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Abstract Adoption of cloud infrastructure promises
enterprises numerous benefits, such as faster time-
to-market and improved scalability enabled by on-
demand provisioning of pooled and shared computing
resources. In particular, hybrid clouds, by combining
the private in-house capacity with the on-demand ca-
pacity of public clouds, promise to achieve both in-
creased utilization rate of the in-house infrastructure
and limited use of the more expensive public cloud,
thereby lowering the total costs for a cloud user or-
ganization. In this paper, an analytical model of hy-
brid cloud costs is introduced, wherein the costs of
computing and data communication are taken into
account. Using this model, a cost-efficient division of
the computing capacity between the private and the
public portion of a hybrid cloud can be identified. By
analyzing the model, it can be shown that, given fixed
prices for private and public capacity, a hybrid cloud
incurs the minimum costs. Furthermore, it is shown
that, as the volume of data transferred to/from the
public cloud increases, a greater portion of the capacity
should be allocated to the private cloud. Finally, the
paper illustrates analytically that, when the unit price of
capacity declines with the volume of acquired capacity,
a hybrid cloud may become more expensive than a
private or a public cloud.
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1 Introduction

Cloud computing represents a state-of-the-art “com-
puting as a service” paradigm, where configurable com-
puting resources are pooled and shared among multiple
users and efficiently provisioned to them, on-demand,
through a broadband network access (Mell and Grance
2010). The deployment of cloud infrastructure promises
enterprises numerous benefits, such as faster time to
market and improved scalability (Youseff et al. 2008),
as well as cost benefits in terms of lower start-up and/or
operations costs (Weinman 2011; Lee 2010). Due to
these benefits, the adoption of cloud infrastructure
services has intensified in recent years: according to
Gartner, the market for cloud services exceeded
$46 billion in 2009 and will reach $150 billion by 2013
(Pring et al. 2009).

According to Mell and Grance (2010), cloud infra-
structure may be deployed in a form of a private,
community, public, or hybrid cloud. A private cloud
is operated by a single organization, whereas a com-
munity cloud is shared and jointly operated by sev-
eral organizations. These two deployment options are
justified, either when the computing needs are large,
or when the demand is relatively flat. In contrast, a
public cloud is operated by an independent cloud ser-
vice provider; this mode is attractive, e.g. to small user
organizations, enabling them to avoid large up-front
IT investments. A hybrid cloud is a combination of
a public cloud and a private cloud, and is aimed at
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providing an efficient distribution of the load among
the clouds.

In the case of a hybrid cloud, complementing the
local infrastructure with computing capacity from a
public cloud enables organizations to increase the uti-
lization of their IT infrastructure and thereby reduce
their IT costs. As argued by Weinman (2011), a hybrid
cloud is more cost-efficient than a private cloud, since
the high premium charged by the public cloud provider
is compensated by the relatively short duration of load
peaks when the public cloud is utilized. Furthermore,
when a load is uniformly distributed between zero and
maximum during an observed time period, the cost-
optimum portion of the public cloud load is the inverse
of the premium charged by the cloud service provider
(Weinman 2011). The cost-optimal load distribution
in Weinman (2011) assumes that only the computing
capacity is charged for by the cloud service provider,
and that no other costs affect the analysis. This is
not the case, however, in many data-intensive applica-
tions, where a significant volume of data needs to be
transferred to/from the cloud, thereby incurring data
communication costs (Mazhelis and Tyrväinen 2011).

The cost advantages of a hybrid solution are partially
confirmed in Risch and Altmann (2008), where the
conclusion made is that the usage of a computing grid
infrastructure is economically advantageous when the
demand for computing exhibits infrequent (in intervals
of several months) peaks that can be covered with
grid capacities. Different results have been obtained by
Strebel and Stage (2010), who explicitly focus on the
cost-efficient mix of internal and external computing
resources in a hybrid cloud. In their approach, individ-
ual applications are assigned to either internal or exter-
nal resources, using mixed-integer programming. Based
on their simulation results, the authors have found
that the off-loading peak demand to the public cloud
may not bring any cost-benefits to the clients, though
the authors acknowledge the preliminary nature of the
findings and suggest that there is a need for further
research in this direction. The strength of the model
is in the possibility to find a cost-optimal solution di-
recting the assignment of applications to the resources.
However, due to the nature of the optimization prob-
lem, as stated in (Strebel and Stage 2010), the solution
output delivered by the model is difficult to interpret,
and hence its generalization to other environments is
challenging, too.

The concurrent use of in-house and external capacity
has been also a subject of extensive research outside
of the information systems and computer science do-
mains. In particular, the related phenomena of tapered
integration (Porter 1980), plural governance (Heide

2003), and concurrent sourcing (Parmigiani 2007) have
been studied in organization and strategic management
literature; see Mols (2010) for a comprehensive re-
view. In these studies, the concurrent use of internal
and external capacity has been considered from the
viewpoint of different theories, including, among oth-
ers, the transaction costs theory, the agency theory,
the resource-based theory, and the theories of neo-
classical economics, and numerous hypotheses explain-
ing such concurrent use have been derived and empiri-
cally tested. In particular, in line with the principles of
the neo-classical economics, it was found that in mar-
kets characterized by demand uncertainty, the risk of
diseconomies of scale due to unutilized excess capacity
may be mitigated by scaling down internal capacity and
supplementing it during peak demand with externally
acquired capacity (Heide 2003; Puranam et al. 2006).
However, the cost-efficient division between the con-
currently used in-house and external capacity is consid-
ered in Puranam et al. (2006) on a general level, and
therefore it does not capture the specifics present in the
concurrent use of the computing, storage, and commu-
nication capacities provided by the cloud infrastructure.
Volume uncertainty is also one of the concepts consid-
ered in the transaction cost theory (Williamson 1985),
which predicts that firms facing volume uncertainty will
likely rely on internal rather than external capacity.
However, as discussed, e.g., in Mols (2010), the transac-
tion cost economics, while focusing on the firms’ choice
between the use of internal and external capacity, does
not explain the phenomenon of concurrent sourcing.

This paper aims at addressing the issue of efficient
division of the load between the private and the public
portion of a hybrid cloud. An analytical model of hybrid
cloud costs, including the costs of computing and data
communication, is introduced in the paper. In the ana-
lytical model, two phenomena that may affect the costs
of using a hybrid cloud infrastructure are considered:

– Variable demand for a particular resource capacity.
If there are peaks in the demand, in-house provi-
sioning often leads to over-provisioning and under-
utilized resources (Weinman 2011).

– Declining unit price of capacity, as the volume of
acquired resources grows. The more the resource
capacity is concentrated in one place (in-house or
a public cloud), the cheaper the price of one unit of
the resource due to the all-unit or incremental price
discounting (Stole 2003; Schotanus et al. 2009).

Using the model, the cost-optimal load division can
be identified, as exemplified in the paper for the case
of demand uniformly distributed between zero and
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maximum. It is shown analytically that, given an ar-
bitrary demand distribution and fixed unit prices, a
hybrid cloud provides the minimum costs; furthermore,
the presence of data communication costs shifts the
cost-optimal division towards the private cloud, i.e. the
greater the data communication volume, the greater
the portion of the demand that should be allocated
to the private cloud. It is also analytically shown that
when the price is subject to a quantity discount the hy-
brid cloud may become more expensive than a private
and/or a public cloud.

Thus, this paper contributes to the previous work
in the domain of the economics of cloud computing
by introducing the cost model for a hybrid cloud in-
frastructure taking into account (1) variable demand
for computing capacity, (2) data communication over-
heads and (3) quantity discounts for the unit prices.
The remainder of the paper is organized as follows. In
the next section, a simplified architectural description
of a hybrid cloud is provided, the relevant costs are
defined and the main assumptions made are specified.
The analytical model is introduced in Section 3, and
its properties are analytically analyzed in Section 4.
Numerical experiments illustrating the effect of data
communication costs are described in Section 5. In
Section 6, the implications of the proposed model are
discussed, and the directions for further work are out-
lined. Finally, conclusions to the paper are given in
Section 7.

2 Hybrid cloud

Throughout this paper, we will consider the case of a
hybrid cloud, where a private and the public clouds
are used in combination by an organization in order
to provide service(s) to its customers. Let us assume
that a portion of the organization’s software can be
deployed in a cloud, either private or public, while
the other software subsystems, e.g. legacy subsystems,
applications with strict performance requirements, or
subsystems dealing with highly confidential data, have
to be deployed in-house either using a traditional IT
infrastructure or a private cloud. Thus, the overall soft-
ware system architecture can be decomposed into three
subsystems:

– The open subsystems provided by the public cloud;
– The open subsystems provided by the private cloud;
– The closed subsystems.

This decomposition is depicted in Fig. 1. The term
open subsystem is employed to emphasize the fact that

Fig. 1 System decomposition to its subsystems. The terms shown
in the figure are introduced later in the text and denote the
following: Lbo, Lbc and Lboc are the volumes of data transferred
between the private cloud and the customers, between the public
cloud and the customers and between the organization and the
public cloud, respectively; Lco and Lcc denote the cumulative
reserved private computing capacity and acquired public cloud
computing capacity, respectively; ko, kc, and ρ are coefficients

the subsystem deployment is not tied to the in-house
infrastructure and can easily be changed from private
to public cloud and back, depending on the day-to-
day management decisions. On the other hand, the
closed subsystems are to be deployed in-house in the
foreseeable future.

It is assumed that the same software is used in both
the private and the public cloud subsystems. In case the
software subsystems are heterogeneous, an ontology
mapping can be employed to enable their interopera-
tion and to make the system scalable (Jung 2010).

Let us assume that the open subsystems are respon-
sible for (a part of) information exchange with the cus-
tomers, and instantiated, e.g., in a form of a web-portal,
a content-distribution server, etc. Furthermore, let us
assume that the interaction between the service side
and the customer side requires a substantial volume of
data to be transferred, as depicted in the figure by bold
arrows.

The demand for the system’s computing capacity is
assumed to change in time. The demand up to a specific
threshold value is supplied using the private cloud
capacity, which is acquired beforehand and reserved
for the purposes of service provisioning. Whenever the
demand exceeds the threshold value, the private cloud
capacity is no more sufficient to meet the demand, and
the portion of the demand exceeding the threshold is
supplied by the public cloud infrastructure, which is
used without prior reservation and charged based on
the actual usage.
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An example of such system is an online image
processing system1 allowing the users to upload their
images, edit them on-line, and then download the
edited version. Private cloud subsystems are respon-
sible for serving the users’ edition requests coming
at a regular rate; however, during the periods with
heavy load, part of the requests are processed by public
cloud subsystems. The responsibilities of the closed
subsystems may include supporting functions, such as
service activation, identity management, service level
monitoring, charging and billing.

The proposed model is focused on identifying the
distribution of open subsystems’ computing capacity
between the private and the public cloud, which would
minimize the costs. The costs of closed subsystems
are assumed to be independent of how the open sub-
systems are distributed, and therefore their costs are
not taken into account when seeking the cost-optimal
private-public cloud distribution. Thus, only the costs
of open subsystems (private and public cloud) are ana-
lyzed. Furthermore, we concentrate on computing- and
communication-intensive systems with fluctuating de-
mand for the infrastructure resources, where the use of
cloud infrastructure is deemed highly suitable (Harms
and Yamartino 2010). Therefore, two cost components
are considered:

– The costs of computing capacity, such as those
incurred by hardware, software, and data storage;
and

– Data communication costs.

These costs depend on whether the required capac-
ity is acquired (private cloud) or utilized on a pay-
per-use basis (public cloud); the cost of private cloud
subsystems is constant whether the capacity is used
or not, whereas the cost of public cloud depends on
the volume of used capacity. If there are peaks in the
demand for a resource and if this demand needs to be
satisfied without a delay, then the use of the private
cloud often leads to over-provisioning and to under-
utilized resources.

Depending on the system’s functionality and usage
patterns, the adoption of a hybrid cloud may incur
other costs, in addition to the costs of computing and
data communication, such as, e.g., the cost of a load
balancer responsible for intelligent division of load
within the hybrid cloud, as well as the costs of persistent
storage in the public cloud. However, the cost of the
load balancer is assumed to be rather independent of

1Such as pixIr (http://pixlr.com/) or Adobe Photoshop Express
(http://www.photoshop.com/tools).

the specific load division between the private and the
public clouds, and hence this cost can be ignored when
seeking cost-efficient division. On the other hand, some
applications may require a significant volume of data to
be persistently stored in a public cloud and thus may
incur noticeable storage-related cost. The effect of such
storage requirements on the cost depends on multiple
factors and hence warrants a separate inquiry, which is
left outside of the scope of this paper.

Similarly to Weinman (2011), the following assump-
tions are made:

1. Public cloud capacity is paid for only when used;
2. The other costs are either insignificant or do not

depend on whether private or public cloud is used;
and

3. The demand for the resources must be served with-
out a delay.

In contrast to Weinman (2011), however, the data
communication costs are not ignored in our model; it
is assumed that the same pricing is applied for data
uploading and downloading. As will be shown in the
next section, the presence of the data communication
costs may have a significant effect on the overall costs
and the optimal distribution between the private and
the public cloud. Furthermore, whereas the unit cost of
private and public cloud resources is assumed constant
in Weinman (2011), in this work this assumption is
relaxed—namely, it is assumed that the unit prices may
change with the volume of the private or public capacity
acquired.

3 Estimating the costs of a hybrid cloud

In the previous section, the decomposition of the hybrid
cloud solution into closed and open subsystems was
introduced. In this section, based on the stated assump-
tions, the costs of open subsystems are derived.

3.1 Constituents of the costs of open subsystems

The costs of open subsystems are comprised of the costs
of computing-related resources and the data communi-
cation costs, incurred both on the private and the public
cloud sides:

C = Cc + Cb, (1)

where

– Cc is the total cost of computing capacity (c)
incurred;

http://pixlr.com/
http://www.photoshop.com/tools
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– Cb is the cost of communication bandwidth (b)
incurred.

These two costs can be decomposed into the costs
incurred due to the private and public clouds:

Cc = Cco + Ccc, (2)

Cb = Cbo + Cbc, (3)

where

– Cco is the cost of computing capacity incurred with
the private (o, own) cloud;

– Ccc is the cost of computing capacity incurred with
the public cloud (c);

– Cbo is the cost of data communication incurred due
to transferring the data to/from the private cloud;

– Cbc is the cost of data communication incurred due
to transferring the data to/from the public cloud.

Thus,

C = Cc + Cb = Cco + Ccc + Cbo + Cbc. (4)

Let pco, pcc, pbo, and pbc denote the price of a unit of
the private cloud computing capacity, the public cloud
computing capacity, the private cloud data communica-
tion capacity, and the public cloud data communication
capacity, respectively.

Let us assume that, whenever a unit of computing
capacity is demanded from the service, also ko (kc) units
of data are transferred between the private (public)
cloud and the customers of the service. Furthermore,
let us assume that the volume of traffic transferred
between the organization and the public cloud is pro-
portional, with coefficient 0 < ρ < 1, to the volume of
the traffic between the public cloud and the customers
(cf. Fig. 1). Having denoted the cumulative acquired
private and public cloud computing capacity over time
period T as Lco and Lcc respectively, it follows that:

– Lbo = koLco of data is transferred between the pri-
vate cloud and the customers;

– Lbc = kcLcc of data is transferred between the pub-
lic cloud and the customers; and

– Lboc = ρLbc = ρkcLcc of data is transferred be-
tween the organization and the public cloud.

Individual costs can be evaluated as a product of the
capacity volume and the unit price. The unit price is a
function of volume p(L), due to the quantity discounts,
which will be discussed in the following subsection.
Furthermore, it should be noted that:

– The unit price for the communication from/to the
public cloud pbc is determined by the volume of the

data transferred both to/from the private cloud and
to/from the customers;

– The unit price for the communication from/to the
private cloud pbo is determined by the volume of
the data transferred both to/from the public cloud
and to/from the customers.

Thus, the total costs can be rewritten in a form:

C = pco × Lco + pcc × Lcc + pbo × (Lbo + Lboc)

+ pbc × (Lbc + Lboc). (5)

Since the total volume of data transferred to/from
the private cloud is

Lbo + Lboc = koLco + ρkcLcc (6)

and since the total volume of data transferred to/from
the public cloud is

Lbc + Lboc = kcLcc + ρkcLcc (7)

it follows that the costs in Eq. 4 can be rewritten as:

C = pcoLco + pcc Lcc + pbo(koLco + ρkcLcc)

+ pbc(kcLcc + ρkcLcc). (8)

In order to estimate the cost, both the prices and the
volume of the acquired capacity need to be estimated.
This is considered in the next two subsections.

3.2 Estimating the price of a unit of capacity

Often, pricing of a unit of capacity is not fixed but
is instead a subject to market segmentation and price
discrimination (Kotler and Keller 2008). For instance,
the first 10TB of Internet data traffic are charged by
Amazon EC2, Ireland (Amazon Web Services 2011) at
the rate of 0.15 USD per GB, the next 40TB at the
rate of 0.11 USD per GB, etc. This is a manifestation
of the so called “second degree price discrimination”
(Stole 2003), where the unit price changes with the
acquired quantity by means of all-units or incremental
quantity discounts (Shah and Dixit 2005; Schotanus
et al. 2009).

Pricing in different segments can be assumed to
follow a demand curve, whose shape is characterized
by the price elasticity of demand. We will assume that
the price elasticity of demand is constant, and hence
the demand (manifested in the acquired capacity L)
can be expressed as a function of the unit price (Perloff
2008):

L = Apε, (9)

where A is a positive constant, and ε ≤ 0 is the price
elasticity of demand, assumed to be constant. Although
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the constant price elasticity of demand is unlikely to
closely reflect the real pricing strategies, it is our belief
that it allows the unit prices to be approximated more
accurately than by assuming a fixed pricing.

From the equation above, the unit price can be
expressed as a function of the acquired capacity:

p(L) = aLb , (10)

where a = (1/A)−1/ε is a positive constant and b =
1/ε ≤ 0 represents an inverse of ε, i.e. the demand
elasticity of price (Schotanus et al. 2009). The value of
b determines how quickly the unit price declines with
the acquired volume. Because of this and in order to
avoid the confusion with the price elasticity of demand,
we will refer to b , similarly to Schotanus et al. (2009),
as to the steepness of the quantity discount.

The values of a and b should be estimated over a
period determined by the charging and billing rules of
the service provider. For instance, Amazon price of
1GB of data transferred out of the EC2 depends on the
monthly volume of the data transferred. Therefore, for
Amazon EC2, the values of a and b should be estimated
over a month.

Note that if b < −1 (i.e. |ε| < 1), then it would be
economically more efficient for the customer to acquire
(i.e. consume and be charged for) the maximum pos-
sible capacity, as the overall acquisition cost would be
minimal:

C = Lp(L) = LaLb = aLb+1. (11)

As could be seen, if b < −1, then the cost function
above is a decreasing function of L; furthermore, for
L → ∞, it follows that C → 0, which is unlikely to be
realistic. Therefore, we will assume that the steepness
of quantity demand is less than 1 in absolute value
(|b | < 1), corresponding to the so-called “relatively
elastic” demand. Indeed, as will be considered later
in the paper, for the data communication capacity in
the public cloud, b = −0.130 (the estimate is based
on Amazon Web Services 2011); for the private com-
puting capacity, b = −0.478 (the estimate is based on
Hamilton 2010). This is also in line with the real-world
measurements (Bayoumi and Haacker 2002) where the
(absolute) price elasticity of demand for hardware was
found to be in the range of |ε| = 1.1 . . . 1.8, correspond-
ing to |b | = 0.56 . . . 0.91.

Given the constant price elasticity of demand—and
hence the constant steepness of the quantity discount –,
the unit prices of computing (pco and pcc) and data

communication capacities (pbo and pbc) for the private
and the public cloud respectively can be estimated as:

pco = acoLb co
co ; (12)

pcc = accLb cc
cc ; (13)

pbo = abo(koLco + ρkcLcc)
b bo; (14)

pbc = abc(kcLcc + ρkcLcc)
b bc . (15)

Then, the total costs of open subsystems can be
rewritten as

C = pcoLco + pcc Lcc + pbo(koLco + ρkcLcc)

+ pbc(kcLcc + ρkcLcc)

= acoLb co
co Lco + accLb cc

cc Lcc

+ abo(koLco + ρkcLcc)
b bo(koLco + ρkcLcc)

+ abc(kcLcc + ρkcLcc)
b bc(kcLcc + ρkcLcc), (16)

which can be simplified to:

C = acoLb co+1
co + accLb cc+1

cc + abo(koLco + ρkcLcc)
b bo+1

+ abc(kcLcc + ρkcLcc)
b bc+1 (17)

or equally

C = acoLb co+1
co + accLb cc+1

cc + abo(koLco + ρkcLcc)
b bo+1

+ abc[kcLcc(1 + ρ)]b bc+1. (18)

Assuming for simplicity that the same software is
used in both private and public open subsystems and
that the demand is distributed between these subsys-
tems independently of the expected data communica-
tion distribution, it follows that ko = kc = k, and hence
the above can be rewritten as:

C = acoLb co+1
co + accLb cc+1

cc + abo[k(Lco + ρLcc)]b bo+1

+ abc[kLcc(1 + ρ)]b bc+1. (19)

3.3 Estimating the acquired capacity

The estimation of acquired capacity differs for the pub-
lic (Lcc) and the private (Lco) cloud.

For the private cloud, the acquired capacity can be
treated as fixed whether or not it is used. Indeed, even
if the private computing capacity is idle during a certain
period of time, this capacity is still reserved for the
purposes of service provisioning and hence incurs ap-
proximately the same costs as the actively used capacity
would incur. This is due to the fact that the majority of
costs factors, including the acquisition and integration
costs, the costs of administration and maintenance, etc.,
are independent of the server load. This also applies
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to the data communication capacity, when the Inter-
net Service Provider (ISP) charges for the bandwidth
a fixed, bandwidth-dependent monthly fee—which is
apparently the prevailing charging method used by ISPs
(Stiller et al. 2001; Odlyzko 2001). It should be noted
that some of the costs, such as the costs of electric-
ity, are affected by the server load, but the effect is
not dramatic since the power consumption of an idle
server still represents 65% of its peak consumption
(Greenberg et al. 2008).

The capacity of the private cloud should be sufficient
to serve the demand without a delay (Assumption 3).
Thus, in the private cloud, the acquired capacity can
be estimated as the product of the maximum expected
demand and the time. Let D denote the maximum
demand for computing capacity observed over the esti-
mation period T, and let q denote the threshold portion
of that demand, up to which the demand is served
with the private cloud. Then, the acquired private cloud
computing capacity is:

Lco = qDT. (20)

For the public cloud, on the other hand, the acquired
capacity represents the capacity used, and hence it
depends on the characteristics of the demand curve.
Therefore, in order to estimate Lcc, the demand curve
needs to be analyzed.

Let us consider the demand curve d(t), indicating
how the demand for computing capacity changes with
time. A realistic demand curve, which may have mul-
tiple peaks, can be rearranged for the purpose of the
analysis by sorting the data points in an ascending order,
to make it a monotonically non-decreasing curve, as
shown in Fig. 2. Furthermore, for the sake of simpli-
fying the analysis, let us assume that the rearranged
demand curve is monotonically increasing.

d(t)

t

D

qD

Tt0

Fig. 2 Demand curve rearranged to be monotonically non-
decreasing

Since the demand up to qD is served with the private
cloud, the demand for the public cloud capacity is:

dc(t) =
{

0, if d(t) ≤ qD;
d(t) − qD, otherwise.

(21)

The acquired public cloud computing capacity can
then be estimated as

Lcc =
∫ T

0
dc(t) dt =

∫ T

t0
dc(t) dt, (22)

and the Eq. 19 can be rewritten as

C = aco(qDT)b co+1 + acc

(∫ T

t0
dc(t) dt

)b cc+1

+ abo

[
k

(
qDT + ρ

∫ T

t0
dc(t) dt

)]b bo+1

+ abc

[
k(1 + ρ)

∫ T

t0
dc(t) dt

]b bc+1

. (23)

The cost can be seen as a function of the private
cloud threshold q. In a cost-efficient hybrid cloud the
threshold portion of the private cloud equals qmin =
minq C. In the next section, we will consider how the
value of qmin depends on other variables.

4 Analyzing the hybrid cloud costs

In this section, we will analyze how the value of qmin

minimizing the cost of the open subsystems depends
on other variables. First, the case of fixed unit prices
for computing and data communication capacity is con-
sidered. After that, the effect of quantity discounting is
analyzed.

4.1 Fixed unit prices

According to Eqs. 8 and 19 above, the cost of open
subsystems is a function of the acquired computing ca-
pacity, both in the private and in the public cloud, which
in turn depends on the distribution of the capacity
between the private and the public cloud, as regulated
by the value of q. Furthermore, the open subsystem
cost depends on (1) how intensive the communication
that occurs between the system and its customers is, as
reflected in the value of k; and on (2) how intensive
the interaction that is needed between the private and
public subsystems is, as reflected in the value of ρ.

Here, we consider the case when the unit price of ca-
pacity is fixed, i.e. the effect of quantity discounting can
be ignored: b bo = b bc = b co = b cc = 0. Thus, abo, abc,
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aco, and acc represent the fixed unit prices of acquired
capacities.

We will also assume that the unit price of capacity in
the private cloud is less or equally expensive compared
to the unit price in the public clouds, in line with the
findings of Khajeh-Hosseini et al. (2011). The higher
unit price of a public cloud can be partly attributed to
the margins added by the cloud provider on top of its
costs. Therefore,

acc = ucaco, (24)

abc = ubabo, (25)

where uc ≥ 1 and ub ≥ 1. Now the expression for the
cost of open subsystems can be rewritten as:

C = acoqDT + ucacoLcc + abok(qDT + ρLcc)

+ ubabok(1 + ρ)Lcc. (26)

The unit prices aco and abo, as well as uc and ub,
can be seen as constants whose values are estimated
by consulting public cloud providers’ price lists (for
the public cloud) or by estimating the acquisition and
operations costs over the depreciation period (for the
private cloud).

Proposition 1 The cost of open subsystems in the hybrid
cloud increases, as the data communication intensity
grows.

Proof The correctness of this proposition can be easily
shown by taking partial derivatives of C with respect to
k and ρ, which reflect the data communication intensity
of the service. Based on Eq. 19 for the open subsystem
costs, it can be shown that (note that the assumptions
on fixed prices and on public cloud capacity being more
expensive are not needed for the proof):

∂C
∂k

= abo(Lco + ρLcc)
b bo+1(b bo + 1)kb bo

+ abc[Lcc(1 + ρ)]b bc+1(b bc + 1)kb bc > 0; (27)

∂C
∂ρ

= abokb bo+1(b bo + 1)(Lco + ρLcc)
b bo Lcc

+ abc(kLcc)
b bc+1(b bc + 1)(1 + ρ)b bc+1 > 0. (28)

The positivity of ∂C
∂k and ∂C

∂ρ
follows from the positiv-

ity of all the variables except b bo and b bc. Furthermore,
since |b | < 1, it follows that b bo + 1 and b bc + 1 are
positive values, and hence their respective terms are
positive, too.

Thus, provided the price of data communication
capacity is non-zero (pbo > 0), and provided that at
least some of the capacity is acquired from the pub-
lic cloud (t0 < T and hence Lcc = ∫ T

t0
dc(t) dt > 0), the

values of the partial derivatives in Eqs. 27 and 28 are
positive. Therefore, the costs increase as k and ρ values
grow. ��

If only the private cloud capacity is used, then t0 = T
and hence ∂C

∂ρ
= 0. This reflects the fact that no data

communication between the organization and the pub-
lic cloud takes place, and hence such communication
has no effect on the open subsystem costs.

Proposition 2 If uc > 1 and ub > 1, then a hybrid cloud
has lower costs than a fully private cloud or fully public
cloud solution.

Proof Let us find the value of q that minimizes the
costs of the open subsystems.

Consider the open subsystem costs. Eq. 26 can be
rewritten as:

C = acoqDT + ucacoLcc + abok(qDT + ρLcc)

+ ubabok(1 + ρ)Lcc

= (aco + abok)qDT

+ [ucaco + abokρ + ubabok(1 + ρ)]Lcc

= (aco + abok)qDT

+ [ucaco + abok(ρ + ub + ρub)]Lcc

= (aco + abok)qDT

+ [ucaco + abok(ub + ρ(1 + ub))]Lcc. (29)

The partial derivative of C with respect to q is:

∂C
∂q

= (aco + abok)DT

+ [ucaco + abok(ub + ρ(1 + ub))] ∂

∂q
Lcc. (30)

Let tc(d) denote the inverse function of d(t). Let us
also define function τc(d):

τc(d) = T − tc(d). (31)

The value of τc(d0), where d0 = qD, indicates the
amount of time during which the public cloud capacity
is used given the value of q. Then, the acquired public
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cloud computing capacity Lcc can be evaluated by inte-
grating over d:

Lcc =
∫ D

d0

τc(d) dd. (32)

Let F(d) be an anti-derivative of τc(d). Then,

Lcc =
∫ D

d0

τc(d) dd = F(D) − F
(
d0

)
. (33)

Note that F(D) is independent of q, whereas F(d0)

depends on q, since d0 is a function on q. Therefore,

∂

∂q
Lcc = ∂

∂q

(∫ D

d0

τc(d) dd
)

= ∂

∂q
F(D) − ∂

∂q
F

(
d0

)

= − ∂

∂q
F

(
d0

) = −∂ F
(
d0

)
∂d

∂d
∂q

= −τc
(
d0

)
D. (34)

Then,

∂C
∂q

= (aco + abok)DT

− [ucaco + abok(ub + ρ(1 + ub))]τc
(
d0

)
D. (35)

The second derivative is:

∂2C
∂q2

= − [
ucaco + abok

(
ub + ρ

(
1 + ub

))]
D

∂

∂q
τc

(
d0

)

= − [
ucaco + abok

(
ub + ρ

(
1 + ub

))]
D

∂τc
(
d0

)
∂d

∂d
∂q

= − [
ucaco + abok

(
ub + ρ

(
1 + ub

))]
D2 ∂τc

(
d0

)
∂d

.

(36)

Recall that tc(d) is inverse function of d(t); further-
more, d(t) is monotonically increasing. According to
the inverse function theorem, for a domain where d(t)
is increasing, it holds that

∂

∂d
tc(d) = 1

∂
∂t d(t)

. (37)

Since d(t) is increasing in this domain, it follows that
∂
∂t d(t) > 0, and hence ∂

∂d tc(d) > 0. From here, we get:

∂

∂d
τc

(
d0

) = ∂

∂d

(
T − tc(d)

) = − ∂

∂d
tc(d) < 0. (38)

Thus, it follows that the second derivative is positive:

∂2C
∂q2

> 0. (39)

Since ∂2C
∂q2 is positive, it follows that, if there is a value

of qmin ∈ [0, 1] such that the first derivative ∂C(qmin)

∂q = 0,
then qmin minimizes C, i.e.

∂C
(
qmin

)
∂q

= (
aco + abok

)
DT

− [
ucaco + abok

(
ub + ρ

(
1 + ub

))]
τc

(
d0

)
D

= 0. (40)

Observing that τc is also a function of q we obtain:

τc
(
d0, qmin

) =
(
aco + abok

)
T

ucaco + abok
(
ub + ρ

(
1 + ub

)) . (41)

By solving Eq. 41, the value of qmin can be found. Since
uc > 1, ub > 1, and since the unit prices are positive, it
follows that

0 <
aco + abok

ucaco + abok
(
ub + ρ

(
1 + ub

)) < 1,

and hence 0 < τc(d0, qmin) < T.
Recall that the values of τc(q) are within the region

[0, T]. Furthermore, from Eq. 38 it follows that τc(q) is
monotonically decreasing function in the domain (0, 1).
Therefore, there exists a value qmin ∈ (0, 1) satisfying
Eq. 41, i.e. a hybrid solution has lower costs than a
purely private cloud (q = 1) or purely public cloud (q =
0) solution. ��

Corollary 1 In the absence of data communication costs
(k = 0), the portion of the time when public cloud is
used should be the inverse of the premium charged by
the cloud software vendor.

Given k = 0, Eq. 41 can be rewritten as:

τc
(
d0, qmin

)
T

= aco

ucaco
= 1

uc
. (42)

This is in line with Weinman (2011) where it was
shown that in the absence of data communication costs,
and for the uniformly distributed demand, the cost-
optimal portion of public cloud capacity (i.e. 1 − qmin) is
the inverse of uc. Indeed, for the uniformly distributed
demand,

τc
(
d0, qmin

) = T
(
1 − qmin

)
. (43)

If k = 0, then Eq. 41 simplifies to

T
(
1 − qmin

) = acoT
ucaco

(44)

It follows that 1 − qmin = 1
/

uc, as in Weinman
(2011). Note that, according to this corollary, the
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regularity represented by Eq. 42 holds for the generic
case of arbitrary monotonically increasing demand
function, whereas only a special case of uniformly dis-
tributed demand was considered in Weinman (2011).

Proposition 3 If ub ≈ uc, then the greater the data com-
munication intensity of the service, as indicated by k and
ρ, the more private cloud capacity is needed to minimize
the costs.

Proof Let Q(τc) be the inverse function of τc(q), i.e.

q = Q
(
τc

)
. (45)

Recall that from Eq. 41 the value of q minimizing C
can be found. By substituting Eq. 45 into Eq. 41 we can
express the value of qmin as

qmin = Q
(
τc

)
= Q

( (
aco + abok

)
T

ucaco + abok
(
ub + ρ

(
1 + ub

))
)

. (46)

Let us consider how qmin (and hence Q) depends on k.
Using the chain rule:

∂ Q
∂k

= ∂ Q
∂τc

∂τc

∂k
. (47)

By using the inverse function theorem, and applying the
chain rule, we obtain

∂ Q
∂τc

= 1
∂τc
∂q

= 1
∂τc
∂d

∂d
∂q

. (48)

Since ∂τc
∂d < 0 (according to Eq. 38) and since ∂d

∂q = D,

it follows that ∂ Q
∂τc

< 0.
By taking partial derivatives from both sides of

Eq. 41, we obtain:

∂τc

∂k
= ∂

∂k

( (
aco + abok

)
T

ucaco + abok
(
ub + ρ

(
1 + ub

))
)

= −aboacoT
ρ
(
1 + ub

) + ub − uc[
ucaco + abok

(
ub + ρ

(
1 + ub

))]2

< 0. (49)

Given ub≈uc, the term ρ(1 + ub) + ub − uc is posi-
tive and hence ∂τc

∂k is negative.
Thus, ∂ Q

∂τc
< 0 and ∂τc

∂k < 0. Since both terms in the
RHS of Eq. 47 are negative, their product is positive,
i.e. ∂ Q

∂k > 0, implying that qmin increases as k grows.

Similarly, the dependence of qmin (and hence Q) on
ρ can be investigated. Using the chain rule:

∂ Q
∂ρ

= ∂ Q
∂τc

∂τc

∂ρ
. (50)

By taking partial derivatives from both sides of Eq. 41,
we obtain:

∂τc

∂ρ
= ∂

∂ρ

( (
aco + abok

)
T

ucaco + abok
(
ub + ρ

(
1 + ub

))
)

= −
(
aco + abok

)
Tabok

(
1 + ub

)
[
ucaco + abok

(
ub + ρ

(
1 + ub

))]2 < 0. (51)

Thus, ∂ Q
∂τc

< 0 and ∂τc
∂ρ

< 0. Since both terms in the
RHS of Eq. 50 are negative, their product is positive,
i.e. ∂ Q

∂ρ
> 0. Hence, qmin increases as ρ grows.

Above, it has been shown that qmin increases with
either k or ρ. This suggests that the greater the values
of k or ρ the greater the portion of the capacity that
should be allocated to the private cloud. ��

Corollary 2 In the special case of uc 
 ub, the greater
the data communication intensity, as indicated by k,
the less the amount of private computing capacity that
should be acquired.

It can be seen that when uc 
 ub the partial deriv-
ative ∂τc

∂k becomes positive. As a result, according to
Eq. 47, ∂ Q

∂k < 0 and hence qmin decreases as k grows.
It should be noted that the special case of uc 
 ub

does not change the effect of ρ, i.e. greater values of ρ

lead to an increase in the value of qmin, even if uc 
 ub.

4.2 Effect of quantity discounting

Here, the combined effect of (1) the form of the de-
mand function, and (2) quantity discounting on the
value of qmin is analyzed. First, however, for the sake
of illustrating the effect of quantity discounting on
optimal qmin in a hybrid cloud, let us consider the case
of constant demand function, i.e.:

d(t) = D. (52)

Given the constant demand function above, it follows
that Lcc = (1 − q)DT.

Proposition 4 If the demand is constant, the minimum
of costs occurs for q = 0 or q = 1, i.e. a hybrid cloud is
more expensive than a private or a public cloud.
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Proof Assuming for simplicity that b co = b cc = b bo =
b bc = b , and given constant demand, the cost function
in Eq. 19 can be rewritten as:

C = aco(qDT)b+1 + acc((1 − q)DT)b+1

+ abo
[
k(qDT + ρ(1 − q)DT)

]b+1

+ abc
[
k(1 − q)DT(1 + ρ)

]b+1
, (53)

which can be further re-grouped as

C = (DT)b+1

×
[
acoqb+1 + acc(1 − q)b+1

+ abo
[
k(q + ρ(1 − q))

]b+1

+ abc
[
k(1 − q)(1 + ρ)

]b+1
]
. (54)

The partial derivative of C with respect to q is:

∂C
∂q

= (DT)b+1

×
[
aco(b + 1)qb − acc(b + 1)(1 − q)b

+ abokb+1(b + 1)(q + ρ(1 − q))b (1 − ρ)

− abc[k(1 + ρ)]b+1(b + 1)(1 − q)b ]
, (55)

which can be further re-grouped as:

∂C
∂q

= (DT)b+1(b + 1)

× [
acoqb − acc(1 − q)b

+ abokb+1(q + ρ(1 − q))b (1 − ρ)

− abc[k(1 + ρ)]b+1(1 − q)b ]
. (56)

The second derivative with respect to q takes the
form:

∂2C
∂q2

= (DT)b+1(b + 1)

× [
acobqb−1 + accb(1 − q)b−1

+ abokb+1b(q + ρ(1 − q))b−1(1 − ρ)2

+ abc[k(1 + ρ)]b+1b(1 − q)b−1
]

(57)

or equally

∂2C
∂q2

= (DT)b+1(b + 1)b

× [
acoqb−1 + acc(1 − q)b−1

+ abokb+1(q + ρ(1 − q))b−1(1 − ρ)2

+ abc[k(1 + ρ)]b+1(1 − q)b−1
]
. (58)

Since b < 0 and |b | < 1, it follows that ∂2C
∂q2 < 0 and

hence the cost function is concave. Hence, the mini-
mum occurs at an edge (q = 0 or q = 1). ��

Corollary 3 If the demand is f lat, and it holds that acc ≥
aco and abc ≈ abo, then the costs are at minimum when
q = 1, i.e. the private cloud deployment provides the
minimum costs.

Proof Consider the edge values of q:

q = 0 : C = (DT)b+1
[
acc + abokb+1ρb+1

+ abc[k(1 + ρ)]b+1
]
, (59)

q = 1 : C = (DT)b+1
[
aco + abokb+1

]
. (60)

Let us compare the costs for q = 0 and q = 1. If the
costs are greater for q = 0, then:

acc + abokb+1ρb+1 + abc[k(1 + ρ)]b+1

> aco + abokb+1. (61)

Since acc ≥ aco, it follows that acc = uaco, where u ≥
1. Recalling that abc ≈ abo, it follows that:

uaco + abokb+1ρb+1 + abo[k(1 + ρ)]b+1

> aco + abokb+1; (62)

aco(u − 1) + abokb+1ρb+1 + abo[k(1 + ρ)]b+1

> abokb+1; (63)

aco(u − 1) + abokb+1(ρb+1 + (1 + ρ)b+1)

> abokb+1; (64)

aco(u − 1) + abokb+1(ρb+1 + (1 + ρ)b+1 − 1) > 0. (65)

Since ρ ≥ 0 and u ≥ 1, the inequality above always
holds. ��
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Thus, in case the demand is constant and the unit
price of computing capacity is greater in the public
cloud, while the unit prices of data-communication ca-
pacity are approximately equal, the use of private cloud
is cost-efficient.

Corollary 4 In communication-intensive services with a
f lat demand, the costs are at minimum when q = 1, i.e.
private cloud deployment provides the minimum costs.

Proof Indeed, if k and/or ρ is large, then [k(1 + ρ)]b+1

is large and hence the condition in Eq. 61 holds. Thus,
∂C
∂q < 0, suggesting that the cost decreases as q increases
and hence the minimum occurs when q = 1. ��

The proposition above illustrated the effect of quan-
tity discounting in the case of a constant demand func-
tion. Now, let us return to the case of an arbitrary
demand distribution (see Eq. 19):

C = acoLb co+1
co + accLb cc+1

cc + abo[k(Lco + ρLcc)]b bo+1

+ abc[kLcc(1 + ρ)]b bc+1.

Proposition 5 In case the unit price of capacity is subject
to a quantity discount, either private or public cloud de-
ployment, but not a hybrid cloud, may provide minimal
costs.

Proof (for a special case only) Consider the partial
derivative of C with respect to q:

∂C
∂q

= aco(b co + 1)Lb co
co

∂

∂q
Lco + acc(b cc + 1)Lb cc

cc
∂

∂q
Lcc

+ abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo

×
(

∂

∂q
Lco + ρ

∂

∂q
Lco

)

+ abckb bc+1(1 + ρ)b bc+1
(
b bc + 1

)
× Lb bc

cc
∂

∂q
Lcc, (66)

which can be rewritten in the form

∂C
∂q

= [
aco

(
b co + 1

)
Lb co

co + abokb bo+1

× (
b bo + 1

)(
Lco + ρLcc

)b bo
] ∂

∂q
Lco

+ [
acc

(
b cc + 1

)
Lb cc

cc + abokb bo+1
(
b bo + 1

)
× (

Lco + ρLcc
)b bo

ρ + abckb bc+1(1 + ρ)b bc+1

× (
b bc + 1

)
Lb bc

cc

] ∂

∂q
Lcc. (67)

The second derivative is:

∂2C
∂q2

= ∂

∂q

(
aco

(
b co + 1

)
Lb co

co + abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo
) ∂

∂q
Lco

+
[
aco

(
b co + 1

)
Lb co

co + abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo
] ∂2

∂q2
Lco

+ ∂

∂q

[
acc

(
b cc + 1

)
Lb cc

cc + abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo
ρ + abckb bc+1(1 + ρ)b bc+1

(
b bc + 1

)
Lb bc

cc

] ∂

∂q
Lcc

+
[
acc

(
b cc+1

)
Lb cc

cc +abokb bo+1
(
b bo+1

)(
Lco+ρLcc

)b bo
ρ + abckb bc+1(1+ρ)b bc+1

(
b bc+1

)
Lb bc

cc

] ∂2

∂q2
Lcc. (68)

Note that ∂
∂q Lco = DT and hence ∂2

∂q2 Lco = 0, i.e.
the above expression is simplified to:

∂2C
∂q2

= ∂

∂q

(
aco

(
b co + 1

)
Lb co

co + abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo
) ∂

∂q
Lco

+ ∂

∂q

[
acc

(
b cc + 1

)
Lb cc

cc + abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo
ρ + abckb bc+1(1 + ρ)b bc+1

(
b bc + 1

)
Lb bc

cc

] ∂

∂q
Lcc

+
[
acc

(
b cc + 1

)
Lb cc

cc + abokb bo+1
(
b bo+1

)(
Lco+ρLcc

)b bo
ρ + abckb bc+1(1+ρ)b bc+1

(
b bc+1

)
Lb bc

cc

] ∂2

∂q2
Lcc. (69)
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which, by opening the partial derivatives, can be rewrit-
ten in a form:

∂2C
∂q2

=
(

aco
(
b co + 1

)
b coLb co−1

co
∂

∂q
Lco + abokb bo+1

(
b bo + 1

)
b bo

(
Lco + ρLcc

)b bo−1
(

∂

∂q
Lco + ρ

∂

∂q
Lcc

))
∂

∂q
Lco

+
[

acc
(
b cc + 1

)
b ccLb cc−1

cc
∂

∂q
Lcc + abokb bo+1ρ

(
b bo + 1

)
b bo

(
Lco + ρLcc

)b bo−1
(

∂

∂q
Lco + ρ

∂

∂q
Lcc

)

+ abckb bc+1(1 + ρ)b bc+1(b bc + 1)b bcLb bc−1
cc

∂

∂q
Lcc

]
∂

∂q
Lcc

+
[
acc

(
b cc+1

)
Lb cc

cc +abokb bo+1(b bo + 1
)(

Lco+ρLcc
)b bo

ρ + abckb bc+1(1+ρ)b bc+1(b bc+1
)
Lb bc

cc

] ∂2

∂q2
Lcc. (70)

Finally, the expression above can be regrouped in
a form:

∂2C
∂q2

= aco
(
b co + 1

)
b coLb co−1

co

(
∂

∂q
Lco

)2

+ acc
(
b cc + 1

)
Lb cc−1

cc

×
[

b cc

(
∂

∂q
Lcc

)2

+ Lcc
∂2

∂q2
Lcc

]

+ abckb bc+1(1 + ρ)b bc+1
(
b bc + 1

)
Lb bc−1

cc

×
[

b bc

(
∂

∂q
Lcc

)2

+ Lcc
∂2

∂q2
Lcc

]

+ abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo−1

×
[

b bo

(
∂

∂q
Lco + ρ

∂

∂q
Lcc

)2

+ ρ(Lco + ρLcc)
∂2

∂q2
Lcc

]

and further rewritten as

∂2C
∂q2

= B1 + acc
(
b cc + 1

)
Lb cc−1

cc × B2

+ abckb bc+1(1 + ρ)b bc+1
(
b bc + 1

)
Lb bc−1

cc × B3

+ abokb bo+1
(
b bo + 1

)(
Lco + ρLcc

)b bo−1 × B4,

(71)

where the terms B1, B2, B3 and B4 correspond, respec-
tively, to:

B1 = aco(b co + 1)b coLb co−1
co

(
∂

∂q
Lco

)2

; (72)

B2 = b cc

(
∂

∂q
Lcc

)2

+ Lcc
∂2

∂q2
Lcc; (73)

B3 = b bc

(
∂

∂q
Lcc

)2

+ Lcc
∂2

∂q2
Lcc; (74)

B4 = b bo

(
∂

∂q
Lco + ρ

∂

∂q
Lcc

)2

+ ρ
(
Lco + ρLcc

) ∂2

∂q2
Lcc. (75)

The sign of ∂2C
∂q2 depends on the signs of the four

constituents in Eq. 71. As could be seen, the first con-
stituent is always negative (B1 < 0), whereas the signs
of the other three constituents are determined by the
signs of the terms B2, B3 and B4.

Having observed that:

∂

∂q
Lcc = −τc

(
d0

)
D < 0;

∂

∂d
τc

(
d0

) = ∂

∂d

(
T − tc

(
d0

)) = − ∂

∂d
tc
(
d0

)
< 0,

it follows that

∂2

∂q2
Lcc = −D

∂

∂q
τc

(
d0

) = −D
∂τc

(
d0

)
∂d

∂d
∂q

= −D2 ∂τc
(
d0

)
∂d

> 0. (76)
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Based on the above observations, it can be seen that
the signs of B2, B3 and B4 depend

– on the absolute values of the steepness of the quan-
tity discount (b cc, b bc, b bo), on one hand, and

– on the particular form of the acquired capacity
function Lcc, on the other hand (the sign of B4 is
also affected by ρ).

Let us consider separately the cases of small and
large absolute values of the steepness:

1. For small absolute values of b co, b cc, b bc, and b bo,
the term B1 → 0 while the terms B2, B3 and B4
are positive, and hence ∂2C

∂q2 is positive:

b cc → 0; therefore B2 → Lcc
∂2

∂q2
Lcc > 0;

b bc → 0; therefore B3 → Lcc
∂2

∂q2
Lcc > 0;

b bo → 0; therefore B4 → (
Lco+ρLcc

) ∂2

∂q2
Lcc >0.

In fact, when the steepness of the quantity dis-
count is small (b → 0), expression Eq. 71 simplifies
to the case considered in the preceding section,
namely:

∂2C
∂q2

= [
acc + abokρ + abck(1 + ρ)

] ∂2

∂q2
Lcc

> 0. (77)

thus implying that the cost is a convex function
of q.

2. As the absolute values of the coefficients b cc, b bc,
and b bo increase, the signs of the terms B2, B3
and B4 change from positive to negative, and hence
∂2C
∂q2 is becoming negative. Let us demonstrate it for
the linear demand distribution curve. In this case,
Lcc = 1

2 DT(1 − q)2, and hence:

∂

∂q
Lco = DT; (78)

∂

∂q
Lcc = −DT(1 − q); (79)

∂2

∂q2
Lcc = DT. (80)

Thus, for B2, we obtain:

B2 = b cc

(
∂

∂q
Lcc

)2

+ Lcc
∂2

∂q2
Lcc

= b cc (−DT(1 − q))2 + 1

2
DT(1 − q)2 DT

= (DT)2

[
b cc(1 − q)2 + 1

2
(1 − q)2

]

= (DT)2(1 − q)2

(
b cc + 1

2

)
.

It follows that B2 ≤ 0 if b cc ≤ −0.5.
Similarly for B3:

B3 = b bc

(
∂

∂q
Lcc

)2

+ Lcc
∂2

∂q2
Lcc

= b bc (−DT(1 − q))2 + 1

2
DT(1 − q)2 DT

= (DT)2

[
b bc(1 − q)2 + 1

2
(1 − q)2

]

= (DT)2(1 − q)2

(
b bc + 1

2

)
.

It follows that B3 ≤ 0 if b bc ≤ −0.5.
Finally, for B4:

B4 = b bo

(
∂

∂q
Lco + ρ

∂

∂q
Lcc

)2

+ ρ
(
Lco + ρLcc

) ∂2

∂q2
Lcc

= b bo(DT − ρDT(1 − q))2

+ ρ

(
qDT + ρ

1

2
DT(1 − q)2

)
DT

= (DT)2

[
b bo(1 − ρ(1 − q))2

+ ρ

(
q + ρ

1

2
(1 − q)2

)]
.

It follows that B4 ≤ 0 if b bo ≤ −ρ
q+ρ 1

2 (1−q)2

(1−ρ(1−q))2 . It
can be noticed that the behavior of f (q) =
−ρ

q+ρ 1
2 (1−q)2

(1−ρ(1−q))2 in the domain [0, 1] depends on ρ. If
ρ ≤ 0.5, then f (q) is a non-increasing function and
its minimum occurs when q = 1 ( f = −ρ), i.e. B4 ≤
0 if b bo ≤ −ρ. Moreover, when ρ ≤ 0.5 and −ρ <

b bo < − 1
2

ρ2

(1−ρ)2 , then, for smaller values of q, B4 <

0, while for large values of q, B4 > 0. Inversely, if
0.5 < ρ < 1, then f (q) is an increasing function and
its minimum occurs when q = 0 ( f = − 1

2
ρ2

(1−ρ)2 ), i.e.

B4 ≤ 0 if b bo ≤ − 1
2

ρ2

(1−ρ)2 . Furthermore, when 0.5 <
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ρ < 1 and − 1
2

ρ2

(1−ρ)2 < b bo < −ρ, then, for smaller
values of q, B4 > 0, while for larger values of q,
B4 < 0.

Thus, when the steepness of the quantity discount is
significant (|b | > 0), the terms B2, B3 and B4 in Eq. 71
decrease, and consequently the sign of ∂2C

∂q2 changes to
negative, thereby resulting in a concave cost function.
It is readily visible in a special case of a linearly distrib-
uted demand, b co = b cc = b bo = b bc = b and ρ → 0,
for which the second derivative simplifies to:

∂2C
∂q2

= 1

(DT)b+1(b + 1)

×
[

bqb−1(aco + abokb+1) + (
acc + abckb+1)

× (1 − q)2b
(

1

2

)b−1 (
b + 1

2

) ]
(81)

As could be seen, in this special case, when b ≤ − 1
2 ,

it follows that ∂2C
∂q2 < 0.

As was illustrated above for the special case of the
increased absolute values of b cc, b bo, b bc, the open
subsystem costs C may become a concave function of
q. As a result, the minimum of costs is achieved with q
at the edges of interval [0, 1]. In other words, when the
unit price of the acquired capacity is subject to quantity
discounting as reflected in the absolute values of b cc,
b bo, b bc, the minimum costs may be achieved by acquir-
ing only private (q = 1) or only public capacity (q =
0), while the use of a hybrid cloud may be inefficient
cost-wise. ��

5 Illustrative numerical experiments

In the preceding section, the costs of a hybrid cloud-
based service have been analytically explored. In par-
ticular, the effects of

– a non-constant demand for computing and data
communication capacity,

– a varying intensity of data communication, and
– a quantity discount applied to the unit prices of

computing and data communication capacity

were analyzed. In this section, some numerical exam-
ples, wherein these effects are modelled, are provided.
These examples are aimed at illustrating how the above
effects influence the costs of open subsystems, and in
particular how they affect the cost-optimal distribution
of acquired capacity among the private and the public
clouds.

We now consider an imaginary case of a hybrid
cloud-based service where the service provisioning to
the customers requires both computational resources
and some data communication overheads. The com-
puting requirements are assumed to be fully satisfied
by the equivalent of 500 Amazon EC2 large instances
(Amazon Web Services 2011), though this number may
be changed without inflicting significant changes on the
results of the experiments. Unless specified otherwise,
a linear demand curve is assumed, i.e. the demand is
uniformly distributed between zero and D as illustrated
in Fig. 3.

For the linear demand curve (uniformly distributed
demand), the cumulative acquired public cloud com-
puting capacity is Lcc = 1

2 DT(1 − q)2. The use of the
linear demand curve, albeit unrealistic, allows finding
the analytical solution to Eq. 41 easily and thereby
helps in illustrating some aspects of the proposed
model. Meanwhile, since the Propositions 1–3 were
shown to hold for an arbitrary demand distribution,
the use of a more realistic demand distribution will not
affect the results of the experiments illustrating those
propositions. Proposition 5 relied on the special case
of the linearly distributed demand function, and hence,
the linear demand curve is employed also in the nu-
merical experiments devoted to that proposition. Note
that Proposition 4 focuses on the case of the constant
demand function, and accordingly the constant demand
function is assumed when illustrating that proposition.

It should be noted that data storage costs are not
included as separate cost factors in the cost considera-
tion. It is assumed that the storage provided, along with
computing capacity, by a public cloud (for instance,
Amazon EC2 large instance offers 850 GB of storage)
is sufficient for service provisioning, whereas persistent
storage, when needed, is provisioned in-house, as a part
of the private cloud infrastructure.

The parameters are set to the following values:

– A 3-year period is considered, i.e. T = 24 × 365 ×
3 = 26,280 (hours).

d(t)

t

D

qD

Tt0

Fig. 3 Uniformly distributed demand curve rearranged to be
monotonically non-decreasing
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– The computing demand is assumed to be fully sat-
isfied with 500 Amazon EC2 large instances, i.e.
D = 500.

– The volume of data transfer is measured in GB, i.e.
k = 1 means that one working hour of a small EC2
instance requires 1 GB of data to be transferred
between the public cloud and the customers.

5.1 Constant prices of computing and communication
capacity

Let us consider a case where the unit prices are not
discounted and therefore can be seen as constant, i.e.
b co = b cc = b bo = b bc = 0, as considered in Proposi-
tions 1 through 3. Using the pricing defined by Amazon
for its EC2 services (Amazon Web Services 2011), the
prices of computing and communication capacities are
set to the following values:

– The price of public cloud computing capacity is
estimated based on the price of a standard, large
on-demand Linux/UNIX instance located in EU:
pcc = 0.38 (USD/h).

– The price of public cloud data transfer is estimated
based on the “Data Transfer Out” pricing of EC2
for US & EU Regions. If the total amount does
not exceed 10TB/month, the price is fixed as: pbc =
0.15 (USD/GB).

– The price of public cloud capacity is provisionally
assumed twice more expensive than that of the pri-
vate cloud, i.e. uc = ub = u = 2 (Khajeh-Hosseini
et al. 2011). Hence, pco = 0.19 and pbo = 0.075.
Note that u can be changed without affecting the
results, as long as u > 1.

The varying intensity of data communication is mod-
elled by assigning different values to coefficients k
and ρ: the larger the coefficient value, the greater the
intensity.

Since quantity discounting is ignored, we can esti-
mate the total cost according to Eq. 26:

C = acoqDT + uacoLcc + abok
(
qDT + ρLcc

)
+ uabok(1 + ρ)Lcc. (82)

Given that Lcc = 1
2 DT(1 − q)2, we can rewrite the

above as

C = acoqDT + abok
(

qDT + ρ
1

2
DT(1 − q)2

)

+ u
1

2
DT(1 − q)2

(
aco + abok(1 + ρ)

)
. (83)

5.1.1 Negligible demand for data communication

First, consider the case when the demand for communi-
cation capacity is low and can be ignored. In this case,
k = ρ = 0, and the Eq. 83 can be simplified to:

C = acoqDT + 1

2
uaco DT(1 − q)2. (84)

In Fig. 4, the resulting costs of an open subsystem are
plotted as a function of the threshold portion of private
cloud demand q. As can be seen from the figure, in
the absence of communication costs and quantity dis-
counting, the minimum cost is achieved when a hybrid
cloud is used, in line with Proposition 2. Furthermore,
according to Corollary 1, the value of qmin minimizing
the cost is determined by the ratio of the prices qmin =
1 − 1

u = 1 − 1
2 = 0.5.

5.1.2 Non-zero demand for data communication

Let us now consider the effect of data communication
on open subsystem costs. In Fig. 5, the costs of an open
subsystem are plotted as a function of q, given a set
of different values of k and ρ. In the left part of the
figure, the plots for different values of k are provided
(the value of ρ = 0.2 is used). As can be seen, the
costs grow as the value of k increases (cf. Proposition
1). The value of qmin, minimizing the costs (shown by
vertical lines), shifts to the right as k increases, thus
indicating that the greater the communication intensity,
the more the private cloud capacity that should be
acquired.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 106 Public subsystem cost as a function of q

Portion of private cloud (q)

C
os

t (
C

)

Fig. 4 The costs of private (red) and public (green) open subsys-
tems, as well as the total cost of open subsystems (black). The unit
prices of capacity are fixed, and the demand for communication
capacity is negligible
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Fig. 5 The cost of open
subsystems for different
values of k (left) and ρ (right),
plotted as a function of the
private cloud demand
threshold q. The vertical lines
indicate the minimum costs
for different values of k and ρ
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The costs’ dependency on the value of ρ depicted in
the right part of the figure exhibits a similar pattern (the
value of k = 0.5 is used). Namely, the costs grow with
the value of ρ, and the value of qmin, minimizing the
costs, shifts to the right as ρ increases. Thus, the figure
indicates that the greater the communication intensity
between the organization’s closed subsystems and the
public cloud, the more the private cloud capacity that
should be acquired, which agrees with Proposition 2.

Furthermore, it can be shown that:

as k → +∞, qmin → 1 − 1

u + ρ(1 + u)

= 1 − 1

2 + 0.2 × 3
= 0.6154 (85)

as ρ → +∞, qmin → 1. (86)

i.e. for larger values of ρ, the capacity should be mainly
allocated to the private cloud.

Thus, for a linear demand curve, the data transfer
between the organization and the public cloud has a
greater impact on the cost-optimal distribution of ac-
quired capacity than the communication between the
open subsystems and the customers. In other words, it
is more reasonable (cost-wise) to use the public cloud
infrastructure for services which have little interaction
with the closed in-house subsystems.

5.2 Non-constant prices of computing
and communication capacity

In the preceding subsection, the costs were illustrated
for the case of fixed prices of computing and commu-
nication capacity. In this subsection, the case of non-
constant prices is considered by taking the quantity
discount into account.

5.2.1 Pricing parameters

The pricing parameters are set to their values as
follows:

For computing capacity

Public cloud Amazon EC2 instances are priced
equally, independently of how many instance-hours are
consumed over the billing period. Also, when changing
from a small standard to large or extra large instances,
the charge per hour grows linearly with the number
of EC2 computing units, i.e. no volume discounts are
given. Therefore, the price of cloud computing capacity
is assumed fixed, i.e. b cc = 0. The price of a large EC2
instance is used for assigning the value of acc = 0.38
(USD/h).

Private cloud The in-house computing capacity ac-
quisition costs are subject to the price elasticity of
demand; Bayoumi and Haacker (2002) measured the
(absolute) price elasticity of demand for hardware to
be in the range |ε| = 1.1 . . . 1.8, and suggested that 1.3 is
a “reasonable” value. However, assuming b co = 1/ε =
−1/1.3 = −0.769 would result in an incorrect estimate,
since neither the underlying physical infrastructure nor
the associated human costs are taken into account.
Therefore, instead, parameters b co and aco are esti-
mated as follows.

According to Hamilton (2010), when large (NCO1 =
5 × 104 servers) and medium (NCO2 = 103 servers)
datacenters are compared, the economies of scale
(Stigler 1958) result in 5.7 . . . 7.1 difference in the
network, storage, and administration costs. We take
the value of pCO2/pCO1 = 6.5 as a reasonable value.
Since pCO1 = aco(NCO1)

b co and pCO2 = aco(NCO2)
b co ,



862 Inf Syst Front (2012) 14:845–869

it follows that b co = ln(pCO1/pCO2)

ln(NCO1/NCO2)
. Therefore, b co =

ln(1/6.5)

ln(50000/1000)
= −0.478.

The estimates by Greenberg et al. (2008)2 sug-
gest that the cost of a large datacenter with 5 ×
104 servers is 5,621,117 (USD/month). Assuming 50
virtual machines (VM) per server, such datacenter
may host NVM = Nco × 50 = 2.5 × 106 VMs. Then, the
cost of one VM per hour is pco = 5,621,117/(2.5 ×
106 × 30 × 24) = 3.1 × 10−3. Since pco = aco(NVMH)b co ,
where NVMH = NVM × T is the number of VM-hours
provided by the datacenter over time T, it follows that
aco = pco(NVMH)−b co = 415.93.

For data communication capacity

Public cloud Based on the pricing of Amazon EC2
(Amazon Web Services 2011), the parameters abc and
b bc are estimated by using the least-square fitting as:
abc = 0.773 and b bc = −0.130.3

Private cloud The price of internet connection in-
house is usually set using one of the following three
methods (Stiller et al. 2001): (1) a fixed monthly
charge depending on the allocated bandwidth, (2) a
volume-based charge, or (3) a bursty rate depending
on the 95% highest sample of consumed bandwidth.
The first method is arguably the most widely used by
ISPs (Stiller et al. 2001; Odlyzko 2001), therefore, it is
assumed.

Furthermore, monthly fees are assumed to grow
non-linearly with the allocated bandwidth (Opitz et al.
2008), and hence the unit price of reserved data com-
munication capacity is assumed to be subject to a
quantity discount. For simplicity, the unit price (per
GB) is approximated with the same parameters as were
obtained for the Amazon data transfer prices, i.e. abo =
abc = 0.773 and b bo = b bc = −0.130.4

Assuming the pricing with the parameters described
above, the cost are considered below (1) for the con-
stant demand function and (2) for the uniformly dis-
tributed demand function.

2Available at http://perspectives.mvdirona.com/2008/11/28/Cost
OfPowerInLargeScaleDataCenters.aspx.
3Note that, due to the pricing scheme of Amazon, this fitting
was done for the large data communication volumes (exceeding
10TB per month). Therefore, these parameters give somewhat
incorrect results for the volumes less than 10TB per month.
4In fact, the data-communication price for an enterprise would
be determined by the overall communication capacity used in
the enterprise: Lbo + Lboc + L0, where L0 is the data commu-
nication capacity used by all other services in the enterprise.
Here, for simplicity it is assumed that L0 is small compared with
Lbo + Lboc and hence can be ignored.

5.2.2 Constant demand

First, let us consider the case of constant demand func-
tion d(t) = D. Then, Lco = qDT and Lcc = (1 − q)DT,
and therefore, the open subsystem cost

C = acoLb co+1
co + accLb cc+1

cc + abo
[
k
(
Lco + ρLcc

)]b bo+1

+ abc
[
kLcc(1 + ρ)

]b bc+1

can be rewritten as

C = aco(qDT)b co+1 + acc((1 − q)DT)b cc+1

+ abo
[
k(qDT + ρ(1 − q)DT)

]b bo+1

+ abc
[
k(1 − q)DT(1 + ρ)

]b bc+1 (87)

The costs of open subsystems for this case are de-
picted in Fig. 6. As can be seen, the graphs of the cost
function are concave. This is in line with our reasoning
in the previous section, where it was shown (cf. Propo-
sition 4) that, given a flat demand distribution function,
the cost of a private and/or public cloud infrastructure
are lower as compared with a hybrid cloud.

Furthermore, the figure also illustrates that, in line
with Corollaries 3 and 4, while the costs increase with
communication overhead (k and ρ), the minimum still
occurs at q = 1, i.e. when the in-house infrastructure is
used. Thus, the minimum costs are achieved when the
private cloud only is used.

5.2.3 Linear demand distribution function (uniformly
distributed demand)

Let us now consider the case of the linear demand dis-
tribution curve, i.e. the case when Lcc = 1

2 DT(1 − q)2.
In Fig. 7, the costs of computing and the costs of data

communication are shown separately. The left plot in
the figure illustrates the computing capacity cost as a
function of q. As can be seen, the computing capacity
cost function is neither convex nor concave; rather, the
function is concave in the area of small q values and
convex for the remaining values of q. This is due to
the mutual effect of non-constant demand (convex cost
function constituent, cf. Proposition 2), and quantity
discounting (concave cost function constituent consid-
ered in Propositions 4 and 5).

Data communication capacity cost (shown in the
middle and in the right) is largely a convex function,
as was discussed in Section 4. However, as can be seen
from the figure, the data communication costs, too, are
affected by quantity discounting (concave cost function
constituent): for instance, for ρ = 0.01, the cost func-
tion is concave in the area of small q values.

http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
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Fig. 6 The cost of open
subsystems for different
values of k (left) and ρ (right),
plotted as a function of the
private cloud demand
threshold q. A constant
demand and a non-zero
steepness of the quantity
discounting are assumed
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According to Fig. 7, the concavity is manifested
largely in the computing capacity cost, whereas it is al-
most non-present in the data-communication costs. The
difference in concavity suggests that quantity discount-
ing (concave cost function constituent) affects more the
computing capacity costs than the data communication
capacity costs—this is due to the fact that the steep-
ness of the quantity discount for data communication
capacity is lower (in absolute value), as compared with
the steepness for the computing capacity, and hence
contributes less to the cost function.

In Fig. 8, the resulting costs of open subsystems
are shown. As the plots in the figure illustrate, due
to the mutual effect of non-constant demand (convex
cost function component), and quantity discounting
(concave cost function component), the resulting cost
functions are neither concave nor convex. Rather, they

are concave in the area of small q values and convex for
the remaining values of q. This change from concavity
to convexity (as the q values increase) indicates that the
second derivative ∂2C

∂q2 changes its sign from negative to
positive, as the term B4 in Eq. 71 grows (cf. the proof
of Proposition 5).

As the figure indicates, a hybrid cloud is cost-optimal
(0 < qmin < 1). The values of qmin are found within the
areas where the cost function is convex, thus indicating
that the volume of non-constant demand has a decisive
effect on the overall costs, outbalancing the effect of the
quantity discounting.

It can be observed, that, as the data communication
intensity grows (i.e. k and ρ increase), the effect of
the non-constant demand for data communication (the
convex cost function component) starts to dominate—
and as a result, the areas, wherein the cost function
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Fig. 7 The cost of open subsystems plotted as a function of
the private cloud demand threshold q. The cost of computing
capacity is shown in the left, where the costs of the private (red),
public (blue), and total (black) computing capacity are plotted.

The middle and the right figures portray the data communication
costs for different values of k (middle) and ρ (right). A linearly
distributed demand and a non-zero steepness of the quantity
discount are assumed
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Fig. 8 The cost of open
subsystems for different
values of k (left) and ρ (right),
plotted as a function of the
private cloud demand
threshold q. The vertical lines
indicate the minimum costs
for different values of k and
ρ. A linearly distributed
demand and a non-zero
steepness of the quantity
discount are assumed
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is convex, enlarge. As discussed above, this can be
explained by the fact that the steepness of the quantity
discount for data communication capacity is lower, in
absolute value, as compared with the steepness for the
computing capacity; therefore, as the portion of the
data-communication costs in the overall costs increases,
the portion of the computing capacity costs drops, and
hence the effect of data communication costs—mainly
convex—starts to dominate.

It is noteworthy that, as k increases, the value of qmin

shown with blue vertical lines in the figure decreases
(whereas qmin increases with ρ). This is in line with
Corollary 2 stating that in case uc 
 ub, qmin decreases
as k grows. Indeed, if, for example, 250 instances are

deployed in the private cloud, then pco = 415.93 ×
(250 × 24 × 365 × 3)−0.478 = 0.23, and hence uc = pcc

pco
=

0.38
0.23 = 1.65, while ub = 1. As a result, the term ρ(1 +
ub) + ub − uc = 0.2 × (1 + 1) + 1 − 1.65 = −0.25 in the
partial derivative ∂τc

∂k is negative, thus resulting in ∂ Q
∂k <

0, and hence qmin decreases as k grows.
Above, the cost function curve was shaped by a mu-

tual effect of the non-constant demand and the quantity
discounting. In order to study the effect of the absolute
value of the steepness of the quantity discount on the
total costs, the total costs are shown for a set of values
of the steepness in Fig. 9:

b = {0.0; −0.075; −0.125; −0.25; −0.5; −0.6}.

Fig. 9 The cost of open
subsystems for different
values of the steepness of the
quantity discount (b =
{0.0;−0.125;−0.25;−0.4;
−0.5;−0.6}), plotted as a
function of the private cloud
demand threshold q. A
linearly distributed demand
is assumed
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In the list, the value of b = −0.125 approximates the
steepness of the quantity discount for data communica-
tion (−0.130), whereas the value of b = −0.5 approx-
imates the quantity discounting of the computing ca-
pacity (−0.478). The data communication parameters
are set to values k = 0.5 and ρ = 0.2. Furthermore,
the public cloud discounting parameters are set to
the same values as in the private cloud (to avoid the
zero-discounting computing capacity prices as set by
Amazon).

As can be seen, the cost function is convex when
the steepness of the quantity discount is low. However,
the greater the absolute value of the steepness, the
less the convexity. Eventually, as the absolute value
of the steepness increases, the cost function becomes
partially concave (visible already for b = −0.125), and
then fully concave (b = −0.5); in other words, the cost
function concavity grows with the absolute value of
the steepness of the quantity discount. As discussed
above, this explains the more concave shape of the cost
function when the data communication intensity is low,
and more convex shape when the data communication
intensity increases.

The pricing schemes present today exhibit different
discounting for the computing capacity and for the data
communication capacity. Figure 9 manifests possible
future scenarios when, due to technological advances
and market trends, approximately the same quantity
discount applies to the both types of capacity. On the
one hand, if the quantity discount is at the low level as
observed currently in the data communication capacity
pricing (b = −0.125), the price function will likely be
convex with the minimum at q ∈ (0, 1) suggesting the
use of the hybrid cloud infrastructure. On the other
hand, should the steepness of the quantity discount for
data communication capacity reach the level of b =
−0.5 similarly to the quantity discounting of today’s
private computing capacity, the cost function will likely
be concave, with the minimum achieved at q = 1, sug-
gesting the use of the private cloud only.

6 Discussion

In previous sections, the model for hybrid cloud costs
was introduced. In it, the costs of computing capac-
ity and data communication capacity are modelled as
a function of the threshold demand for computing
capacity. Whereas the demand up to this threshold
value is served with the private cloud infrastructure,
the demand exceeding the threshold value is served
with the public cloud infrastructure. This model can
be employed for identifying the cost-optimal division

between the private and the public capacity, as was
illustrated with the help of numerical experiments. Be-
low, some theoretical and practical implications of the
proposed model are considered, and the directions for
further work are outlined.

6.1 Theoretical and practical implications

The findings reported in this paper have some im-
plications on the research of plural governance and
concurrent sourcing:

Diseconomies of scale due to volume uncertainty com-
bined with the costs of unused excess capacity have
been considered as one of the hypothetical reasons for
concurrent sourcing (Puranam et al. 2006). The effect
of volume uncertainty has been taken into account in
this paper by considering the form of demand function.
For instance, it was shown that, given a non-constant
demand function, the time of using the public cloud
capacity should be the inverse of the premium charged
by the cloud infrastructure vendor. Thus, the results
of the paper provide analytical evidence supporting
the above hypothesis in the context of the concurrent
sourcing of computing infrastructure.

Economies of scale –i.e. the reduction of the average
cost per unit of a good/service with the number of units
produced (Stigler 1958)—have been referred to as a
factor “increasing the likelihood that the production is
kept internally”, thus suggesting the use of single sourc-
ing (Mols 2010). In the context of cloud infrastructure,
the economies of scale are manifested in the quantity
discount applied to the unit price of an infrastructure
capacity. It has been shown in the paper that, given a
constant demand, the effect of quantity discounting—
and hence the economies of scale—renders the use
of hybrid cloud unreasonable. Therefore, the analysis
in the paper is in line with the above claim that the
economies of scale make single sourcing the preferred
option.

While the transaction cost theory does not address
the phenomena of concurrent sourcing (Mols 2010), it
does consider the use of internal vs. external production
alternatives and suggests that transaction-specific costs
make the internal mode of production more likely.
This paper exemplifies that the concurrent sourcing
may incur extra costs, in this case the costs of data
communication between the in-house and cloud sub-
systems (Lboc), which are needed for coordination and
interaction between in-house and outsourced parts.
These extra costs make the concurrent sourcing thresh-
old high whenever the outsourced process and the in-
house processes are tightly coupled. In the context
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of computing infrastructure, the extra costs of data
communication play the role similar to the transaction-
specif ic costs in the transaction cost theory: these costs
are only incurred due to the collaboration within the
hybrid cloud infrastructure, and therefore are highly
transaction-specific, thus making the in-house mode of
infrastructure more likely.

Importantly, whereas the transaction-specificity is
often difficult to quantify, and hence elaborate ques-
tionnaire tools are usually employed in order to esti-
mate it, the extra data communication expenses man-
ifesting the transaction-specific costs in the context of
computing infrastructure can be quantified directly,
thus providing a unique opportunity to study the effect
of the transaction-specific costs on sourcing decisions.

From the perspective of a practitioner, the proposed
model enables the analysis and identification of a cost-
efficient allocation of computing and data communica-
tion capacity to the in-house and public infrastructure,
depending on both the form of the demand curve and
the available pricing for the computing and the data
communication capacities. As was illustrated numeri-
cally for a specific case of a communication-intensive
application, a hybrid cloud may have up to 10–30%
lower costs than a fully private or a fully public cloud
solution (cf. Fig. 8). Meanwhile, in case of intensive
communication and a constant demand, the use of a
hybrid cloud can have up to 40–60% higher costs as
compared with the in-house operation (cf. Fig. 6).

Noteworthy, the identification of the cost-efficient
allocation requires a rather modest set of computa-
tions to be performed, using the historical information
about capacity demand distribution and the informa-
tion on pricing as an input. Furthermore, such esti-
mation needs to be performed infrequently (e.g. when
pricing parameters change dramatically), and hence the
computational overheads of the estimation process are
negligible.

The model also provides a possibility to explore
possible future scenarios when, due to technological
advances and market developments, the steepness of
the quantity discount for a capacity changes. On the
one hand, if the steepness becomes low, as observed
currently for the data communication capacity, the cost
function will likely be convex with the minimum at
q ∈ (0, 1) suggesting the use of the hybrid cloud in-
frastructure. On the other hand, should the steepness
of the quantity discount for the data communication
capacity reach the level of b = −0.5—which would be
similar to the steepness of today’s private computing
capacity—the cost function will likely be concave, with
the minimum achieved at q = 1, thus suggesting the use
of the private cloud only.

6.2 Limitations and further research

The analysis in this paper has focused on the cost
of computing capacity and data communication costs,
both of which depend on the size of the portion of de-
mand that is served by the private/public cloud. There is
a difference between the effects of these two factors on
the overall costs. Namely, when the demand is moved
from the private to the public subsystems (i.e. when q
decreases):

– The cost of private cloud computing capacity de-
creases linearly, and the cost of public cloud com-
puting capacity increases proportionally to the time
when the public capacity is used.

– The cost of private cloud data communication also
decreases; however, the decline is not linear due to
the need for communication between the private
and public cloud subsystems (reflected in the value
of ρ).

For many cloud applications, such as online image
processing systems, the two cost factors above con-
stitute the majority of their computing infrastructure
costs. In other application scenarios, depending on the
system architecture and functionality provided, also
other factors, such as the cost of the load balancer and
the cost of persistent data storage, may contribute to
the overall costs of the hybrid cloud. The contribution
of additional cost factors to the overall costs depends
on whether these factors are attributable to a single
subsystem (either private or public, as computing ca-
pacity costs) or to an interaction between the private
and public clouds (as data communication costs).

For instance, in systems with an excessive demand
for persistent storage the effect of the storage cost de-
pends on the replication of storage between the private
and public clouds. In case the replication is not needed,
the storage cost is expected to have an effect similar
to that of the computing costs, i.e. it is expected to de-
crease linearly with q in the private cloud and increase
proportionally to the time of use in the public cloud.
However, if the public cloud’s storage is replicated
in the private cloud, the storage cost are expected to
behave similarly to the data communication cost. The
analysis of the storage costs is further complicated by
the fact that the pattern of using the persistent storage
capacity is likely to differ from the computing or data
communication capacities: whereas the computing or
data communication resources are released once the
computing task or communication is completed, the
data may need to be stored for a long period of time
resulting in incrementally increasing demand for the
persistent storage capacity. Thus, the cost of persistent
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storage is a complex function determined by multiple
factors, and therefore further research aimed at clarify-
ing the contribution of storage expenses to the overall
costs is worthwhile.

Some of the additional cost factors, such as the cost
of a load balancing element, can be assumed indepen-
dent of the specific load division between the private
and the public clouds, and hence may be ignored when
seeking a cost-efficient division. Still, the load balancing
algorithm affects the pattern of allocating and releasing
public cloud resources and hence influences the public
cloud costs (den Bossche et al. 2010; Genaud and Gossa
2011). Therefore, the details of the applicable load
distribution algorithms, their effect on the public cloud
costs, and associated computational overhead shall be
studied as a part of future work.

Another aspect that warrants consideration in fur-
ther research is the process of transforming legacy
system architecture so that the hybrid cloud deploy-
ment would be enabled. Such a transformation may
require additional system elements to be implemented,
deployed and integrated, bringing additional costs and
constraints. As a result, the cost advantage of adopting
a hybrid cloud solution may decrease.

Finally, further research shall be devoted to the
elaboration of a general cloud cost framework, wherein
various cost factors would be categorized according to
their contribution to the overall costs. For instance, the
costs can be categorized into (1) fixed costs, such as
the costs of closed subsystems, (2) the costs incurred
by either the private or the public portion of the cloud,
such as the computing capacity costs, and (3) the costs
incurred due to the interaction of the private and the
public clouds, as exemplified by the communication
costs. When integrating these costs, the framework
shall also take into account the relative importance
of individual factors, which depend on the form of
the demand distribution for a specific resource. The
aspects, such as trends in pricing and the net present
value (NPV) of money, could also be taken into account
in this framework.

7 Conclusions

The use of cloud infrastructure promises enterprises a
reduction in IT costs, as well as faster time to mar-
ket and improved scalability. Among different cloud
infrastructure deployment modes, the hybrid mode is
often argued to be more cost-efficient than either the
private or the public cloud, due to the possibility of sup-
plementing the limited capacity of private infrastruc-
ture with the capacity of the public cloud, when needed.

In order to minimize the costs of such hybrid cloud,
a balance between the reserved private cloud capacity
and acquired public cloud capacity should be found;
in other words, the higher price of the public cloud
capacity should be balanced with the relatively short
duration of the time when the public cloud is utilized.

In this paper, a model for hybrid cloud costs, en-
compassing the costs of computing capacity and data
communication capacity, has been introduced. In the
proposed model, the costs are modelled as a function
of the threshold demand for computing capacity, which
is provided with the private cloud. The demand up to
this threshold value is served with the private cloud
infrastructure, which is assumed to be acquired before-
hand and reserved for the purposes of service provi-
sioning; whenever the demand exceeds the threshold
value, the exceeding portion of the demand is served
with the public cloud infrastructure, which is used with-
out a prior reservation (on-demand) and charged based
on the actual usage. When estimating the costs of a
capacity, quantity discounting is taken into account. Us-
ing the model, the cost-optimal threshold for dividing
the private and the public cloud computing capacity can
be identified. Finding such optimal division has been
numerically exemplified for the case of a demand uni-
formly distributed between zero and maximum levels.

It has been analytically shown that when the unit
prices are fixed:

– A hybrid cloud may have lower costs than a fully
private cloud or a fully public cloud solution;

– The presence of data communication costs shifts
the cost-optimal division towards the private cloud,
i.e. the greater the communication intensity, the
more the private cloud capacity that should be
acquired; and

– In the absence of data communication overheads,
and given an arbitrary monotonically increasing de-
mand distribution function, the portion of the time
when public cloud is used should be the inverse of
the premium charged by the cloud infrastructure
vendor.

On the other hand, when the unit prices are subject
to quantity discounting (i.e. decrease with the amount
of acquired capacity),

– A non-hybrid solution—i.e. private or public cloud
infrastructure, but not a hybrid solution—may pro-
vide the minimal costs.

– Given a constant demand, a fully in-house deploy-
ment provides the minimum costs.

A series of numerical experiments were employed
in order to illustrate the above effects. In these
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experiments, the cost of open subsystems was plotted
as a function of q—the threshold demand provided with
the private cloud infrastructure.

The numerical experiments supported the claim that,
under the condition of zero quantity discount, hybrid
cloud minimizes the overall costs of the open subsys-
tems. It was also evidenced by the experiments that the
data transfer—either between the organization and the
public cloud or between the private/public cloud and
the customers—increases the cost-optimal threshold
for computing capacity to be provided with the private
cloud. Also, the data transfer between the organiza-
tion and the public cloud was found to have a greater
impact on the cost-optimal distribution of acquired
capacity in case of uniformly distributed demand. From
practitioners’ viewpoint this suggests that the services
provided from the public cloud should avoid excessive
communication with back-office systems.

The experiments also emphasized the effect of the
quantity discount on the overall costs of open subsys-
tems. As was shown in the case where the demand
for computing capacity was distributed uniformly, due
to the quantity discounting of computing and data-
communication capacities, the overall cost may become
a concave function of the private cloud threshold. As a
result, the use of a hybrid cloud becomes economically
unreasonable, since the cost is minimized by using a
private or a public cloud alone.

In summary, the introduced model contributes to the
previous work in the domain of the economics of cloud
computing by taking into account the data communi-
cation overheads when estimating the costs of a hybrid
cloud, and by taking into account quantity discounting.
In future work, this model could be expanded towards
a general cloud cost framework, where the other cost
factors, such as the costs of public cloud data storage
and the control cost incurred during the process of
introducing hybrid cloud into the organization, would
be taken into account.
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