
DOI 10.1007/s10796-013-9438-5

Beast methodology
An agile testing methodology for multi-agent systems based on behaviour
driven development

Álvaro Carrera · Carlos A. Iglesias · Mercedes Garijo

© Springer Science+Business Media New York 2013

Abstract This paper presents a testing methodology to
apply Behaviour Driven Development (BDD) techniques
while developing Multi-Agent Systems (MASs), termed
BEhavioural Agent Simple Testing (BEAST) Methodol-
ogy. This methodology is supported by the open source
framework (BEAST Tool) which automatically generates
test cases skeletons from BDD scenarios specifications.
The developed framework allows the testing of MASs
based on JADE or JADEX platforms. In addition, this
framework offers a set of configurable Mock Agents
with the aim of being able to execute tests while the
MAS is under development. The BEAST Methodology
presents transparent traceability from user requirements
to test cases. Thus, the stakeholders can be aware of
the project status. The methodology and the associated
tool have been validated in the development of a MAS
for fault diagnosis in FTTH (Fiber To The Home) net-
works. The results have been measured in quantifiable
way obtaining a reduction of the tests implementation
time.

Keywords Test · Behaviour-driven development ·
Multi-agent systems · Mock-agents · Agile · Methodology

Á. Carrera (�) · C. A. Iglesias · M. Garijo
Departamento de Ingenierı́a de Sistemas Telemáticos,
Universidad Politécnica de Madrid,
Av. Complutense 30, 28040, Madrid, Spain
e-mail: a.carrera@dit.upm.es

C. A. Iglesias
e-mail: cif@dit.upm.es

M. Garijo
e-mail: mga@dit.upm.es
URL: http://www.gsi.dit.upm.es

1 Introduction

Understanding stakeholders requirements and fulfilling
their desired functionality is considered as the most impor-
tant aspect for a software project to be considered successful
(Agarwal and Rathod 2006). Thus, requirements engineer-
ing plays a key role in the development process. The main
challenges of requirements engineering are (Marnewick
et al. 2011): (i) improving the communication between the
stakeholders and the implementation team and (ii) under-
standing the problem.

Nevertheless, the process of eliciting requirements and
communicating them is still an issue and some authors
consider it the next bottleneck to be removed from the
software development process (Adzic 2009). The main rea-
sons for this communication gap between stakeholders and
the development team are that (Adzic 2009) (i) imperative
requirements are very easy to misunderstand; (ii) even the
obvious aspects are not so obvious and can be misinter-
preted and (iii) requirements are overspecified, since they
are expressed as a solution, and focus on what to do and not
why, not allowing the development team whether discuss if
those requirements are the best way to achieve stakeholders’
expectations.

The context of this article was a research project con-
tracted by the company Telefónica R&D. They requested
us to develop a multi-agent system for fault diagnosis
in their network. From a software engineering point of
view, the main challenges were: (i) they required man-
aging the project using the SCRUM Agile Methodol-
ogy (Schwaber and Sutherland 2009), (ii) the project
involved integration with a wide range of external sys-
tems and the emulation of faulty behaviour of network
transmission and (iii) the development team was composed
of students with different timetables, so they were not

Inf Syst Front (2014) 16:169–182

Published online: 18 July 2013

mailto:a.carrera@dit.upm.es
mailto:cif@dit.upm.es
mailto:mga@dit.upm.es
http://www.gsi.dit.upm.es


working together most of the time. After the first release,
the main problems we encountered were communication
problems between the development team and the cus-
tomer (expert network engineers), communication prob-
lems within the development team, where agents were
being developed in parallel, and lack of automation in
the unit testing process, which involved to test physi-
cal connections with a manual and very time consuming
process.

After analysing several Agent Oriented Software Engi-
neering (AOSE) proposals based on agile principles (Clynch
and Collier 2007; Garcı́a-Magariño et al. 2009), we have
not found any proposal which covers acceptance tests and
provides a good starting point for its application in an
agile context. Thus, this research aims at bridging the gap
between acceptance testing and AOSE. The key motiva-
tion of this paper is to explore to what extent acceptance
testing can benefit MAS development, in order to provide
support in the development of MAS in agile environments.
This brought us to identify the need for an agile testing
methodology for MAS.

The rest of the article is structured as follows. First,
Section 2 discusses related work in the research field
of agile acceptance testing. Section 3 describes a test-
ing methodology for MAS based on BDD techniques.
Section 4 provides an overview of the open source tool that
supports the proposed methodology. Section 5 presents a
worked example of the application of the methodology and
the tool. Section 6 provides an evaluation of the benefits
of the proposed approach. Finally, Section 7 presents some
concluding remarks and discusses potential future work.

2 Related work

In order to bridge the communication gap between devel-
opers and stakeholders, the agile movement has proposed
to shift the focus of requirements gathering. Instead of
following a contractual approach where the requirements
documents is the most important goal, they put emphasis on
improving the communication among all the stakeholders
and developers to have a common understanding of these
requirements. Many approaches have been explored for
requirements gathering, such as the use of ontologies for
modelling the user requirements (Sun et al. 2010) or the
definition of UML models for capturing quality require-
ments (Guerra-Garcı́a et al. 2013). Moreover, given that
requirements will have inconsistencies and gaps (Adzic
2011), it has been proposed to anticipate the detection of
these problems by checking the requirements as soon as
possible, even before the system is developed. In this line,
Martin and Melnik formulated the equivalence hypothesis:
“As formality increases, tests and requirements become

indistinguishable. At the limit, tests and requirements are
equivalent” (Martin and Melnik 2008).

As a result, they have proposed a practice so called agile
acceptance testing, whose purpose is improving commu-
nication by using real-world examples for discussion and
specifications of the expected behaviour at the same time,
which is called Specification by Example (SBE). Different
authors have proposed to express the examples in a tabular
form (Acceptance Test Driven Development (ATDD)1 with
Fit test framework (Mugridge and Cunningham 2005)) or
as scenarios (BDD (North 2007) with tools such as JBehave
(North 2011) or Cucumber (Wynne and Hellesøy 2008)).
In this way, requirements are expressed as acceptance tests,
and these tests are automated. When an agile methodology
is followed, acceptance tests can be checked in an auto-
mated way during each iteration, and thus, requirements
can be progressively improved. Most frameworks provide
a straight forward transition from acceptance tests to func-
tional tests based on tools such as the xUnit family (Hamill
2004). Agile acceptance testing complements Test Driven
Developoment (TDD) practices, and it can be seen as a nat-
ural extension of TDD practices, which have become main-
stream in among software developers. In this way, software
project management can be based not only on estimations
but on the results of acceptance and functional tests. In addi-
tion, these practices facilitate to maintain requirements (i.e.
acceptance tests) updated along the project lifespan.

In the multi-agent field, there have been several efforts
in the testing of final systems. MAS testing present sev-
eral challenges (Nguyen 2009), given that agents are dis-
tributed, autonomous and it is interesting not its individual
behaviour but the emergent behaviour of the multi-agent
system that arises from the interaction among the individ-
ual behaviours. A good literature review of MAS testing can
be found in (Nguyen 2009; Nguyen et al. 2011; Houhamdi
2011). To the best of our knowledge, there is no previous
work dealing explicitly with acceptance testing in AOSE.
Thangarajah et al. (2011) propose to extend the scenar-
ios of the Prometheus Methodology in order to be able to
do testing of scenarios as part of requirements or accep-
tance testing. The work describes also a novel technique
for integrating agent simulation in the testing process. Nev-
ertheless, their proposal of acceptance tests seems targeted
at technical users, given than the scenarios are described
in terms such as percepts, goals and actions. Nguyen et al.
(2010) propose an extension of the Tropos Methodology
by defining a testing framework that takes into account the
strong link between requirements and test cases. They dis-
tinguish external and internal testing, but they focused on
the internal one. External testing produces acceptance tests

1A literate review of ATDD can be found in Haugset and Hanssen
(2008).

170 Inf Syst Front (2014) 16:169–182



for being validated by project stakeholders, while internal
testing produces system and agent tests for being verified by
developers.

3 BEAST methodology

To cover the problems identified in Section 1, we
should identify which requirements should have the testing
methodology. First, our primary concern is that the method-
ology should help in improving the communication between
the stakeholders and the development team, as well as
the communication among the development team. Another
requirement comes from the overall methodology: it should
be compatible and suitable for its application in combina-
tion with agile techniques. Finally, it should not be tied to
a specific MAS tool, and it should be feasible to integrate
with other MAS environments with low effort.

The BEAST Methodology is intended to be used in agile
environments, with special focus on providing traceability
of stakeholder requirements. With this end, requirements are
automated as acceptance tests, which are linked with MAS
testing. The main benefit of this approach is that it improves
the understanding of the real advance of the project from
the stakeholders perspective, and, moreover, it provides a
good basis for reviewing the objectives of each iteration. As
a result, requirements negotiation and specification can be
done in an iterative way, and can be adapted to the improved
understanding of the desired system by both stakeholders
and development team.

BEAST Methodology consists of four phases: Sys-
tem Behaviour Specification, MAS Behaviour Specification,

Agent level testing and MAS level testing, which are applied
in each agile iteration.

Figure 1 depicts these steps and the actors that appear
in each one of them. During the first step, the expected
behaviour of the system is specified by the customer, the
product owner and, at least, one member of the develop-
ment team, as it is described in the SCRUM (Schwaber and
Sutherland 2009) Methodology. This specification is done
following the BDD technique (see Section 3.1). Once the
BDD system specification is available, the product owner
and the designer of the development team must translate
the system specification into agent behaviours specification
(see Section 3.2). The output of this step is a set of BDD
requirements for the MAS that are implemented and tested
in the following step of the methodology (see Section 3.3).
During the agent level testing phase, the methodology pro-
poses the use of mocking techniques to replace other agents
which are not developed yet or external systems that are not
available during the development phase. Once the behaviour
of all agents have been tested, the MAS level testing phase
has two purposes. First of all, once agents have been devel-
oped, integration testing can be done replacing mocks by
the real systems. Second, emergent features should be val-
idated in the developed scenario. Simulation techniques
can complement this phase to simulate different system
configurations.

This article is focused on the first three steps of the gen-
eral methodology. MAS level testing will be addressed in an
article in progress. Nonetheless, we would like to point out
that once mocks objects have been replaced by the real enti-
ties they emulate, business requirements can be tested on
the real system. Thus, acceptance testing is straight forward,

Fig. 1 Beast testing
methodology

Inf Syst Front (2014) 16:169–182 171



and the expectations of the stakeholders can be checked
without discussing about ambiguities or omissions in the
requirements document. The main benefit of BDD tech-
niques is the continuous validation of user requirements
in each iteration. This helps to refine iteratively require-
ments based on the current project advance and available
resources.

Finally, Section 3.4 shows the mapping rules that ensure
the traceability of the test cases with the project require-
ments. These mapping rules connect the outputs of every
step of the methodology with the input of the next one.

3.1 System behaviour specification

The System Behaviour Specification phase aims at pro-
viding a communication bridge between the project stake-
holders and the development team during requirements
gathering. This phase follows the BDD technique (North
2007). System behaviours are derived from the business
outcomes that the system intends to produce. These busi-
ness outcomes should be prioritized by the stakeholders.
Then, business outcomes are drilled down to feature sets.
The feature sets decompose a business outcome into a set
of abstract features, which show what should be done to
achieve a business outcome. These feature sets are the result
of discussions between stakeholders and developers. Fea-
tures are described using User Stories. Then, User Stories
are described in scenarios for each particular instantiation
of a User Story. In other words, the scenarios exemplify a
User Story to cover all possible variations of the presented
feature. Thus, these scenarios are the basis of acceptance
tests.

Instead of using plain natural language, BDD proposes
the usage of textual templates. Figure 2 presents the tem-
plate for a User Story. This template presents a feature, i.e.
a requirement, of the system and the benefit that this fea-
ture has from the point of view of a specific role, such as a
final client or a system administrator. Figure 3 presents the
template for a scenario. A set of scenarios must exemplify
a User Story giving specific situations to well understand
the feature and to test if the system meets the requirement.
These templates should be instantiated by the pertinent con-
cepts. These concepts are part of the ubiquitous language
(Evans 2004) which establishes the common terminology
used by stakeholders and developers. Thus, these terms will
be used in the implementation, helping in reducing the gap
between technical and business terminology.

3.2 MAS behaviour specification

This phase has the goal of architecturing the multi-agent
system specifying all agent roles and the interaction among
them. Based on the features identified in the previous phase,

Fig. 2 User story template (North 2007)

the new features are realised with the MAS system. In order
to maintain traceability and improve communication within
the development team, we have found useful to use the same
approach than in the previous phase for specifying the MAS
behaviour. Thus, business benefits are described by features
which are assigned to agent roles. The templates presented
in Figs. 2 and 3 are used by the MAS designer in this
phase to create Agent Stories. These Agent Stories describes
the expected behaviour of an agent given a context and an
event to achieve a concrete goal. The described scenarios
are translated into test cases in the following phase of the
methodology. These scenarios must represent all behaviours
of an agent, both reactive and proactive. As the proposed
methodology is focused on tests acceptability, no restriction
is added for designing the MAS using any design method-
ology. Thus, methodologies, such as Ingenias (Pavon et al.
2005), Prometheus (Padgham and Winikoff 2003), MAS-
CommonKADS (Iglesias et al. 1998) or Gaia (Wooldridge
et al. 2000), can be used to design and/or develop the MAS.
In other words, the methodology presented in this paper is
an agile testing methodology to ensure the communication
among stakeholders and developers and no design or imple-
mentation restrictions are proposed. So, the MAS designer
has the responsibility to translate User Stories to Agent Sto-
ries describing all agent roles in the system and all their
behaviours using any MAS design methodology.

As previously, features can be obtained in different con-
texts which are described as scenarios, which can involve
one or more agent roles in the case of cooperative scenar-
ios. In the case of emergent features coming from emergent
behaviour, they will be only verified when the full system
has been developed. This kind of emergent behaviour will
be specified at MAS level in the agent stories, instead of for
a particular agent role.

Fig. 3 Scenario template (North 2007)

172 Inf Syst Front (2014) 16:169–182



This phase could be skipped and system behaviours could
be directly translated into agent unit tests (Section 3.3). In
fact, our first version of the framework did not include this
step. Nevertheless, we have found it very useful in order to
make explicit how stakeholders specifications are translated
into MAS requirements, and to provide better insight for
developers about them.

3.3 Agent level testing

Based on the requirements obtained during the previous
phase, agents are designed and developed. For this purpose,
any of the available AOSE methodologies can be used for
modelling and implementing agents. Since we are focused
on testing aspects, this phase has two main steps (see Fig. 1):
(i) developing mocks of the external systems that an agent
interacts with and (ii) developing the unit tests of every
agent. Note that an agent that is being tested is denoted as
Agent Under Test (AUT).

The first step requires to simulate the intended behaviour
of the external systems according to the scenarios. These
scenarios are described in the previous phase using mocks.
The second phase implements the tests configuring the
developed mocks.

There have been several research works developing the
concept of using mock testing for agent unit testing. Coelho
et al. (2006) proposed a framework for unit testing of MAS
based on the use of Mock Agents on top of the multiagent
framework JADE (Bellifemine et al. 2007). They proposed
to develop one Mock Agent per interacting agent role. Mock
Agents were programmed using script-based plans which
collect the messages that should be interchanged in the
testing scenarios. Tiryaki et al. (2007) proposed the frame-
work SUnit on top of the multiagent framework Seagent
(Dikenelli et al. 2005). They extended JUnit testing in order
to cope with agent plan structures testing. Zhang et al.
(2011) generated automatically Mock Agents from design

diagrams developed within the Prometheus Methodology
(Padgham and Winikoff 2003).

We propose to use a mock testing technique for sim-
ulating external systems, being agents or any other sys-
tem. As we are interested in simulating the behaviour of
agents, we have defined several types of Mock Agents
which provide a simple FIPA interface. Three basic mock
patterns have been defined: mock that simulates answer-
ing messages (ResponderMockAgent), mock that simulates
receiving messages without providing an answer (Listen-
erMockAgent) and mock that receives a message from
one agent and sends a new message to a different agent
(MediatorMockAgent). Figure 4 depicts the interaction
among the proposed Mock Agents, the Test Case and
the AUT.

The ResponderMockAgent has been designed to reply
incoming messages with predetermined ones. This can be
used to simulate external services or agents, that have to
connect to those services. So, an AUT can interact with this
type of Mock Agent to get external information in the same
way as the final MAS. The MediatorMockAgent has been
designed to act as a filter of messages. In other words, this
Mock Agent receives messages from an AUT and sends
a different message to other AUT. So, this type of Mock
Agent can be used as processes that have to perform some
actions with the information enveloped in the first message
and have to inform to another agent. Finally, the Listen-
erMockAgent has been designed as a mailbox. The Mock
Agent can be used to check if the content of a message that
is sent by an AUT.

The proposed BEAST Methodology defines these three
types of agents as they cover the most general commu-
nications among agents in a MAS. However, other Mock
Agents can be designed if it is a need for the project require-
ments. For example, the proposed ResponderMockAgent
could query a database to reply the message with real data
that would be used by the AUT.

Fig. 4 BEAST mock agents

Inf Syst Front (2014) 16:169–182 173



Fig. 5 Outcomes of BEAST phases

3.4 Providing traceability

The traceability from user requirements to executable tests
is one of the keys of success in any software project
(Almeida et al. 2007). To ensure this traceability, BEAST
Methodology proposes a set of mapping rules that con-
nect the outcomes of all phases of the methodology.
Figure 5 shows that the User Stories obtained in the System
Behaviour Specification phase are used as input in the MAS
Behaviour Specification phase. In this phase, an User Story
is translated to one or more Agent Stories. Both User Sto-
ries and Agent Stories follow the same template format (see
Figs. 2 and 3). Finally, the scenarios of the Agent Stories are
implemented to test the developed MAS. Thus, a User Story
is break down in Agent Stories. An Agent Story is composed
by a set of scenarios that are implemented as test cases. So,
the stakeholder knows automatically which requirement is
not fulfilled when a test fails.

Following the JUnit framework, both User and Agent
Stories can be tested at once using TestSuites to execute all
test cases related with. A TestSuite is a collection of test
cases to show if a software has a specified behaviour. So,
the set of scenarios which compose a story are joint in Test-
Suite to check if a story feature is satisfied. Figure 6 shows
an example of traceability in BEAST Methodology.

4 BEAST tool

To support the methodology detailed in Section 3, an open
source tool has been developed and hosted in a Github
repository, named BEAST Tool.2 This tool aims at provid-
ing assistance in the application of the BEAST Methodol-
ogy. The tool translates story and scenario templates (see
Fig. 2 and 3 respectively) into Java templates integrated with
an extended version of JBehave framework (North 2011).
The tool build process has been automated with Apache

2http://github.com/gsi-upm/BeastTool/

Maven (Foundation TAS 2011). One of the design prin-
ciples of BEAST Tool has been that it must be valid for
different MAS platforms. By now, the current version of
the tool supports JADEX (Braubach et al. 2005) and JADE
(Bellifemine et al. 2007) frameworks, but it can be extended
to other frameworks with low effort as it is explained below
in Section 4.3.

The BEAST Tool is structured as follows. A reader (or
parser) package is used to manage the translation of user and
agent stories to Java code as it is shown in Section 4.1. As
JBehave (North 2011) is a framework to apply BDD in Java
software development, it has been extended to apply BDD
on MAS development and to design the BEAST Test Case
model shown in Section 4.2. Finally, the adaptation of the
tool to the MAS platforms is defined in Sections 4.3 and 4.4.

4.1 Story parser

There are two different types of stories in the proposed
methodology (Section 3): User Story and Agent Story.

Following the BEAST Methodology, the first step is the
System Behaviour Specification when the stakeholders and
the development team (or at least one or two people of the
development team) defines a set of User Stories in BDD
format (see Figs. 2 and 3). Then, these User Stories are
processed with the parser included in BEAST Tool and a
TestSuite is created for every User Story.

Once the User Stories are defined, the designer defines a
set of Agent Stories that must fulfill the requirements spec-
ified in the User Stories. These Agent Stories contain the
specification of all behaviours of any system agent. Then,
the parser is used again to generate a new TestSuite per
Agent Story and a set of BEAST Test Case templates (one
per scenario). The parser is configured to generate BEAST
Test Case templates or not depending on what type of story
is being parsed (see Fig. 7).

To define which Agent Story is related with an User
Story, a manual matching process must be carried out by
the designer. During this process, the designer must edit
the User Stories TestSuites with the corresponding Agent
Stories TestSuites or their specific scenarios. After this
matching process, an User Story is completely traceable
to the BEAST Test Cases that implement a concrete test
scenario.

4.2 BEAST test case model

Our approach to agent level testing has consisted of extend-
ing JUnit framework in order to be able to test MAS
systems. Mapping rules have been defined in order to pro-
vide full traceability of acceptance tests defined previously
in BDD format. Thus, JBehave has been extended with this
purpose. Mapping rules (Solis and Wang 2011) provide a

174 Inf Syst Front (2014) 16:169–182

http://github.com/gsi-upm/BeastTool/


Fig. 6 Example of traceability
in BEAST methodology

standard mapping from scenarios to test code. In JBehave
framework, a user story is a file containing a set of scenar-
ios. The name of the file is mapped onto a user story class.
Each scenario step is mapped onto a test method using a
Java annotation.

BEAST Tool translates a scenario (see Fig. 3) to a
test case class, termed BEAST Test Case, which extends
JUnitStory class of JBehave framework and contains three
key methods that directly related with the three parts of a
scenario (“Given-When-Then”).

The three methods that a tester must implement are
depicted in Fig. 8. The setUp method represents the “Given”
scenario condition. This method typically initialises agents
and configures their state (goals, beliefs, . . . ) as well as
initialises the environment. The launch method represents
the “When” scenario condition. This method generates
and schedules the trigger event to start the test. The ver-
ify method represents the “Then” scenario condition. The

Fig. 7 Java classes generated in the parsing process

expected states, such as goals or beliefs, are checked in this
method once test execution is over.

BEAST Test Case has several methods that allows the
interaction with a generic interface to interact with the MAS
platform. This interface offers some facilities to prepare a
concrete state of the agent. For example, external messages
can be sent to the MAS platform, agents can be started and
stopped, or internal information of an Agent Under Test
(AUT) can be configured, such as beliefs or goals.

4.3 MAS platform interface

To provide MAS platform independence, three different
interfaces have been defined to interact with the MAS plat-
form from a BEAST Test Case. Each of them is responsible
of different aspects on the platform management. The first
one, Connector interface, provides an abstract interface to
agent managing functions, such as launch platform or start
an agent. The second one, Messenger interface, declares
methods for sending and receiving messages to or from the
platform respectively. Finally, the third one, Agent Intro-
spector interface, provides access to the agent model, such
as goals and beliefs.

Fig. 8 BEAST test Case class

Inf Syst Front (2014) 16:169–182 175



To integrate BEAST Tool with any MAS platform, these
three interfaces must be implemented to get access to their
agents. In the current version of BEAST Tool, JADE 4.0
(Bellifemine et al. 2007) and JADEX 2.0 (Braubach et al.
2005) are completely integrated.

To make easier the generation of BEAST Test Case
classes (see Section 4.1), a testing interface selector has
been defined, so called PlatformSelector. This selector pro-
vides the proper platform access from a BEAST Test Case
to the MAS platform as shown in Fig. 9.

4.4 Mock definition

BEAST Methodology proposes three basic mock patterns
for messaging (see Section 3.3). As these agents have to
execute in the MAS platform, they have been implemented
for JADE 4.0 and JADEX 2.0 with mock behaviours. So, a
BEAST Mock Agent is an agent that contains mock plans
or mock behaviours and can be configured and started from
a BEAST Test Case.

After analysing available mocking frameworks, we
have selected Mockito (Mockito Project 2012) framework,
because of its easiness to be learnt, its popularity and its
wide coverage of mocking functionalities. Thus, we have
extended Mockito in order to be able to use it in MAS envi-
ronments. In addition, the mocking framework allows an
easy configuration of the mock objects (or agents), with pat-
terns such as when(< some input >).thenReturn(< some
answer >). Mock Agents allow the specification of the sim-
ulated behaviour using Mockito constructions. Here follows
an example.

when(mockAgent.processMessage(

eq(“REQUEST”),

eq(“ConnectionLossRate”)))

.thenReturn(“INFORM”, “LossRate = 0.2”);

Using this type of constructions, a tester can simulate
the behaviour of Mock Agents as complex as required. The
tester can consider a Mock Agent as a black box, i.e. the
inputs and the outputs are known but the internal process
is unknown. Thus, the use of Mock Agents is not restricted

Fig. 9 Beast test case

to the messaging. BEAST Methodology presents only three
Mock Agents for messaging (see Section 3.3) because those
agents are completely generic models and can be used in
any MAS development. But, the tester can implement other
specific Mock Agents for a concrete project to make easier
and faster its work as this agents can be configured with a
few lines of code.

5 Case study: MAS for fault diagnosis on FTTH
scenario

To properly frame the proposed BEAST Technique, a net-
work management project has been chosen as case study.
In this example, the stakeholder is a network operator com-
pany which wants a tool to reduce the management cost of
FTTH networks. The first task of the project was to write
a high level project proposal and to explore different pos-
sible approaches to solve the problem. The result of this
phase was that the solution that best fits the problem is a
MAS architecture. SCRUM Agile Methodology (Schwaber
and Sutherland 2009) and BEAST Methodology, supported
by the BEAST Tool, was used to manage the progress of the
project.

For exemplification purposes, it is exposed how tests
can be implemented in JADEX (Braubach et al. 2005)
framework.

Thus, one of the next tasks that the development team
had to do was to arrange a meeting with the stakeholder to
specify a set of requirements. These requirements written in
BDD format (see Section 3) as User Stories. Table 1 shows
an example of one gathered requirement.

Note that the stakeholder does not know anything about
the solution, in this case, a Multi-Agent System (MAS).
So, the written requirements, or User Stories, do not
refer at all to the final agents. The translation from these

Table 1 Example of user story

Story: Time-to-repair cut down

As a operator network,

I want to have a system to diagnose root cause of faults

So that time-to-repair is below the SLA with the customer.

Scenario: System diagnoses a QoS decreasing failure

Given a user that has a Video On Demand (VoD) service connected

through an FTTH access network and the user requests a film

from the streaming server,

When loss rate is higher to 1%, latency is higher to 150ms or jitter

is higher to 30ms,

Then the system must diagnose the root cause of fault is

‘Damaged Fibre’, ‘Inadequate Bandwidth’ or ‘Damaged Splitter’.

176 Inf Syst Front (2014) 16:169–182



requirements to agents is done by the designer who writes
the Agent Stories based on the User Stories, as shown in
Section 3.4.

The designed solution had to work in a Fiber To The
Home (FTTH) scenario that is composed by a set of specific
devices. In an FTTH network, the optical fiber reaches the
boundary of the living space, such as a box on the outside
wall of a home. In these networks, there are some passive
elements, such as splitters or fibers, and active elements,
such as Optical Network Terminal (ONT), Optical Line
Termination (OLT) or ethernet routers. Figure 10 depicts a
standard structure of an FTTH network. This network archi-
tecture usually delivers triple-play services directly from the
central office of the operators. Furthermore, the final sys-
tem should deal with devices from different vendors and
different access protocols, which was an issue in the project.

To improve the resource assignment, several developers
were assigned only to implement the access to the FTTH
devices, such as ONT or OLT, to collect information. Then,
the rest of the developers had to implement the agents to
meet the Agent Stories. As some key elements of the final
system were developing in parallel, the agents had to be
tested using Mock Agents. The final MAS was too com-
plex to be shown in this section, so a simplified scenario
is presented to exemplify the use of the methodology. We
are going to focus only on the Agent Stories exposed in
Table 2. These Agent Stories define the behaviour of a Diag-
nosis Agent that must be able to diagnose the root cause of
fault and it is directly related with the User Story shown in
Table 1.

Every story has one scenario to exemplify the require-
ment defined in its story. The first story defines the goal
that the agent has to perform a diagnostic process as soon
as possible for the devices under its supervision. The first
scenario exemplifies that requirement with the diagnosis of
a concrete type of device. This scenario is an example of
how to test a reactive behaviour, since the agent has a trig-
ger to start a new goal and it must achieve it as soon as

Table 2 Examples of agent stories

Story: Diagnosis process triggered by a symptom

As a Diagnosis Agent,

I want to process a FIPA-INFORM message with a detected

symptom,

So that the system under my supervision is diagnosed as soon as

possible.

Scenario: Diagnosis Agent diagnoses Damaged Splitter

Given a VoD streaming session,

When a ‘high loss rate’ symptom is received from a Probe Agent

And two or more geographically close users have loss rate higher

to 1%,

Then the Diagnosis Agent must infer that the root cause of the

problem is ‘Damaged Splitter’.

Story: SLA fulfilment

As a Diagnosis Agent,

I want to report issue status before a given deadline,

So that I achieve my goal of fulfilling SLA restrictions.

Scenario: Diagnosis Agent meets the SLA

Given an SLA is contracted with a customer

And the Diagnosis Agent is aware of SLA commitments,

When that customer is current on payments

And any diagnosis is in progress,

Then the Diagnosis Agent must give a response in time that fulfils the

SLA time restrictions.

possible. The second story defines the goal of fulfil the con-
ditions contracted with the final user in the Service Level
Agreement (SLA). The second scenario specifies the goal
of satisfying a concrete time restriction contracted with the
customer. This scenario is an example of how to test a proac-
tive behaviour, since the agent tries continuously achieve a
goal if the conditions are met.

Fig. 10 Architecture of an
FTTH network

Inf Syst Front (2014) 16:169–182 177



Fig. 11 Overview of agents involved in the exemplified scenario

In the following paragraphs, the first scenario is worked
out to understand the proposed testing methodology. In that
scenario, there are three type of agents: a Probe Agent
responsible for monitoring Video On Demand (VoD) ses-
sions, a Expert Agent to collect metrics from other lines and
the Diagnosis Agent to request and process the available
information to sum up an hypothesis. The interaction among
these three types of agents is shown in Fig. 11.

As all agents were developed in parallel, the Probe agent
and the Expert agents had not developed yet. Thus, the
mocking facility of BEAST Tool was used. As previously
introduced, BEAST Tool includes several Mock patterns
(see Section 3.3). In this case, the Mediator Mock Agent is
suitable for simulate Probe Agent to send symptoms to the
Diagnosis Agent and the Responder Mock Agent is suitable
for simulate Expert agents. Thus, this mock is configured
for sending symptoms and network information respectively
to simulate both agent roles. Finally, the Diagnosis Agent
is the Agent Under Test (AUT) for this scenario. The sce-
nario starts when the Probe Mock Agent sends a message
to the Diagnosis Agent (AUT). Then, the Diagnosis Agent
requests information about the status of other subscriber
lines. Finally, the tester checks if the AUT has got the right
hypothesis of root cause of fault.

The implementation of the scenario as test case is
developed in a BEAST Test Case class. Figure 12 rep-
resents the interaction of the BEAST Test Case with the
Mock Agent and the AUT in sequence diagram format. As

shown in Section 4.2, there are three methods that a tester
must implement to complete a test case. Table 3 shows
the required code to implement the final test for agents
that run on JADEX 2.0. Note that some comments and
other Java code lines, such as logging lines or constants
definition, have been omitted in the table to clarify the
code.

Several methods, such as startAgent, sendMessageToA-
gent or checkAgentsBeliefIsEqualTo, are provided by the
parent class (i.e. BeastTTestCase class) that interacts with
the MAS Platform interface to access to the agents, as
described in Section 4.3.

As SCRUM Agile Methodology (Schwaber and
Sutherland 2009) had been chosen to manage the project
progress, the result of these tests are shown to the
stakeholder (Product Owner in SCRUM terminology) peri-
odically during check progress meeting (Sprint Reviews in
SCRUM terminology). This helps to the Product Owner to
know the status of the project and to modify the User Sto-
ries to represent better the idea of the stakeholder that is not
always well translated in the initial User Stories. Further-
more, the traceability from an User Story to a test case (see
Section 3.4) makes easy to know which features or what test
cases must be modified to fits the updated requirements.

6 Evaluation

The results of the proposed BEAST Tool have been eval-
uated in a quantifiable way using source code metrics. In
particular, we have measured the number of test code lines
required to implement tests. One of the most important ben-
efits of developed BEAST Tool is that automatically creates
a wrapper of the MAS platform and allows developers to
interact with a friendly interface simplifying the implemen-
tation of tests. These metrics are strongly associated with

Fig. 12 Steps of the
exemplified test case

178 Inf Syst Front (2014) 16:169–182



Table 3 Implementation of the
exemplified scenario in a
BEAST Test Case

public class DiagnosisAgentDiagnosesDamagedSplitter extends BeastTestCase {

public void setup(){

// Configure Probe Mock Agent

AgentBehaviour mockProbe = mock(AgentBehaviour.class);

when(mockBeh.processMessage(eq(INFORM),

eq(“Generate High Loss Rate Symptom”)))

.thenReturn(“DiagnosisAgent”, INFORM, “Loss rate=0.15”);

MockConfiguration mockConfProbe = new MockConfiguration();

mockConf.addBehaviour(mockConfProbe);

// Configure Expert Mock Agent

AgentBehaviour mockExpert = mock(AgentBehaviour.class);

when(mockBeh.processMessage(eq(REQUEST),

eq(“Loss Rate - User Line ID: 14”)))

.thenReturn(INFORM, “Loss rate=0.09”);

MockConfiguration mockConfExpert = new MockConfiguration();

mockConf.addBehaviour(mockConfExpert);

// Start Diagnosis Agent

startAgent(“DiagnosisAgent”,“DiagnosisAgent.agent.xml”);

// Start mocks agents

MockManager.startMockJadexAgent(“ProbeMockAgent”,“MediatorMock.agent.xml”,

mockConfProbe,this);

MockManager.startMockJadexAgent(“ExpertMockAgent”,“ResponderMock.agent.xml”,

mockConfExpert,this);

}

public void launch() {
sendMessageToAgent(“ProbeMockAgent”,INFORM,“Generate High Loss Rate Symptom”);

setExecutionTime(2000);// Waiting time in milliseconds

}

public void verify() {
checkAgentsBeliefIsEqualTo(“DiagnosisAgent”,ROOT CAUSE,DAMAGED SPLITTER);

}
}

the test implementation time that a developer consumes dur-
ing this phase of development. The savings in number of
code lines and in percentage are shown because they are
quantifiable objective data, in comparison the time to
develop a test that depends on the programming skills of the
developer.

BEAST Tool is already adapted to test JADE
(Bellifemine et al. 2007) and JADEX (Braubach et al. 2005)
MASs and the evaluation process has been carried out for
both platforms. To simplify the comparison, twelve differ-
ent test cases have been chosen for this evaluation. These

test cases are quite different among them, different Mock
Agents are used, different number of agents are involved
in each one of them and the interaction protocols among
agents are different too.

Note that the vertical axis of the graphics shown in
Fig. 13a and b are in logarithmic scale. In both graph-
ics, columns represent the code lines of AUT and the lines
represent the code lines required to implement the test
with (solid line) and without (dashed line) BEAST Tool.
Figure 13a shows the benefits of BEAST Tool in number
of code lines required to implement the same test using

Inf Syst Front (2014) 16:169–182 179



(a) JADEX evaluation (b) JADE evaluation

Fig. 13 Test code lines (Y axis) per Test Case (X axis) comparison for JADEX (a) and JADE (b)

BEAST Tool and without it for JADEX. The improve-
ment is, in average, 247.91 lines per test, i.e. a saving
of 97.22 %. Figure 13b shows the same comparison for
JADE with similar test cases. The improvement in this
case is, in average, 262,08 lines per test, i.e. a saving
of 97,36 %.

Nevertheless, the main advantages of the BEAST
approach do not come from the saving in coding tasks. The
main benefit of our approach is the significant increase in
communication between the stakeholders of the software
project and the development team, thanks to the usage of
an ubiquitous language and its formalisation using BDD
templates. The traceability from user requirements to the
executable tests are a key point to know which tests must
be executed to know if the system meets a concrete require-
ment. Thus, the stakeholder can check easily the status of
the project at each iteration.

7 Conclusions and future work

This article has proposed an agile testing methodology
for Multi-Agent Systems based on BDD, termed BEAST
Methodology, and a support tool, called BEAST Tool.

The main conclusion of this research is that the BDD
approach has been suitable for its application in MAS devel-
opment. Furthermore, the use of BDD facilitates the com-
munication between stakeholders and designers or develop-
ers which, usually, it is a gap between both of them. To
solve this problem, BEAST Methodology establishes that
stakeholders must generate a set of behaviour specifications
that describes the whole system. Later, the MAS design-
ers must generate the set of agent behaviour specifications
that fits the solution of the problem. These behaviours in
BDD format are translated automatically with BEAST Tool
to JUnit test cases. During this process, text plain in natural
language is always available to facilitate the specification
compression and communication between both stakeholders
and development team.

Other common issue in MAS development is the need
of other agents to test the behaviour of an AUT. As these
agents are not developed yet, BEAST uses Mock Agents to
allow developers to ensure the correct behaviour of an AUT.
To add flexibility to mocking technique, Mockito (Mockito
Project 2012) framework has been integrated with BEAST
Tool to allow the use of the facilities of the mocking frame-
work, such as mock agents, mock web services or mock Java
objects.

Besides, the use of MAS testing techniques or method-
ologies are commonly strongly connected to a specific
MAS platform or design methodology (Coelho et al. 2006;
Gómez-Sanz et al. 2009; Nguyen et al. 2008). BEAST Tool
is easily adaptable for MAS frameworks as there is a clear
interface between the tool and the MAS platform. Cur-
rently, JADE 4.0 (Bellifemine et al. 2007) and JADEX 2.0
(Braubach et al. 2005) are supported and has no restric-
tion about the design methodology, as BEAST Methodol-
ogy deals with the specification of the system behaviours
and with the tests to check if the final agents meet those
requirements. The internal design of the agents that com-
pose the MAS is not covered by the proposed testing
methodology.

For future work, we will study in depth the use of sim-
ulations for MAS Level Testing (see Section 3) in order to
cover all possible test like non-functional tests, for example,
performance of all agents working together or the achieve-
ment of high level goals that can be only in a collaborative
way. For this purpose, we plan to explore some interest-
ing simulation techniques (Uhrmacher et al. 2009) and their
application using MASON framework (Luke et al. 2005)
will be explored. That framework has been chosen since our
group has a wide experience using it and its integration with
our developed BEAST Tool (and with JADE and JADEX)
is simpler since it is written in Java. We are interested in
simulate external systems to reproduce the environment in
where the MAS must execute. Obviously, the MAS can-
not be deployed until it is completely tested with guaranties
that it works. So, the simulated environment can be used

180 Inf Syst Front (2014) 16:169–182



to perform many type of tests, such as the existence of
non-expected behaviour in the final system (with all agent
roles working at the same time) or stress tests to ensure
the performance of the developed MAS in real-simulated
situations.

We also plan to improve BEAST Tool to support other
MAS platforms, like JASON (Bordini et al. 2007), to maxi-
mize the scope of the developed tool.

Finally, other interesting issue is to evaluate other non-
BDD approaches for system specifications provided by a
stakeholder, like FIT (Mugridge and Cunningham 2005),
that support the specification of test cases with concrete
examples that provide real data. This first step of the
methodology is really important and the capability for stake-
holders to choose the format of system specifications can be
a key point for a successful project.

Acknowledgments This research work is supported by the Ministry
of Economy and Competitiveness under the R&D project CALISTA
(TEC2012-32457). The authors want to acknowledge the cooperation
of Telefónica R&D, and Javier Garcı́a-Algarra, Javier Garcı́a-Ordás,
Beatriz Fuentes, Raquel Toribio and Andrés Sedano-Frade.

References

Adzic, G. (2009). Bridging the communication gap: specification by
example and agile acceptance testing. UK: Neuri Limited.

Adzic, G. (2011). Specification by example: how successful teams
deliver the right software, 1st edn. Greenwich: Manning Publica-
tions Co.

Agarwal, N., & Rathod, U. (2006). Defining success for soft-
ware projects: an exploratory revelation. International Journal of
Project Management, 24(4), 358–370.

Almeida, J., Iacob, M.E., Eck, P. (2007). Requirements traceabil-
ity in model-driven development: applying model and transfor-
mation conformance. Information Systems Frontiers, 9(4), 327–
342.

Bellifemine, F.L., Caire, G., Greenwood, D. (2007). Developing multi-
agent systems with JADE, Wiley series in agent technology (Vol.
5). West Sussex:Wiley.

Bordini, R.H., Hübner, J.F., Wooldridge, M. (2007). Programming
multi-agent systems in AgentSpeak using Jason (Vol. 8). West
Sussex:Wiley.

Braubach, L., Pokahr, A., Lamersdorf, W. (2005). Jadex: A BDI-
agent system combining middleware and reasoning. In R.
Unland, M. Calisti, M. Klusch, M. Walliser, S. Brantschen,
T. Hempfling (Eds.), Software agent-based applications, plat-
forms and development kits. Whitestein series in software agent
technologies and autonomic computing (pp. 143–168). Basel:
Birkhäuser.

Clynch, N., & Collier, R. (2007). Sadaam: software agent
development-an agile methodology. In Proceedings of the work-
shop of languages, methodologies, and development tools for
multi-agent systems (LADS007). Durham.

Coelho, R., Kulesza, U., von Staa, A., Lucena, C. (2006). Unit testing
in multi-agent systems using mock agents and aspects. In Proceed-
ings of the 2006 international workshop on software engineering
for large-scale multi-agent systems, SELMAS 06 (pp. 83–90). New
York: ACM.

Dikenelli, O., Erdur, R.C., Gumus, O. (2005). Seagent: a platform for
developing semantic web based multi agent systems. In Proceed-
ings of the fourth international joint conference on autonomous
agents and multiagent systems, AAMAS ’05 (pp. 1271–1272). New
York: ACM.

Evans, E. (2004). Domain-driven design: tackling complexity in the
heart of software. Boston:Addison-Wesley Professional.

Foundation TAS (2011). Apache maven project. Accessed 23 October
2012. http://maven.apache.org.

Garcı́a-Magariño, I., Gómez-Rodrı́guez, A., Gómez-Sanz, J.,
González-Moreno, J. (2009). Ingenias-scrum development pro-
cess for multi-agent development. In International symposium
on distributed computing and artificial intelligence 2008 (DCAI
2008) (pp. 108–117). Springer.

Gómez-Sanz, J., Botı́a, J., Serrano, E., Pavón, J. (2009). Testing and
debugging of MAS interactions with INGENIAS. In M. Luck,
& J. Gomez-Sanz (Eds.), Agent-oriented software engineering
IX. Lecture notes in computer science (Vol. 5386, pp. 199–212).
Heidelberg: Springer.

Guerra-Garcı́a, C., Caballero, I., Piattini, M. (2013). Capturing data
quality requirements for web applications by means of dqwebre.
Information Systems Frontiers, 15(3), 433–445.

Hamill, P. (2004). Unit test frameworks, 1st edn. California:O’Reilly.
Haugset, B., & Hanssen, G. (2008). Automated acceptance testing:

A literature review and an industrial case study. In Agile, 2008.
AGILE ’08. Conference (pp. 27–38).

Houhamdi, Z. (2011). Multi-agent system testing: a survey. Interna-
tional Journal of Advanced Computer Science and Applications
(IJACSA), 2(6), 135–141.

Iglesias, C., Garijo, M., González, J., Velasco, J. (1998). Analysis
and design of multiagent systems using mas-commonkads. In M.
Singh, A. Rao, M. Wooldridge (Eds.), Intelligent agents IV agent
theories, architectures, and languages. Lecture notes in computer
science (Vol. 1365, pp. 313–327). Berlin: Springer.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G. (2005).
Mason: a multiagent simulation environment. Simulation, 81(7),
517–527.

Marnewick, A., Pretorius, J.H., Pretorius, L. (2011). A perspec-
tive on human factors contributing to quality requirements:
a cross-case analysis. In 2011 IEEE international conference
on industrial engineering and engineering management (IEEM)
(pp. 389–393).

Martin, R., & Melnik, G. (2008). Tests and requirements, requirements
and tests: a möbius strip. IEEE Software, 25(1), 54–59.

Mockito Project (2012). Mockito framework. Accessed 25 March
2012. http://mockito.org.

Mugridge, R., & Cunningham, W. (2005). Fit for developing software:
framework for integrated tests. Upper Saddle River, NJ:Prentice
Hall.

Nguyen, C.D. (2009). Testing techniques for software agents. PhD
thesis. International Doctorate School in Information and Commu-
nication Technologies.

Nguyen, D., Perini, A., Tonella, P. (2008). A goal-oriented software
testing methodology. In M. Luck, & L. Padgham (Eds.), Agent-
oriented software engineering VIII. Lecture notes in computer
science (Vol. 4951, pp. 58–72). Berlin: Springer.

Nguyen, C.D., Perini, A., Tonella, P. (2010). Goal oriented test-
ing for mass. International Journal of Agent-Oriented Software
Engineering, 4(1), 79–109.

Nguyen, C., Perini, A., Bernon, C., Pavón, J., Thangarajah, J. (2011).
Testing in multi-agent systems. In M.P. Gleizes, & J. Gomez-
Sanz (Eds.), Agent-oriented software engineering X. Lecture notes
in computer science (Vol. 6038, pp. 180–190). Berlin: Springer.

North, D. (2007). Introducing: behaviour-driven development.
Accessed 28 March 2012. http://dannorth.net/introducing-bdd.

Inf Syst Front (2014) 16:169–182 181

http://maven.apache.org
http://mockito.org
http://dannorth.net/introducing-bdd


North, D. (2011). JBehave. A framework for behaviour driven devel-
opment (BDD). Accessed 28 March 2012. http://jbehave.org.

Padgham, L., & Winikoff, M. (2003). Prometheus: a methodology for
developing intelligent agents. In F. Giunchiglia, J. Odell, G. Weiß
(Eds.), Agent-oriented software engineering III. Lecture notes in
computer science (Vol. 2585, pp. 174–185). Berlin: Springer.

Pavon, J., Gomez-Sanz, J.J., Fuentes, R. (2005). The ingenias method-
ology and tools. Agent-Oriented Methodologies, 9, 236–276.

Schwaber, K., & Sutherland, J. (2009). Scrum guide. Scrum Alliance,
19(6), 21.

Solis, C., & Wang, X. (2011). A study of the characteristics of
behaviour driven development. In 2011 37th EUROMICRO con-
ference on software engineering and advanced applications
(SEAA) (pp. 383–387).

Sun, L., Ousmanou, K., Cross, M. (2010). An ontological mod-
elling of user requirements for personalised information provision.
Information Systems Frontiers, 12(3), 337–356.

Thangarajah, J., Jayatilleke, G., Padgham, L. (2011). Scenarios for
system requirements traceability and testing. In The 10th interna-
tional conference on autonomous agents and multiagent systems-
international foundation for autonomous agents and multiagent
systems, AAMAS ’11 (Vol. 1, pp. 285–292). Richland.

Tiryaki, A., ztuna, S., Dikenelli, O., Erdur, R. (2007). SUNIT: a unit
testing framework for test driven development of multi-agent sys-
tems. In L. Padgham, & F. Zambonelli (Eds.), Agent-oriented
software engineering VII. Lecture notes in computer science
(Vol. 4405, pp. 156–173). Berlin: Springer.

Uhrmacher, A.M., Uhrmacher, A., Weyns, D. (2009). Multi-agent
systems: simulation and applications. Boca Raton, FL: CRC Press.

Wooldridge, M., Jennings, N.R., Kinny, D. (2000). The Gaia method-
ology for agent-oriented analysis and design. Autonomous Agents
and Multi-Agent Systems, 3(3), 285–312.

Wynne, M., & Hellesøy, A. (2008). Cucumber. Behaviour driven
development with elegance and joy. Accessed 28 March 2012.
http://cukes.info.

Zhang, Z., Thangarajah, J., Padgham, L. (2011). Automated testing
for intelligent agent systems. In M.P. Gleizes, & J. Gomez-
Sanz (Eds.), Agent-oriented software engineering X. Lecture
notes in computer science (Vol. 6038, pp. 66–79). Berlin:
Springer.

Álvaro Carrera is a PhD candidate at Universidad Politécnica de
Madrid. He has worked in the industry at Telefónica R&D. His
research is focussed on diagnosis systems based on multi-agent sys-
tems for telecommunication networks. He has published several papers
on topics such as distributed Bayesian reasoning, testing methodolo-
gies, and agent architectures. He has taken part in several national and
European projects.

Carlos A. Iglesias is an associate professor at the Universidad
Politécnica de Madrid, Spain. His research interests are in multi-agent
systems, service engineering, and Web engineering. Iglesias has a PhD
in telecommunications engineering from the Universidad Politécnica
de Madrid.

Mercedes Garijo is Associate Professor at the Universidad Politécnica
de Madrid, where she received her MD and PhD in Telecommuni-
cation Engineering. She teaches at the School of Telecommunica-
tion Engineering (undergraduate, postgraduate and doctorate levels)
in computer science and communications engineering. Her research
interests are in telematic services engineering using techniques of
software engineering and intelligent systems, especially ontologies,
machine learning, and intelligent agents. She has been involved in
several research and development projects funded by the EC and the
Spanish government.

182 Inf Syst Front (2014) 16:169–182

http://jbehave.org
http://cukes.info

	Beast methodology
	Abstract
	Introduction
	Related work
	BEAST methodology
	System behaviour specification
	MAS behaviour specification
	Agent level testing
	Providing traceability

	BEAST tool
	Story parser
	BEAST test case model
	MAS platform interface
	Mock definition

	Case study: MAS for fault diagnosis on FTTH scenario
	Evaluation
	Conclusions and future work
	Acknowledgments
	References


