Inf Syst Front (2016) 18:413-428
DOI 10.1007/510796-015-9557-2

Smart CloudBench—A framework for evaluating cloud

infrastructure performance

Mohan Baruwal Chhetri’ - Sergei Chichin' - Quoc Bao Vo' - Ryszard Kowalczykl’2

Published online: 26 April 2015
© Springer Science+Business Media New York 2015

Abstract Cloud migration allows organizations to benefit
from reduced operational costs, improved flexibility, and
greater scalability, and enables them to focus on core business
goals. However, it also has the flip side of reduced visibility.
Enterprises considering migration of their IT systems to the
cloud only have a black box view of the offered infrastructure.
While information about server pricing and specification is
publicly available, there is limited information about cloud
infrastructure performance. Comparison of alternative cloud
infrastructure offerings based only on price and server speci-
fication is difficult because cloud vendors use heterogeneous
hardware resources, offer different server configurations, ap-
ply different pricing models and use different virtualization
techniques to provision them. Benchmarking the performance
of software systems deployed on the top of the black box
cloud infrastructure offers one way to evaluate the perfor-
mance of available cloud server alternatives. However, this
process can be complex, time-consuming and expensive,
and cloud consumers can greatly benefit from tools that can
automate it. Smart CloudBench is a generic framework and
system that offers automated, on-demand, real-time and cus-
tomized benchmarking of software systems deployed on
cloud infrastructure. It provides greater visibility and insight
into the run-time behavior of cloud infrastructure, helping con-
sumers to compare and contrast available offerings during the
initial cloud selection phase, and monitor performance for ser-
vice quality assurance during the subsequent cloud consump-
tion phase. In this paper, we first discuss the rationale behind

>< Mohan Baruwal Chhetri
mchhetri@swin.edu.au

Faculty of Science, Engineering and Technology, Swinburne
University of Technology, Victoria 3122, Australia

Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

our approach for benchmarking the black box cloud infrastruc-
ture. Then, we propose a generic architecture for benchmarking
representative applications on the heterogeneous cloud infra-
structure and describe the Smart CloudBench benchmarking
workflow. We also present simple use case scenarios that high-
light the need for tools such as Smart CloudBench.

Keywords Cloud performance benchmarking -
Infrastructure-as-a-Service - Automated benchmarking -
Cloud bench

1 Introduction

In recent years there has been an exponential growth in the num-
ber of vendors offering Infrastructure-as-a-Service (IaaS), with a
corresponding increase in the number of enterprises looking to
migrate some or all of their IT systems to the cloud. The IaaS
model typically involves the on-demand, over-the-internet provi-
sioning of virtualized computing resources such as memory, stor-
age, processing and network using a pay-as-you-go model.
While IaaS consumers have the choice of operating system and
deployed software stacks, they have no control over the under-
lying cloud infrastructure. laaS vendors tend to use varying com-
binations of CPU, memory, storage and networking capacity to
offer a variety of servers and use different virtualization tech-
niques to provision them. As such, when consumers request
and receive virtual machines from cloud providers, they perceive
them as black-boxes whose run-time behavior is not known.
Given this black-box view, the only way to objectively compare
different types of cloud servers is by benchmarking the perfor-
mance of software systems running on top of them.

One way of doing this is by deploying in-house software
systems and applications on cloud infrastructure and carrying
out rigorous performance tests against them to evaluate their
performance under different conditions. However, this ap-
proach can be complex, time-consuming and expensive, and

@ Springer

414

Inf Syst Front (2016) 18:413-428

small and medium businesses may not possess the time, re-
sources and in-house expertise to do a thorough and proactive
evaluation in this manner. A more practical alternative is to
benchmark representative applications' against representa-
tive workloads to estimate the performance of different types
of applications when deployed on cloud infrastructure. The
benchmarking results can then be used to estimate the perfor-
mance on the different infrastructure offerings and to obtain
valuable insights into the difference in performance across
providers. By combining benchmarking results with server
pricing and specifications, enterprises can objectively com-
pare the alternative offerings from competing providers in
the terms of performance and cost trade-offs. Benchmarking
representative applications is useful even if the representative-
ness of the benchmark for a particular application domain is
questionable, or customer workloads do not match the work-
loads represented by the benchmark, because the test results
still enable more-informed comparison of cloud server offer-
ings from different providers.

Smart CloudBench (Baruwal Chhetri et al. 2013a, b, 2014)
is a provider-agnostic framework that assists prospective cloud
consumers to directly evaluate and compare cloud infrastruc-
ture performance by running representative benchmark appli-
cations on them. It enables the evaluation of infrastructure per-
formance in an efficient, quick and cost-effective manner,
through the automated setup, execution and analysis of the
benchmark applications on multiple IaaS clouds under custom-
ized workloads. Using Smart CloudBench, decision makers
can make more informed decisions during the provider selec-
tion phase by evaluating available alternatives based on their
price, specification and performance. Even after selecting a
particular cloud provider and migrating in-house applications
to the cloud, organizations can continue to use Smart
CloudBench to benchmark the infrastructure performance on
an on-going basis to ensure quality assurance. Benchmark tests
conducted on public cloud infrastructure using Smart
CloudBench show that higher prices do not necessarily trans-
late to better or more consistent performance and highlight the
need for tools such as Smart CloudBench to provide greater
visibility into cloud infrastructure performance.

The key features of Smart CloudBench that differentiate it
from other cloud evaluation tools include:

* Direct comparison of cloud servers. Smart CloudBench
enables the direct comparison of different cloud servers
in an objective and consistent manner. This is made pos-
sible by deploying the exact same application stack on all

' Some example representative applications include TPC-W
for a transactional e-commerce web application (TPCW
2003) and Media Streaming benchmark application for media
streaming applications such as Netflix or Yuku (Ferdman et.al.
2012)

@ Springer

cloud servers being tested. The application performance
and the underlying resource consumption are then mea-
sured under custom workloads and the cloud infrastruc-
ture performance is estimated from the measured metrics.

* Cost, effort and time efficiency. Since the cloud servers
being benchmarked can be instantiated and terminated on-
demand and in a fully automated manner, Smart
CloudBench can help achieve significant time and cost
savings. The provided support for scheduled testing also
improves cost, effort and time efficiency and eliminates
errors that can arise due to manual setup and execution of
tests.

* Greater insight into cloud performance. Smart
CloudBench provides greater insight into cloud server
performance by measuring both the benchmark applica-
tion performance e.g., response time, throughput, and er-
ror rate, and the corresponding resource consumption
e.g., CPU usage and memory usage. This can potentially
help identify (a) over-provisioned and under-performing
servers, (b) resource consumption patterns under different
workloads, (c) resource constraints that could be affecting
application performance, and (d) stability and reliability of
cloud infrastructure.

+ Initial service selection and ongoing quality assurance.
Smart CloudBench can assist cloud consumers with ser-
vice selection during the initial migration stage when they
are evaluating and comparing the laaS offerings from
competing providers, and with performance monitoring
for service quality assurance during the subsequent cloud
consumption phase. This is to ensure that the performance
of the infrastructure offerings from the selected vendor
does not deteriorate over time.

* Generic and modular design. Smart CloudBench uses a
generic and modular design which allows it to be easily
extended to support new representative benchmark appli-
cations and to benchmark the performance of new cloud
infrastructure.

2 Primer on benchmarking cloud infrastructure
performance

Benchmarking is a traditional approach for verifying that the
performance of an IT system meets the expected levels and to
facilitate the informed procurement of computer systems. In
the context of cloud infrastructure, the key objective of per-
formance benchmarking is to compare the IaaS offerings from
competing providers based on price and performance and to
determine the price-performance tradeoffs. In this Section, we
give a brief overview of performance benchmarking of cloud
infrastructure.

Inf Syst Front (2016) 18:413-428

415

2.1 Benchmarking elements

There are three key elements to any benchmarking process (a)
System Under Test (SUT) which refers to the system whose
performance is being evaluated, (b) workload, which refers to
the operational load that the SUT is subjected to, and (c) Test
Agent (TA), which is the test infrastructure used to carry out
the benchmark tests (i.e., generate the workload). In the con-
text of Smart CloudBench, SUT is the virtual cloud server
whose performance we are interested in. From the user per-
spective, it is a black box, whose operational details are not
exposed and the evaluation is based only on its output. TA can
either be deployed on cloud infrastructure or on traditional
hosts, although the cloud is perfectly suited to deliver scalable
test tool environments which are necessary for the different
types of performance tests.

2.2 Benchmark classification

There are two broad categories of benchmarks that can be used
to test the performance of cloud infrastructure — micro
benchmarks and macro benchmarks. Micro benchmarks focus
on the performance of specific components of cloud infrastruc-
ture such as memory, cpu or disk. Examples include
Geekbench, (http://www.primatelabs.com/geekbench/),
10zone (http://www.iozone.org), Iperf (http://iperf.
sourceforge.net/), UnixBench (https://code.google.com/p/
byte-unixbench/), Fio (http:/freecode.com/projects/fio) and
Sysbench (https://launchpad.net/sysbench). Macro
benchmarks (or application stack benchmarks), are concerned
with benchmarking the performance of a software system or
application running on top of cloud infrastructure. While a set
of micro benchmarks can offer a good starting point in
evaluating performance of the basic components of cloud
infrastructure, application stack benchmarking offers a better
understanding of how a real-world application will perform
when hosted on cloud infrastructure. Hence, from a cloud con-
sumer perspective, macro benchmarking can provide greater
visibility into the performance of cloud infrastructure.
Depending upon the type of application, macro bench-
marks can be grouped into a number of different categories.
Rightscale (Rightscale 2014), a leading cloud management
platform provider has identified ten types of applications that
are predominantly deployed on the cloud, which are (a) gam-
ing, (b) social, (c) big data, (d) campaigns, (¢) mobile, (f)
batch, (g) internal web apps, (h) customer web apps, (i) devel-
opment, and (j) testing of applications. If prospective con-
sumers can find representative benchmarks corresponding to
these types of applications, they can design experiments to
match internal load levels and load variations, and then test
the representative application on different cloud infrastructure
to determine how they compare cost-wise and performance-
wise. Examples of application benchmarks include TPC-W

(TPCW 2003) which is a typical enterprise web application,
DaCapo (http://www.dacapobench.org/) which is a Java
benchmarking application, RUBIS (http://rubis.ow2.org/
index.html) which is an auction site application modeled
after eBay, RUBBos (http://jmob.ow2.org/rubbos.html/)
which is an online news forum modeled after slashDot
(http://slashdot.org/), and CloudSuite (http://parsa.epfl.ch/
cloudsuite/cloudsuite.html) which is a benchmark suite for
scale-out applications.

2.3 Performance characteristics

Performance is a key Quality of Service (QoS) attribute that is
important to both consumers and providers of cloud services. It
should not only be specified and captured in Service Level
Agreements (SLA) but should also be tested in order to substi-
tute assumptions with hard facts. In the context of cloud-based
IT solutions and applications systems, and in particular web
applications, the following performance characteristics are of
particular interest to a prospective cloud consumer who intends
to deploy client-facing web applications on the cloud.

* Application Performance. At the application level, cloud
consumers are interested in the time behaviour of the ap-
plication running on cloud infrastructure i.e., response
time, processing time and throughput rate of the software
system when subjected to different workloads. They are
also interested in determining the maximum limits of the
software system parameters such as the maximum number
of concurrent users that the system can support and the
transaction throughput. Such information is necessary so
that cloud consumers can guarantee their end-consumers
appropriate QoS levels.

* Resource Consumption At the infrastructure level, cloud
consumers are interested to know the resource utilization
levels when running a particular type of application under
different workloads. Monitoring resource utilization can
help to identify over-provisioned and under-performing
resources. It can help to identify the resource consumption
patterns under different workloads and determine the level
of hardware utilization achievable while maintaining the
application QoS requirements. It can potentially help to
determine if resource limits are causing degradation in
application performance and also help to evaluate the re-
liability of the cloud infrastructure provided by different
cloud providers.

2.4 Performance tests
Performance testing is generally used to determine how a sys-

tem performs in terms of responsiveness and stability under a
particular workload. It can also serve to investigate other

@ Springer

http://www.primatelabs.com/geekbench/
http://www.iozone.org/
http://iperf.sourceforge.net/
http://iperf.sourceforge.net/
https://code.google.com/p/byte-unixbench/
https://code.google.com/p/byte-unixbench/
http://freecode.com/projects/fio
https://launchpad.net/sysbench
http://www.dacapobench.org/
http://rubis.ow2.org/index.html
http://rubis.ow2.org/index.html
http://jmob.ow2.org/rubbos.html/
http://slashdot.org/
http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://parsa.epfl.ch/cloudsuite/cloudsuite.html

416

Inf Syst Front (2016) 18:413-428

quality attributes such as scalability, reliability and resource
usage. The most common types of performance testing are
listed below:

* Load Testing This test is the simplest form of performance
testing. It is used to understand the performance of the
SUT under specific expected workloads. An example
workload could be the concurrent number of users
performing a specific number of transactions on the appli-
cation within a given duration.

» Scalability Testing This test is used to determine how the
SUT scales. In this test, the workload is gradually in-
creased and the corresponding performance is measured.
Using this test, one can determine the load level beyond
which application performance degrades significantly.

» Soak Testing This test is also known as endurance testing
and is used to determine if the SUT can sustain continuous
expected load without any major deviation in perfor-
mance. It involves observing the system behavior while
continuously testing it with the expected workload over a
significant period of time.

» Stress Testing This test is used to determine the upper
boundaries of the SUT. An unusually heavy load is gen-
erated to determine if the system will perform sufficiently
or break under extreme load conditions.

» Spike Testing This test is used to determine how the sys-
tem behaves when subjected to sudden spikes in the work-
load. The goal is to determine if the performance degrades
significantly, or the system fails altogether.

3 Rationale behind smart CloudBench approach

In this section we explain our rationale behind the Smart
CloudBench approach; we describe how we can estimate the
run-time behavior of a black box cloud infrastructure using
macro benchmarking and then explain how this information
can be used to directly compare heterogeneous infrastructure
from different cloud providers.

The Infrastructure as a Service (IaaS) model provides users
with virtualized servers, storage and networking via a self-
service interface. While the vendor manages the virtualization
and the underlying hardware i.e., servers, storage and net-
working, the users have the flexibility to choose the operating
system of their choice and manage the middleware, runtime
and the software that runs on top of the OS. Thus, even though
the different servers are not directly comparable at the infra-
structure level where they appear as black boxes to the users,
they are directly comparable at the software level where they
are user-managed. Users can deploy the exact same bench-
mark application on cloud servers which are from different
vendors, have different server configurations and have been

@ Springer

provisioned using different virtualization techniques, and test
them using the same workload conditions to estimate the per-
formance of the underlying cloud infrastructure.

As shown in Fig. 1, the cloud servers from different cloud
providers can be benchmarked using various representative
applications to estimate the performance of the cloud infra-
structure offerings. After measuring the benchmark applica-
tion performance and the underlying resource consumption,
the performance results can be combined with price and spec-
ification information to enable ranking of the available
alternatives.

Figure 2 shows a concrete example of a representative
benchmark used for evaluating the performance of cloud serv-
er offerings when hosting transactional web applications.
Since the three different servers from Rackspace, Amazon
EC2 and GoGrid are not directly comparable due to differ-
ences in their server specifications; the only way to make them
comparable is by benchmarking the exact same application
stack on top of virtual cloud servers that have the same base
OS installed on them. These SUTs can then be subjected to the
exact same workload conditions to measure the application
performance and the underlying resource utilization. The ap-
plication performance can be combined with the pricing and
specification information to rank the three different servers
according to user preferences.

4 Generic architecture of smart CloudBench

Smart CloudBench is a configurable, extensible and portable
system for the automated performance benchmarking of cloud
infrastructure using representative applications. It has a gener-
ic architecture that is based on the principles of black box
performance testing. In addition, Smart CloudBench also en-
ables the comparison and ranking of different cloud service
offerings based on user requirements in terms of infrastructure
specification, costs, application performance, geographic lo-
cation and other requisite criteria (Baruwal Chhetri et al.
2013a, b, 2014). It can be used to run benchmark tests against
public and private cloud infrastructure using complex work-
loads and to capture results with high statistical confidence. In
this section we present the Smart CloudBench architecture.
We also briefly describe our approach for bundling bench-
mark applications to enable on-demand deployment on cloud
servers. We also briefly explain how we integrate resource
consumption monitoring with application performance moni-
toring to provide greater visibility into cloud infrastructure
performance. Figure 3 shows the key components of Smart
CloudBench.

* Benchmark Orchestrator (BO) - Benchmark Orchestrator
is the main component of Smart CloudBench. It orches-
trates the automated performance benchmarking of IaaS

Inf Syst Front (2016) 18:413-428 417

Fig. 1 Infrastructure as a Service

Provisioning Model Application

Application

_>

Application

Runtime Runtime

Representative
Benchmark
Graph Analytics
Data Analytics

e}
[0}
=
©
[
S
3
8
C
©
g
'_

Media Streaming

Middleware Middleware

Operating System Operating System

Operating System

Virtualization

Servers
Black Box Cloud Server Black Box Cloud Server

Storage

|<—Vendor Controlled—>| |<—Application Stack—>|

|<—Vendor Controlled—>|<7User Controlledg"

Networking

|<—Vendor Controlled—>| |<—

clouds. It controls the entire process of performance
benchmarking including test scheduling, test execution, per-

test. Virtual Machine Image (VMI) Manager is responsible
for creating and maintaining virtual machine images on

formance monitoring (Baruwal Chhetri et al. 2014) and re-
sult collection. It automates all the tasks that would be man-
ually carried out in a traditional benchmarking exercise.

Cloud Manager (CM) — Cloud Manager performs funda-
mental cloud resource management. Instance Manager
(IM) procures appropriate instances on the different pro-
viders - both for SUT and for TA based on the resource
provisioning instructions from the BO. It is also responsi-
ble for decommissioning the instances at the end of each

the different cloud providers. Common Cloud Interface
(CCI) provides a common interface to different public
cloud providers and enables the automated management
of cloud instances including instantiation and termination.
Cloud Comparator (CC) — Cloud Comparator allows users
to automatically compare the different cloud infrastructure
offerings based on the cost and configuration of the
benchmarked servers (stored in the server catalog) and
the performance benchmarking results (stored in the

Fig. 2 Benchmarking Software Concrete Benchmark Application

Systems Running on

Heterogeneous Infrastructure

Application Stack

Application
Server

Database

TPCW Web App
Tomcat 5.0.30

Jboss 3.2.7

L
!
L
[T}
)
Q
(%]
>
=

JRE 1.7.0_55

Base Operating System

Ubuntu 13.10 Ubuntu 13.10

Ubuntu 13.10

Virtualized Infrastructure

CPU

RAM

K
b
<
S
@
o
o
]
3
k=
<]
;
=
]
>
2
[
«n
°
F
°
=]
®
S
-]
=
>

Storage

2 vCPU 2 vCPU

EN

GB 3.75 GB

160 GB 32 GB (SSD)

4GB (Rackspace)

C3-Large (EC2)

@ Springer

418

Inf Syst Front (2016) 18:413-428

Fig. 3 Core Components of
Smart CloudBench

o)

Tester /6’ Domain Expert “

User Interface Admin Interface

l |
|

Test
Infrastructure Cloud Manager Benchmark Orchestrator Database
EC2 Instance Workload | Performance |
Manager Manager Monitor SElicHC tdios
GoGrid Common Cloud Test Result Benchmark
Interface Scheduler | Aggregator Catalog
Rackspace = ——
VMI Manager Cloud Benchmark
Google Visualizer Results
Comparator
Azure Ranking Report Benchmark Scripts
System Generator & Binaries

benchmark results database). Report Generator generates
test reports in different formats including graphical, tabu-
lar and textual formats for consumption by both technical
and non-technical users. The Ranking System allows
users to use different ranking and evaluation criteria to
grade the cloud servers. Finally, the Visualizer component
allows users to visualize the test results.

+ Database - The Smart CloudBench Database stores the
following information:

— Server Catalog — The Server Catalog maintains a list of
supported cloud infrastructure providers and their offerings.

— Benchmark Catalog — The Benchmark Catalog maintains
a list of supported benchmarks for the different types of
representative applications.

— Benchmark Results - Performance benchmarking results
are stored in the results database for short-term and long-
term performance analysis.

— Benchmark Scripts & Binaries - Smart CloudBench also
maintains the scripts/binaries for each supported bench-
mark application to enable automated setup of the bench-
mark on the cloud virtual server.

* Admin Interface - The admin interface allows the Smart
CloudBench administrator to manage the cloud server cat-
alog, and the benchmark catalog. Servers can be added or
removed from the list of supported cloud servers. Similar-
ly, new benchmark applications can be added to the
benchmark catalog along with the corresponding binaries
and associated setup scripts.

* User Interface - Users can interact with Smart
CloudBench via the user interface. Through this interface,
testers can configure and run benchmark tests, view com-
pleted test results and also compare cloud servers based on
their cost, specification and performance.

@ Springer

4.1 Bundling application benchmarks

In order to make the different cloud server types directly com-
parable, Smart CloudBench deploys the exact same applica-
tion stack on all cloud servers (both the SUT and the TA). To
do this, Smart CloudBench makes use of platform and cloud-
agnostic sofiware bundles in an approach similar to that de-
scribed in (Oliveira et al. 2012). A domain expert codifies
knowledge of a particular benchmark application in a software
bundle which is then added by the Smart CloudBench admin-
istrator to the Benchmark Repository along with the corre-
sponding Benchmark Installation Script. The Benchmark
Catalog is also updated with the new entry. There are two
key benefits of using software bundles:

» The use of software bundles enables easy installation and
setup of benchmark applications on any cloud platform
making it easy to extend the Benchmark Catalog and the
Cloud Server Catalog. It also minimizes human error dur-
ing the setup of the SUT and TA servers.

+ Itenables direct comparison of the application stack on top
of two or more cloud servers built using different server
configurations and different virtualization techniques by
installing the exact same software stack on all servers.

Figure 2 shows an example software bundle for the TPC-W
benchmark application (TPCW 2003) which is representative
of a typical enterprise web application. The left-hand side of
the image shows the typical software bundle for an enterprise
application which comprises of the run time environment, the
backend database, the application server and the web server.
This software bundle has to be deployed on top of the base
operating system that is running on the virtual cloud server
which has the selected configuration in terms of CPU, RAM
and storage. As can be seen at the right-hand side of Fig. 2, the

Inf Syst Front (2016) 18:413-428

419

concrete server specifications and the virtualization tech-
niques can be different. However, each server can have the
same base operating system and can have the exact same
software bundle deployed on top of it, which makes the per-
formance of the application stack on each cloud server directly
comparable.

4.2 Multi-layer performance measurement

Smart CloudBench uses a lightweight, distributed monitoring
solution which employs monitoring agents on both the SUT
and the TA. The multi-layer monitoring used in Smart
CloudBench is illustrated in Fig. 4. The Resource Monitor
(RM) is deployed on the SUT and tracks resource consump-
tion on it during the test period. Similarly, the Application
Monitor (AM) is deployed on the TA and tracks the applica-
tion performance. The monitoring solution used by Smart
CloudBench is a provider-agnostic software-only solution
which can be easily deployed on both public and private cloud
infrastructure. Each time the SUT and the TA are launched, the
RM and the AM agents are automatically deployed on them.
At the end of a benchmarking test exercise, Smart
CloudBench aggregates the application performance captured
by the AM with the resource consumption captured by the
RM and returns the aggregated results to the users for evalu-
ation and analysis.

Aggregating application performance with resource con-
sumption can help identify (a) over-provisioned and under-
performing resources, (b) resource issues that are affecting
application performance, (c) resource consumption patterns
under different workloads, and (d) determine the reliability
of cloud infrastructure. More details about the monitoring so-
lution implemented in Smart CloudBench are available in
(Baruwal Chhetri et al. 2014)

5 Smart CloudBench workflow

In this Section, we explain how Smart CloudBench works.
Figure 5 shows the steps involved in a typical benchmarking
exercise using Smart CloudBench. The first three steps in-
volve the user while Steps 4—10 are executed by Smart
CloudBench. Step 11 again involves the user.

1. Provider Selection - The user selects the cloud servers
that are to be evaluated and compared. They can be
provisioned by a single provider or by multiple cloud
providers.

2. Benchmark Selection - The user selects the representa-
tive benchmark application to be used to evaluate the
performance of the selected cloud servers.

3. Test Setup Specification - The user specifies the different
scenarios to be used to evaluate the performance. This

System Under Test

Virtual Machine

Operating System

Benchmark
Application RM
l | | | 4 Smart CloudBench
' ' Schedulor
Emulated n
Browser (EB) AM

Remote Browser Emulator (RBE)

Test Agent

Fig. 4 Smart CloudBench — Multi Layer Monitoring

might include the workload, the test duration and the
interval between subsequent test runs.

4. Instance Procurement - Smart CloudBench procures the
required cloud servers on the selected cloud providers. If
on-demand setup and configuration of benchmark appli-
cations is supported, Smart CloudBench chooses default
machine images. If not, pre-built custom images contain-
ing the packaged benchmark application and the work-
load generator are used to instantiate the SUT and TA.

* Benchmark Setup & Configuration - If on-demand
setup and configuration of benchmark applications is
supported through the use of automated execution of
post-bootup scripts, Smart CloudBench sets up and
configures the selected benchmark application on
the cloud server.

5. Monitoring Commencement - Smart CloudBench issues
remote call to the Resource Monitor on the SUT to com-
mence monitoring of resource consumption on it.

6. Benchmark Execution - Smart CloudBench executes the
benchmark by issuing remote calls to the test agents
running on TA and waits for the test results.

7. Monitoring Completion - Smart CloudBench issues re-
mote call to the Resource Monitor to cease monitoring of
resource consumption and retrieves the resource con-
sumption data.

8. Result Aggregation - Smart CloudBench aggregates the
application performance metrics with the infrastructure
performance metrics and stores the results in the Results
DB for evaluation and analysis by user.

9. Instance Decommissioning - Smart CloudBench decom-
missions the cloud servers at the end of the benchmark
tests.

10. Evaluation & Analysis - The user evaluates and analyses
the test results to compare the tested cloud servers.

@ Springer

420

Inf Syst Front (2016) 18:413-428

Fig. 5 Smart CloudBench — Test

Workflow Smart CloudBench

User Interface
o Provider

User Selection

Input ¢

Specification

Results @ Report

- .
Analysis

Benchmark Orchestrator

Procurement

oBenchmark o4 Monitoring
59|eitl0n ~ Commencement
eTestSetup 6 Benchmark

Cloud Manager

T

Instance

System Under test

- Provider 1
Instance |

Provider 2

Provider n

-G

Procurement
- Benchmark
xecution
Se‘tup &. Test Agent/s
Py * Configuration
Monitoring @
Completion Instance
Termination | —
Result Aggregation | :
y
Report Generation |
D Instance |
Termination |

6 Use case scenarios

In this Section, we first briefly describe the TPC-W bench-
mark application that we use as the representative benchmark
application in our tests. The source code for the benchmark
application is available online at http://www.cs.virginia.edu/
th8k/downloads/. We then present two different use case
scenarios to illustrate how Smart CloudBench can be used to
evaluate and compare cloud server offerings. We first describe
some test scenarios on Google Compute Engine (GCE) as the
candidate cloud infrastructure provider, where we run tests
using Smart CloudBench on three different types of cloud
servers (see Table 1). We then describe a second set of test
scenarios that we have conducted on cloud infrastructure pro-
cured from the Deutsche Borse Cloud Exchange Marketplace
(http://www.dbcloudexchange.com/en/). We run tests on three
cloud servers with exactly the same server specification but
provisioned by different vendors and at three different prices.

6.1 TPC-W benchmark application

We have used the TPC-W benchmark application (TPCW
2003) as our representative benchmark application. It simu-
lates an online book store which represents the most popular
type of application running on the cloud. It has a relatively
simple and well understood behaviour. It includes a web serv-
er to render web pages, an application server to execute busi-
ness logic, and a database to store application data. It is de-
signed to test the complete application stack and does not
make any assumptions about the technologies and software

@ Springer

systems used in each layer. The benchmark consists of two
parts. The first part is the application itself, which is deployed
on the SUT and supports a mix of 14 different types of web
interactions and three workload mixes, including searching for
products, shopping for products and ordering products. The
second part is the remote browser emulation (RBE) system
which is deployed on the TA and generates the workload to
test the application. The RBE simulates the same HTTP net-
work traffic as would be seen by a real customer using the
browser.

6.2 Use-case scenario 1: Google compute engine

In our first scenario, we selected Google Compute Engine as
the candidate cloud providers for experimental evaluation.
Three different types of servers, namely standard, high
memory, and high CPU were used to instantiate the SUT
servers. High memory instances were used to host the Test
Agents (TA) in all three cases. Both the SUT and TA servers
used Debian distribution of Linux and were hosted in the US
data centre (us-central-1a). The pricing and specification de-
tails of the selected cloud servers are provided in Table 1.
Table 2 shows the different application and infrastructure level
performance metrics collected during the tests.

6.2.1 Test scenarios

We carried out three different performance tests on Google
Compute Engine using Smart CloudBench over a period of

http://www.cs.virginia.edu/th8k/downloads/
http://www.cs.virginia.edu/th8k/downloads/
http://www.dbcloudexchange.com/en/

Inf Syst Front (2016) 18:413-428

421

Table 1 Performance test

infrastructure (Prices true at time System Under Test

of test) Instance Type Category
nl-standard-4 Standard
nl-highmem-4 High Memory
nl-highcpu-4 High CPU

Test Agent

Instance Type Category
nl-standard-4 High Memory

RAM (GB) vCPU Storage (GB) Price (USD)
15 4 10 $0.415
26 4 10 $0.488
3.6 4 10 $0.261
RAM (GB) vCPU Storage (GB) Price (USD)
26 4 10 $0.415

three days from 28/01/2014 to 30/01/2014. The tests are pre-
sented below in the order of execution.

» Scalability Test - The objective of this test was to deter-
mine the maximum workload that could be handled by the

same, one would expect the performance to be the same
or similar but the results show otherwise.

selected server types while maintaining acceptable perfor- 7 Discussion of results

mance characteristics. We used Apdex or Application Per-

formance Index (see Table 3) to establish an acceptable In this section, we present the results obtained from the differ-
performance limit. We set the apdex at 0.5 as the threshold ~ ent types of tests and discuss their significance.

and ran multiple tests starting at an initial load of 50 con-
current clients and increased the workload by 50 in each
round. The benchmarking exercise was terminated when
Apdex<0.5, meaning that there were more unsatisfied
users than satisfied users.

* Soak Test - The objective of this test was to analyze the —
consistency of the three cloud servers’ performance over-
time. We continuously ran tests using the same workload
over a 24 h period on 29/01/2014. The workload selected
for each SUT was the maximum workload determined in =~ —
the scalability test.

+ Reliability Test - The objective of this test was to deter-
mine the reliability of the cloud provider. We launched
three servers of the same type and subjected them to a —
sustained workload over a period of 24 h on 30/01/2014.
Given that the configuration of the three servers is the

Table 2 Collected metrics

Application Performance

Average Response Time ART

Maximum Response Time MRT

Total Successful Interactions SI

Total Failed Interactions TO

Throughput T

Error Rate EF
Infrastructure Performance

Average CPU Utilization ACPU '

Maximum CPU Utilization MCPU

Average RAM Utilization ARAM

Maximum RAM Utilization MRAM

Scalability Test - The results of the scalability test are
presented in Fig. 6. We plot graphs for apdex, maximum
CPU and RAM utilization. The key observations are:

The HighCPU and HighMem instances could not main-
tain acceptable apdex above 850 clients, while the Stan-
dard server reached up to 1150 clients while maintaining
acceptable performance (Fig. 6a).

CPU was a bottleneck for all three servers peaking at
100 % and affecting the application performance
(Fig. 6b). All three servers have the same amount of
CPU Cores.

HighCPU instance used up practically all the available
RAM, HighMem instance used only around 20 % of
RAM while Standard instance used around 40 %
(Fig. 6¢). All three instances have different amounts of
RAM.

Standard instance happened to perform the best in this test
even though it has lesser resources than the HighMem
instance and is cheaper. We do not have a definitive ex-
planation for this behaviour, other than it may be due to
CPU bursting. CPU bursting allows instances to opportu-
nistically take advantage of available physical CPUs in
bursts. Since our resource consumption model only mea-
sures the percentage of CPU consumption, we cannot
confirm this.

Soak Test - The results of the soak test are presented in
Fig. 7. We plot graphs for average response time, the av-
erage CPU and RAM utilization over a duration of 8 h,
and the box plot for the response time across all test runs
for all three servers. The key observations are:

@ Springer

422

Inf Syst Front (2016) 18:413-428

Table 3 Application performance index

Apdex (http://www.apdex.org/overview.html) is an open standard for
benchmarking and tracking application performance. We used it in our
experiments to establish acceptable performance levels. In each round
of testing, we measured the response times of all individual user
interactions and then grouped them into three different acceptance
zones as de fined by Apdex:

« Satisfied - In this zone, the user is completely satisfied by the
application response time which is below T seconds.

* Tolerated - In this zone, the user experiences performance lag which
is greater than T but continues interacting with the system

* Frustrated - In this zone, the application response time is greater than
F seconds, which is unacceptable and the users abandon their
interaction with the system due to unacceptable performance. In our
test, we assume that each failed request falls in the frustrated zone.

It should be noted that the value T is specific to the type of application that
is being evaluated as well as the type of interaction that occurs between
the user and the application. In (Nielson, 1994), Jakob Nielsen has
determined that the response time of 1 s is the limit for a user to remain
undisturbed from his/her flow of thoughts. Ninefold (https:/ninefold.
com/performance) a leading laaS provider utilizes Apdex with the
value of T=0.5 s to measure cloud performance when running Spree
(https://github.com/spree/spree) an open-source e-commerce rails app.
In our experiments we assume that T=1 s, which we consider to be a
reasonable response time when browsing web-pages. We calculated
the apdex index with various workloads using the following apdex
formula:

Apdex = Satisfied +

Tolerating count,

Total Sample

— The average CPU utilization gradually decreased
(Fig. 7b), while average RAM utilization increased over
the duration of the test (Fig. 7c). The increased utilization
of RAM is linked with the caching of requests. We sup-
pose that the reduced CPU utilization is also linked with it
(CPU caching).

— HighCPU server had the most stable performance among
all three selected instance types.

— HighMem server was the least stable instance even
though it is the most expensive one among the three.

» Reliability Test - The results of the reliability test are pre-
sented in Fig. 8. In this test, we selected three servers of
the Standard type. All three servers were launched on the
same subnet, and possibly operated on the same physical
node. As the three servers have the same configuration are
from the same provider, the corresponding performance
was expected to be very similar. However, we can see that
the server performance was variable overtime (Fig. 8a).
We plot the results over a period of 12 h. The key obser-
vations are:

— Instance #1 had long term performance degradation,
which resulted in the server crashing at around §:00 AM.

— Instance #2 exhibited relatively consistent application and
infrastructure performance.

@ Springer

100% ik ik e L o
a0% r‘x"*\
80% \
70%
® 60% | \
3
% 0% 0 \ ——rienceu
L 40% g
HighMem
30%
20% i St andard
10%
0% T T T T T T T
L & & P P & &S P S
S S S M S ,‘0@ .;»@
Workload, EBs
(a) Apdex
100% y o .
. 2 i
0% =
® A
& 80% j‘¢
2 0% 4
K]
‘g 80% ﬁ
2 so% NI —s—HighCPU
Y a0% :
£ j HighMem
E 30% 7
= 20% - ——i==Standard
g 10%
0% T T T T T T T
P P P P P PSP
BT AT AT T PSP ~°@ ,\-\@
Workload, EBs
(b) Maximum CPU Utilization
100% ————
® 90%
;‘ 80% ‘*’-/
E 70%
T 60%
=2
= 50% ——Hi
ghCPU
5 20% S .
HighMem
E 30% ﬁ& g
'E 20% i Standard
£ 0% I =i
0% T T T T T T T T T T
L L & & O & HH H
LSLLFLLFELLS \Q@ 0@
Workload, EBs

(c) Maximum RAM Ultilization

Fig. 6 Scalability Test Graphs

Instance #3 exhibited a sudden degradation in perfor-
mance around 5:30 AM in the average response time
The application performance decreased in all three
servers (to a different extent) at the same time, at around
5:30 AM.

There is a similar performance pattern for the average
CPU and RAM utilization across all 3 servers. Initially,
the utilization of RAM gradually increased, while the
requests were being cached on the server. After that,
RAM utilization remained at the same level at around

http://www.apdex.org/overview.html
https://ninefold.com/performance
https://ninefold.com/performance
https://github.com/spree/spree

Inf Syst Front (2016) 18:413-428

1600
» 1400
g
g 1200
£
= 1000
2
800
-
& 600
&
g 400
< 200 y
0
419 531 643 755 907 10:19 11:31 12143
HighCPU e===HighMem === Standard
(a) Average Response Time
100% -
90%
® 8o%
=
2 70%
K]
8 60%
S 50%
& ao%
[
2 30%
§ 20%

10%
0%

4:18 5:31 6:43 7:5% S:07 10:19 1131 12:43

HighCPU emm=HighMem Standard

(b) Average CPU Utilization
Fig. 7 Soak Test Results (with load of 800 clients)

70 % (Fig. 8c). Average CPU utilization was relatively
stable overtime (Fig. 8b).

These simple examples highlight two points. Firstly, they
are illustrative of the different types of tests that can be defined
using Smart CloudBench to measure the consistency and re-
liability of cloud infrastructure providers. By running the same
workloads on multiple instances of the same server, at the
same time and in the same region, we can get an estimation
of'the consistency and reliability of the cloud service provider.
Similarly, by running the same workloads across different
server instances, we can get an estimation of the performance
of the different servers as well. Secondly, they also highlight
the variability in cloud infrastructure performance and the
need for benchmarking tools such as Smart CloudBench.

7.1 Use-case scenario 2: Deutsche borse cloud exchange
marketplace

Deutsche Borse Cloud Exchange (DBCE) (http:/www.
dbcloudexchange.com) is an open marketplace for cloud
resources, where multiple cloud resource vendors can join
and exchange infrastructure cloud services with other market

423
100%
90%
*®
°=. 80%
2 0%
o
2 60%
s
s 50%
S a0%
gn 30%
3 20%
10%
0%
419 531 643 755 9:07 10:19 11:31 12:43
HighCPU emmm=HighRAM Standard
(c) Average RAM Utilization
1600
1400
1200
»
£
& 1000
£
=
5 800
z
2 600
N
&
400
200 —F— %Er —
0
High CPU High Mem Standard

(d) Response Time across all test runs

participants. Currently DBCE is in a beta trial stage with early
participants (cloud providers and cloud consumers)
participating in the trials. We have selected three different
cloud providers available through DBCE for our evaluation
of Smart CloudBench that we shall name A, B and C. We have
used standard medium servers with Ubuntu 14.4 as the SUT
for all three providers. For each provider, we had two SUT-TA
pairs set up for testing. In the first instance, we co-located the
SUT and TA VMs within the cloud provider’s network. In the
second instance, we setup the TA on a m1.medium server on
the Nectar Research Cloud (https://www.nectar.org.au/
research-cloud) located in the Tasmanian data center. The
pricing and specification details of the selected SUT cloud
servers are provided in Table 4. The Nectar Infrastructure is
freely available for research use. Table 5 shows the different
application and infrastructure level performance metrics
collected during the tests.

7.1.1 Test scenarios
We carried out the reliability test on the three standard-
medium servers from the three selected vendors. The objec-

tive of this test was to determine the reliability and consistency
of performance on the cloud servers with identical server

@ Springer

http://www.dbcloudexchange.com/
http://www.dbcloudexchange.com/
https://www.nectar.org.au/research-cloud
https://www.nectar.org.au/research-cloud

424

Inf Syst Front (2016) 18:413-428

g

Average Response Time, ms
=] sy
s} Q
5] 5]

[l AN A
J A

o
8

(=]

0:00 2:24 4:48 7:12 9:36 12:00

—Ctandard £1 Standard #2

Standard #3

(a) Average Response Time

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% %

0:00 2:24 4:48 2:12 9:36 12:00

Average CPU utilzation, %

e Standard #1 Standard #2 Standard #3

(b) Average CPU Utilization

Fig. 8 Reliability Test Results (with 800 clients)

specifications provisioned by different cloud vendors. We
launched two SUT servers on each provider and subjected
them to a sustained workload of 500 concurrent users trying
to access the application over a period of 96 h between the
period 19/01/2015 —27/01/2015. Given that the configuration
of the three servers is the same, one would expect the perfor-
mance to be the same or similar but the results show
otherwise.

7.1.2 Discussion of results

We can see that although the three servers had the same
configurations, their performance in the conducted exper-
iments was different.

The server provisioned by Provider B cloud showed worst
performance with increasing deviation in response time,
while the other two servers had a very low and consistent
response time (Fig. 9)

It terms of CPU utilization, we can see different levels of
CPU usage across all three servers (Fig. 10), even though
the generated workload was the same. It means that while
the publicly available server configurations are the same,
the actual physical infrastructure has a different level of
performance.

@ Springer

100%
90%
®
. 80% -
=
2 70% I
o
:_g GO% /
> 50%
s 50%
& a0%
& 0,
‘é" 30%
g 20%
<
10%
U%
0:00 2:24 4:48 7:12 9:36 12:00
=—Standard #1 Standard #2 ~=—Standarc #3
(c) Reliability Test Results (800 Clients)
8000 -
7000
6000 -
£
& 5000
£
=
o 4000
&
& 3000
&
2000 -+
1000 I
0 —— § S s . —
Standard #1 Standard #2 Standard #3

(d) Response Time across all test runs

When the TA is located on a remote geographical location,
the response time across all three servers increases due to
the network delay (Fig. 11). However, the cloud server
from Provider B shows consistently higher response time.
The CPU usage data (Fig. 12), which is identical to the
case of local TA, confirms that the degraded response time
is not due to the internal servers’ performance, but rather
due to an external factor, such as network delay.

The graph in Fig. 13 illustrates the variations in perfor-
mance of the three servers. The servers showed consistent
comparative performance in both scenarios. The most re-
liable results were demonstrated by the server from Pro-
vider A. The server from Provider C showed a very similar
result to that of Provider A with slightly higher deviation
whereas Provider C had the highest performance
deviation.

8 Related work

There has been significant research activity on the measure-
ment and characterization of cloud infrastructure performance
to enable decision support for provider and resource selection.

Inf Syst Front (2016) 18:413-428

425

Table 4 Performance Test Infrastructure (Prices true at time of test)

System Under Test
Instance Type Provider RAM (GB)
Standard-medium Provider A 8
Standard-medium Provider B 8
Standard-medium Provider C 8

Test Agent
Instance Type Provider RAM (GB)
Standard-medium Provider A 8
Standard-medium Provider B 8
Standard-medium Provider C 8
Instance Type Provider RAM (GB)
ml-medium Nectar 8
ml-medium Nectar 8
ml-medium Nectar 8

vCPU Storage (TB) Price (€)
4 0.5 €0.5545
4 0.5 €0.4775
4 0.5 €0.4475
vCPU Storage (TB) Price (€)
4 0.5 €0.5545
4 0.5 €0.4775
4 0.5 €0.4475
vCPU Storage (TB) Price (€)
4 0.5 €0.0

4 0.5 €0.0

4 0.5 €0.0

In (Li et al. 2010), the authors present CloudCmp, a frame-
work to compare cloud providers based on the performance of
the various components of the infrastructure including com-
putation, scaling, storage and network connectivity. The same
authors present the CloudProphet tool (Li et al. 2011) to pre-
dict the end-to-end response time of an on-premise web appli-
cation when migrated to the cloud. The tool records the re-
source usage trace of the application running on-premise and
then replays it on the cloud to predict performance. In
(Ferdman et al., 2012), the authors present CloudSuite, a
benchmark suite for emerging scale-out workloads. While
most work on cloud performance looks at the performance
bottlenecks at the application level, this work focusses on
analyzing the micro-architecture of the processors used.

In (Luo et al. 2012), the authors propose CloudRank-D, a
benchmark suite for benchmarking and ranking the perfor-
mance of cloud computing systems hosting big data applica-
tions. The main difference between CloudRank-D and our
work is that CloudRank-D specifically targets big-data

Table 5 Collected Metrics

Application Performance

Average Response Time ART
Maximum Response Time MRT
Total Successful Interactions SI
Total Failed Interactions TO
Throughput T
Error Rate EF
Infrastructure Performance
Average CPU Ultilization ACPU
Maximum CPU Utilization MCPU
Average RAM Utilization ARAM
Maximum RAM Utilization MRAM

applications while our framework applies to any application.
In (Gmach et al. 2012), the authors present their results on the
analysis of resource usage from the service provider and ser-
vice consumer perspectives. They study two models for re-
source sharing - the t-shirt model and the time-sharing model.
While we look at the performance of the different cloud pro-
viders from a cloud consumer’s perspective, the resource us-
age results can be included as part of the benchmarking results
to highlight the resource usage under different load condi-
tions. The resource usage levels could also potentially affect
the resource and provider selection process.

In (Lenk et al. 2011), the authors propose a methodology
and process to implement custom tailored benchmarks for
testing different cloud providers. Using this methodology,
any enterprise looking to examine the different cloud service
offerings can manually go through the process of selecting
providers, selecting and implementing (if necessary) a bench-
mark application, deploying it on multiple cloud resources,
performing the tests and recording the results. Evaluation is
done at the end of the tests. Our work differs in that it offers
prospective cloud consumers with a service to do all of this

2500

2000 —

g
|

5
8
|

Response Time, ms
>

vl
Q
o

ReaniiRne

20/01/2015 1/01/201%

" A

19/01/2015

i

Fig. 9 Scenario 1: Response Time over time across three cloud servers
with same configuration (local TA)

@ Springer

426 Inf Syst Front (2016) 18:413-428
45 45
40 40
35 - - S 35 - - R Erir e e
® « ~ J
2 % 2 &
E 25 g%
2 15 - B 215 - B
L= L=
10 w—C 10 e C
5 5
111110010 1010 10 100 000 0 0 0 e 0 e
i f |! af{fis &1 ‘; f Tl || {] 150 al :' i
19/01/2015 20/01/2015 21/01/2015

Fig. 10 Scenario 1: CPU Utilization over time across three cloud servers
with same configuration (local TA)

without having to go through the entire process of setup. Ad-
ditionally, it gives users the flexibility to try out different what-
if scenarios to get additional information about the
performance.

In (Tosup et al. 2013), the authors discuss the TaaS cloud-
specific elements of benchmarking from the user’s perspec-
tive. They propose a generic approach for laaS cloud
benchmarking which supports rapidly changing black box
systems, where resource and job management is provided by
the testing infrastructure and tests can be conducted with com-
plex workloads. Their tool SkyMark provides support for mi-
cro performance benchmarking in the context of multi-job
workloads based on the MapReduce model. In (Folkerts
et al. 2013), the authors provide a theoretical discussion on
what cloud benchmarking should, can and cannot be. They
identify the actors involved in cloud benchmarking and ana-
lyze a number of use cases where benchmarking can play a
significant role. They also identify the challenges of building
scenario-specific benchmarks and propose some solutions to
address them.

In (Zhao et al. 2010), the authors present the Cloud Archi-
tecture Runtime Evaluation (CARE) framework for evaluat-
ing cloud application development and runtime platforms.
Their framework includes a number of pre-build, pre-

Fig. 12 Scenario 2: CPU Utilization over time across three cloud servers
with same configuration (remote TA)

configured and reconfigurable components for conducting
performance evaluations across different target platforms.
The key difference between CARE and our work is that while
CARE looks at micro performance benchmarking, Smart
CloudBench looks at performance benchmarking across the
complete application stack.

There are a number of commercial tools that provide sup-
port for cloud performance benchmarking. Some of them fo-
cus on micro benchmarking while others focus on macro (or
application) benchmarking. CloudHarmony (http://www.
cloudharmony.com/) provides an extensive database of
benchmark results across a number of public cloud providers
using a wide range of benchmark applications. Cloud
Spectator (http://cloudspectator.com/) carries out periodic
benchmarking and publishes the results in reports which can
be purchased. ServerBear (http://serverbear.com/) performs
micro benchmarking and provides customised reports
against selected providers for a fee. There are numerous
commercial cloud monitoring tools. Some of them are cloud
dependant such as Amazon CloudWatch (http://aws.amazon.
com/cloudwatch/), while others are cloud independent such as
Monitis (http://www.monitis.com/), LogicMonitor (http://
www.logicmonitor.com/), CopperEgg (http://copperegg.
com/) and Nagios (http://www.nagios.org/). Some of them

2500

:
|

:
|

:
|

g
g
£
£
] —
g
g
&

Fig. 11 Scenario 2: Response Time over time across three cloud servers
with same configuration (remote TA)

@ Springer

2500
2000
@
£
g
£ 1500
=
g
31000
&
500 L.
o —
A ‘ 8 ‘ c A | B ’ c
Scenario 1 Scenarion 2

Fig. 13 Consistency of performance across providers in two different
scenarios

http://www.cloudharmony.com/
http://www.cloudharmony.com/
http://cloudspectator.com/
http://serverbear.com/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://www.monitis.com/
http://www.logicmonitor.com/
http://www.logicmonitor.com/
http://copperegg.com/
http://copperegg.com/
http://www.nagios.org/

Inf Syst Front (2016) 18:413-428

427

only monitor specific layers of the cloud e.g., CloudHarmony
and OpenNebula (http://opennebula.org/), while others
monitor across cloud layers including infrastructure,
platform and software. Monitis offers a cloud monitoring
solution which allows monitoring virtual server instances
across providers from a unified dashboard. CopperEgg,
Nimsoft (http://www.ca.com/us/opscenter/ca-nimsoft-
monitor.aspx) and LogicMonitor are cloud monitoring tools
that offer monitoring across cloud layers. Cedexis (http://
www.cedexis.com/) offers tools for the real time monitoring
of response times to over 100 cloud providers and Global
Delivery Networks.

The following features differentiate Smart CloudBench
from other cloud performance benchmarking tools.

* Real-time benchmarking - Smart CloudBench allows
users to conduct live, real-time benchmarking of selected
cloud providers and servers.

* Customized workloads - users are not restricted to
predefined workloads but can instead specify workloads that
are representative of their own in-house workloads making
the benchmark results more meaningful and relevant.

* Performance base lining - users can baseline the perfor-
mance of cloud servers against a wide range of workloads.
This helps them select the cloud instance that best meets
the performance criteria.

* Monitoring across cloud layers - Smart CloudBench mon-
itors both the application performance as well as the un-
derlying infrastructure performance. The aggregated re-
sults give greater insight into how different benchmark
applications perform on cloud infrastructure.

9 Conclusion

In order to confidently migrate in-house systems to the cloud,
prospective cloud consumers need to have sufficient trust in
the cloud service offerings. While the cloud infrastructure pric-
ing and specification is publicly available information, their
run-time behaviour is unknown. The use of different
virtualization technologies by cloud providers and multi-
tenancy used by cloud infrastructure can impact the perfor-
mance of software systems running on them. The only way
to get a concrete measure of cloud infrastructure performance
is by benchmarking software systems running on top of the
cloud infrastructure rather than relying on assumptions based
on its price and specification. Performance benchmarking of
cloud infrastructure can help prospective cloud consumers,
both in the initial cloud selection phase and the subsequent
cloud consumption phase. During the cloud selection phase,
the prospective cloud consumers can obtain a quick assessment
of the price, specification and performance of shortlisted cloud

infrastructure providers by running short-term performance
tests. Once they have selected a particular cloud service pro-
vider and migrated in-house applications to the cloud, they
may continue to periodically benchmark the cloud providers
to ensure that there is no degradation in the service quality over
time. They may also do periodic benchmarking of cloud infra-
structure from different cloud providers to get a better insight
into the long-term evolution of the service providers.

In this paper, we have presented Smart CloudBench that
automates the execution of representative benchmarks on dif-
ferent [aaS clouds under user-tailored representative load con-
ditions to help estimate their performance levels. The users of
Smart CloudBench can design different types of experiments to
test the performance of representative applications using load
conditions that match the load levels of their own in-house
applications. Smart CloudBench is particularly useful for orga-
nizations that do not possess the time, resources and in-house
expertise to do a thorough evaluation of multiple cloud plat-
forms using in-house applications. Two representative sets of
test results obtained for commercial cloud infrastructure using
Smart CloudBench show that higher price does not necessarily
translate to better or more consistent performance and that two
cloud servers with exactly the same server specification can
exhibit significantly different performance. Such results high-
light the need for benchmarking cloud infrastructure perfor-
mance, and the need for tools such as Smart CloudBench.

References

Baruwal Chhetri, M, Chichin, S., Bao Vo, Q., & Kowalczyk, R. (2013a).
Smart Cloud Broker: Finding your home in the clouds. In
Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on (pp. 698-701). IEEE.

Baruwal Chhetri, M., Chichin, S., Vo, Q. B., & Kowalczyk, R. (2013b).
Smart CloudBench— Automated Performance Benchmarking of the
Cloud. In Cloud Computing (CLOUD), 2013 LE. Sixth
International Conference on (pp. 414-421). IEEE.

Baruwal Chhetri, M., Chichin, S., Vo, Q.B., & Kowalczyk, R. (2014).
Smart CloudMonitor-Providing Visibility into Performance of
Black-Box Clouds. In Cloud Computing (CLOUD), 2014 LE. 7th
International Conference on (pp. 777-784). IEEE.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisaface, M., Jevdjic,
D., & Falsafi, B. (2012). Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ACM SIGARCH
Computer Architecture News (Vol. 40, No. 1, pp. 37-48). ACM.

Folkerts, E., Alexandrov, A., Sachs, K., losup, A., Markl, V., & Tosun, C.
(2013). Benchmarking in the cloud: What it should, can, and cannot
be. In Selected Topics in Performance Evaluation and
Benchmarking (pp. 173—188). Springer Berlin Heidelberg.

Gmach, D., Rolia, J., & Cherkasova, L. (2012, April). Comparing effi-
ciency and costs of cloud computing models. /n Network
Operations and Management Symposium (NOMS), 2012 LE. (pp.
647-650). IEEE.

losup, A., Prodan, R., & Epema, D. (2013, May). laaS cloud benchmarking:
approaches, challenges, and experience. In HotTopiCS (pp. 1-2).

@ Springer

http://opennebula.org/
http://www.ca.com/us/opscenter/ca-nimsoft-monitor.aspx
http://www.ca.com/us/opscenter/ca-nimsoft-monitor.aspx
http://www.cedexis.com/
http://www.cedexis.com/

428

Inf Syst Front (2016) 18:413-428

Lenk, A., Menzel, M., Lipsky, J., Tai, S., & Offermann, P. (2011). What
are you paying for? performance benchmarking for infrastructure-
as-a-service offerings. In Cloud Computing (CLOUD), 2011 LE.
International Conference on (pp. 484—491). IEEE.

Li, A, Yang, X., Kandula, S. and Zhang, M. (2010) CloudCmp: compar-
ing public cloud providers. In Proceedings of the /0th Annual
Conference on Internet Measurement.

Li, A., Yang, X., Kandula, S., Yang, X. and Zhang, M. (2011)
CloudProphet: towards application performance prediction in cloud.
In ACM SIGCOMM Computer Communication Review (Vol. 41,
No. 4, pp. 426-427). ACM.

Luo, C., Zhan, J., Jia, Z., Wang, L., Lu, G., Zhang, L., & Sun, N. (2012).
Cloudrank-d: benchmarking and ranking cloud computing systems
for data processing applications. Frontiers of Computer Science,
6(4), 347-362.

Nielsen J. (1994). Usability Engineering. Elsevier.

Oliveira, F., Eilam, T., Kalantar, M., & Rosenberg, F. (2012).
Semantically-Rich Composition of Virtual Images. In Cloud
Computing (CLOUD), 2012 LE. 5th International Conference on
(pp. 277-284). IEEE.

RightScale (n.d) 2014 State of the Cloud Report. Retrieved from http://
assets.rightscale.com/uploads/pdfs/RightScale-2014-State-of-the-
Cloud-Report.pdf

Zhao, L., Liu, A., & Keung, J. (2010). Evaluating cloud platform archi-
tecture with the care framework. In Software Engineering
Conference (APSEC), 2010 17th Asia Pacific (pp. 60-69). IEEE.

Mohan Baruwal Chhetri is a Research Associate with the Centre for
Computing and Engineering Software Systems in the School of Software
and Electrical Engineering, the Faculty of Science, Engineering and Tech-
nology, Swinburne University of Technology, Melbourne, Australia. His
research interests include cloud computing, service oriented computing,

@ Springer

autonomic computing, intelligent agent technology and distributed
systems.

Sergei Chichin is PhD candidate in Intelligent Agent Technology group
(IAT) at the faculty of Science, Engineering and Technology (FSET) in
Swinburne University of Technology. His fields of research include cloud
and service computing, computational mechanism design for autonomic
resource allocation and market pricing, as well as intelligent agent-based
electronic marketplaces.

Quoc Bao Vo is Associate Professor in the School of Software and
Electrical Engineering, the Faculty of Science, Engineering and Technol-
ogy, Swinburne University of Technology, Melbourne, Australia. His
core research interests include autonomous agent and multiagent systems,
automated negotiation, argumentation frameworks, (Al) planning under
uncertainty, market-based mechanisms and auctions, which he applies in
the application areas of services computing and cloud computing, traffic/
transport management and optimisation, energy management, and re-
quirements engineering.

Ryszard Kowalczyk is Full Professor of Intelligent Systems in the
School of Software and Electrical Engineering, the Faculty of Science,
Engineering and Technology, Swinburne University of Technology, Mel-
bourne, Australia. He is also with Systems Research Institute of Polish
Academy of Sciences, Warsaw, Poland. His research interests include
intelligent systems, agent technology and collective intelligence, and their
applications in building and managing open, large-scale,distributed
systems.

http://assets.rightscale.com/uploads/pdfs/RightScale-2014-State-of-the-Cloud-Report.pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2014-State-of-the-Cloud-Report.pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2014-State-of-the-Cloud-Report.pdf

	Smart CloudBench—A framework for evaluating cloud �infrastructure performance
	Abstract
	Introduction
	Primer on benchmarking cloud infrastructure performance
	Benchmarking elements
	Benchmark classification
	Performance characteristics
	Performance tests

	Rationale behind smart CloudBench approach
	Generic architecture of smart CloudBench
	Bundling application benchmarks
	Multi-layer performance measurement

	Smart CloudBench workflow
	Use case scenarios
	TPC-W benchmark application
	Use-case scenario 1: Google compute engine
	Test scenarios

	Discussion of results
	Use-case scenario 2: Deutsche borse cloud exchange marketplace
	Test scenarios
	Discussion of results

	Related work
	Conclusion
	References

