in SOA/Cloud computing
	Existing compliance approaches
	Existing evaluation frameworks

	Conclusions and outlook
	Acknowledgments
	References


