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Abstract This paper presents iForestFire, an Environmen-
tal Monitoring Information System for forest fire protec-
tion. The system is composed of several components, each
having a particular function. Automatic fire detection is a
crucial component of the system. It is based on various
complex image processing algorithms. Complexity of the
system also emerges from integration, based on multi agent
technology, of different environment information. The
presented system contributes to the environment protection
and is in use in Croatia for several years.
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1 Introduction

Environment protection is one of the most important tasks
for the human kind. Huge efforts in all areas of a society are
directed to the preservation of natural heritage as much as
possible. Information and communication technologies
(ICT) take up environment protection to a higher level.
The terms Environmental Information Systems (EIS) and
Environmental Monitoring Information Systems (EMIS)

have arisen (Nesis project report 2010). Here, we use the term
Environmental Monitoring Information System for an infor-
mation system integrated into the environment for the purpose
of gathering, processing and storing environmental informa-
tion. Intelligent Forest Fire Monitoring System, implemented
under the name iForestFire®, is a typical EMIS system. The
term intelligent in the system title comes from integrating
intelligent methods and technologies into this information
system. For example, we have defined rule-based system for
environment self-protection ability introduced by an advanced
sensor network implemented with a multiagent system
integrated into the environment (Seric 2010).

This paper presents iForestFire system development and
architecture. The system is described from the functional point
of view, identifying parts of the system with the particular
function described in detail. iForestFire is designed and
implemented primarily to help protection of a forest environ-
ment from a fire. Forest fires represent a constant threat to
ecological systems, infrastructure, and human lives. Croatia
belongs to countries with the enhanced summer forest fire risk
particularly in the Dalmatian coast and islands. According to
Croatian Ministry of the Interior, from 2000 to 2006, there
were 33,234 fires of open space (Ministry of the Interior
statistical report 2010). During the same period, burned area
was 3,586.34 km2. Considering Croatian terrestrial area of
56,542 km2 in 6 years, more than 6% of the land was burnt.
Major tragedy occurred on August 30 2007 when in just one
fire on the island Veliki Kornat, 12 fire fighters were killed.

An effective way to minimize the damage caused by
forest fires is early fire detection enabling fast fire fighters’
reaction. Human surveillance is a traditional approach not
just for forest fire detection but for the detection of different
natural phenomena. Forest fire detection in Croatia is
legislatively listed and organized by different local and
national organizations like Croatian Forests, city councils,

M. Stula (*) :D. Krstinic : L. Seric
Faculty of Electrical Engineering, Machine Engineering
and Naval Architecture, University of Split,
R. Boskovica bb,
21000 Split, Croatia
e-mail: maja.stula@fesb.hr

D. Krstinic
e-mail: dkrst@fesb.hr

L. Seric
e-mail: ljiljana@fesb.hr

Inf Syst Front (2012) 14:725–739
DOI 10.1007/s10796-011-9299-8



etc. It is realized through 24 h observation by human
observers located on monitoring spots. Human observers are
usually equipped only with standard binoculars and commu-
nication equipment and their observation area is only the area
covered by their sight of view. Installation of remotely
controlled video cameras on monitoring spots connected to a
monitoring center equipped with adequate video presentation
and video storing devices places a human observer into
monitoring center. The human observer is capable of
monitoring a wider area covered by several video monitoring
field units. One human observer can now monitor an area that
previously needed several observers, so human power can be
transferred to other tasks, like preventive measures. Informa-
tion and data can be stored for later analysis, which is also
quite useful. The next reason for implementing EIS is the
possibility of automatization of different tasks. In this paper,
the main emphasis is on the automatic fire detection, but many
other tasks can be automatized using different technical
solutions. Automatic fire detection facilitates monitoring of
several cameras with attracting attention of a human observer
to possible suspicious situations.

Currently, we are working on one more automatized task
on integrating fire simulation with geographical information
that would find all cameras on all monitoring spots that can
monitor a fire and would automatically direct all those
cameras to the fire. Automatization of any task reduces
human effort, usually speeds up a process, and generally
increases any system’s quality. This also applies for EMIS.

2 System development

The development of the iForestFire system began in 2003
with a small team of four people (Prof. Stipanicev, Stula,
Krstinic, and Seric). It was partially founded by the
Croatian Ministry of Science through technology project
No. TP 010023-02 and scientific project No.0230028 and
No.023-0232005-2003. The idea was to develop a system
with basic functionality of automatic fire detection and to
provide it to fire fighters in Split, a town in Dalmatia
County, because we established cooperation with them.
This cooperation was the result of a productive and
intensive communication with Croatia main fire fighter
assistant, Mr. Tomislav Vuko (Stipanicev et al. 2006).

To develop the system, we had to address several issues.
The main ones are explained here. First, we had to define
complete hardware infrastructure. What cameras should we
use? What kind of network should we build to communicate
the acquired information? Where should we place monitoring
locations? How would we process acquired information?

The second issue was that we did not have user
requirements. Fire fighters did not know what this new
information system should provide to them. We practically

defined system requirements in the initial system version
and used feedback from fire fighters to improve the
iForestFire and generate new versions. Functional require-
ments were defined investigating current systems with a
similar function like FireWatch (FireWatch 2010) and
Forest Fire Finder (Forest Fire Finder 2010). For nonfunc-
tional requirements, we strongly relied on knowledge
gained in previous projects. For example, previous projects
were the main reason why we decided on web-based
information system. Such information systems can easily be
provided to the public and connected with public informa-
tion sources (web portals, social networks, etc.), which is
very important for environment protection and environment
hazards notification systems (Puras and Iglesias 2009).

In this situation, we could not use heavily formal
methods for information system development, like, for
example, waterfall development. The best candidate for the
system development method was one of the agile develop-
ment methods. We have chosen extreme programming (XP)
(Beck and Andres 2005). Why extreme programming? The
first reason was a small and very tightly connected team
(and still is, since we continue to improve the system and
generate new versions). We are more than coworkers. We
are in contact every day. During the project, we would sit
down together for hours to solve a problem.

For example, how would a module for image processing,
running on a server, provide information to a user interface,
running on a client computer, on a possible alarm? Agreed
solution was to put the information from image processing
module to a database. The part of the user interface,
developed as an Ajax component, is querying database
every 10 s. When new information on possible alarm
appears in the database, the Ajax component pushes alarm
information in a pop-up window to a user (Fig. 1).

Second reason was the tight connection with users. After
user training, the system was delivered to fire fighters.

Fig. 1 Alarm pop-up window
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System acceptance testing was very successful. Users
would call us whenever something in the system was
missing or was poorly usable according to them. For
example, alarms were raised in a pop-up window with
image on which alarm was suspected (Fig. 1). Users
suggested that alarm information would be more usable if
the system highlights just the part of the image that was
suspicious. We redesigned the module for automatic
detection to produce a new image with highlighted areas
in the case of an alarming situation (Fig. 2).

Second, a very important new requirement, that has risen
when fire fighters got the system, was the possibility to
manually control system cameras and other sensors. We did
not include this functionality initially. We were developing
the system for the automatic fire detection but when the
users experienced the tele-presence with high zooming
possibility, they asked for system manual control without
automatic fire detection.

To summarize, iForestFire system was developed with a
bit modified XP method. We could not always program in
pairs, because there was a lot of work and it was a team
with only four of us. Deployment was also addressed,
although XP does not cover system deployment, because
we had to round entire SDLC (System Development Life
Cycle) (Fig. 3).

A lot of effort has been made in forest fire prevention
and since 2003 we have intensively worked on the
development of iForestFire system. At this moment, there
are 12 iForestFire systems installed (Stipanicev et al.
2009b). Seven systems are installed in Istra County
covering the whole county. Rest of the installed systems
are along Adriatic coast in national parks Mljet and
Paklenica, and nature parks Biokovo, Telascica, and
Vransko jezero. The first system was installed in the

national park Paklenica in the summer of 2006 and is up
and running since then.

3 System architecture

iForestFire is an intelligent and integral video-based
monitoring system for the early detection of forest fires.

iForestFire is an intelligent system because in its
automatic mode, the forest fire detection is based on
various autonomous advanced image processing, image
analyses and image understanding algorithms. Algorithms
include lot of procedures derived from the fields of
Artificial Intelligence and Computational Intelligence.
iForestFire software organization is based on agent archi-
tecture. Intelligent software agents are responsible for
image collecting, image and data storing, sensors integrity
testing, image preprocessing, image postprocessing, pre-
alarm, and alarm generation. Forest fires are detected in
incipient stage using advanced image processing and image
analyses methods. Intelligent fire recognition algorithms
analyze images automatically, trying to find visual signs of
forest fire, particularly forest fire smoke during the day and
forest fire flames during the night. If something suspicious
is found, pre-alarm is generated and appropriate image parts
are visibly marked. The operator inspects suspicious image
parts and decides whether it is really the forest fire or not.

iForestFire is an integral system because it consists of
independent software components (image processing, me-
teorological data collection and processing, system geore-
ferencing, fire spreading simulation,…) integrated into one
product called iForestFire. Here, the term software compo-
nent is used very loosely to mean a functionally recogniz-
able piece of software and not in the sense of the more strict
definition by Szyperski (Szyperski 1998).

Functionally recognizable piece of software is a piece of
software providing a particular function. Components can
function independently, providing particular function, but
integrated provide more user-friendly, more efficient, and
intelligent system. For example, the collected real meteoro-
logical data are used as an input for fire spreading simulation
in iForestFire instead of artificially generated data, when
spreading simulation component works independently.

iForestFire is a Web Information System (WIS)
(Isakowitz et al. 1998). All iForestFire components can be
reached and administrated through dynamic and interactive
web pages. Real-time video and meteorological data are
shown on web pages together with GIS data and interface
for pan/tilt/zoom camera control when the system is in
manual mode. The function of all components is presented
as a part of web application to a user, although some
components like automatic fire detection are not web-based
application.

Fig. 2 New alarm pop-up window adjusted according to the user
requirement
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iForestFire UML deployment diagram is shown in
Fig. 4.

Deployment diagram is quite complex because the system
is complex. It could be more detailed but then it would be
even harder to track the system from the diagram. Figure 5
shows the system architecture with block diagram containing
main software components on high functional level that
depicts iForestFire system and is easier to understand.

The system hardware architecture is based on field units
and a central processing unit. The field unit includes the
day and night, pan/tilt/zoom-controlled IP-based video
camera, and an IP-based mini meteorological station
connected by wired or wireless LAN to a central processing
unit where all analysis, calculation, presentation, image,
and data archiving is done.

iForestFire system architecture from the functional point
of view (ANSI/IEEE 1471–2000, Recommended Practice
for Architecture Description of Software-Intensive Sys-
tems) identifies main system functionalities as follows:

& Data gathering from video and meteo sensors in real
time

& Automatic fire detection from acquired video data
& Data archiving for later retrieval
& Geolocation information system for positioning sensors

in space
& Fire risk and spreading simulation

Our next sections provide description of the system’s
functional components. The most important component is
automatic fire detection, so this component is explained in detail.

3.1 Data gathering from video and meteo sensors in real
time

Monitoring geographically large area requires installing
several monitoring stations. Each monitoring station is
equipped with several sensors among which are usually

pan/tilt/zoom-controlled video camera and mini meteoro-
logical station. In our work, sensors are IP-based and thus
all data are accessible via TCP/IP protocol. Typical
monitoring location is shown in Figs. 6 and 7.

Each monitoring station provides large amount of data.
Meteorological station measures important meteorological
parameters like air temperature, relative humidity, air
pressure, and wind speed and direction. Additional meteo-
rological parameters like insolation, precipitation, moisture,
ground temperature, and ground humidity can also be
measured. Additionally, temperature inside the equipment
box, lighting strokes and accumulator voltage, and current
for autonomous power supply are also measured and used
to enhance safe work of the monitoring station. Digital
image provided by the video camera is data with the most
significance in fire recognition, and each pan/tilt/zoom
camera can be treated like up to 16 cameras with predefined
preset positions covering the whole surrounding area. All
data are required by central processing unit for the fire
recognition, and are stored in the database for future
analysis.

Gathering the distributed real-time data from several
locations is challenging, and our solution is a multiagent
system. Intelligent agent, in the context we are using it, is a
software entity that acts autonomously, has its own internal
knowledge and goals, is aware of its state and surroundings,
and can cooperate with others (agents and other software
components). Multiagent system consists of several agent
types. Each agent type can be executed in several instances
concurrently to do the work. The internal structure of the
system is complex. A single monitoring station is con-
trolled with up to 20 agents depending on the monitoring
station properties like number of cameras, number of preset
positions per camera,… Agents rely heavily on interopera-
tion between instances of different agent types. The multi-
agent system architecture is layered with agents on the top
level controlling the agents on the lower level (Fig. 8).

Fig. 3 iForestfire SDLC
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Short description of agent types and functionality is
provided. Meteo agent with subagents, Tini meteo and Axis
meteo, is designed with the task of collecting data from
each sensor in the sensor network and storing it into
database. These agents require knowledge about a location
and a protocol for acquiring data provided by the Database
agent. Camera agent with subagents, Preset agent 1, …,n
(depending on the number of preset positions), is designed
with the task of collecting image from video camera and
storing it into data warehouse. These agents also require
knowledge, provided by the Database agent, about a
location and a protocol for acquiring an image.

Multiagent system architecture is highly modular. If
monitoring station is not equipped with a video camera,
agents dedicated to collecting image from video camera and
storing it into data warehouse are not activated. If
monitoring station is not equipped with a meteorological

station, agents dedicated to collecting meteo data from each
sensor of sensory network and storing it into database are
not activated. System is implemented using JADE
(Bellifemine et al. 2007; Han et al. 2010) (Java Agent
Development Environment) and running Rete (Forgy 1982)
algorithm for reasoning and knowledge processing.

3.2 Automatic fire detection

Early recognition of forest fire and appropriate fast reaction
is the only way to minimize damage and threat to the
infrastructure and human lives. The central part of the
iForestFire is the component for the automatic detection of
the fire. The detection is based on the visible signs of forest
fire, as well as on the inputs from other sensors.

The fire flame in its early stages is usually not visible in
daylight, especially if the monitoring spot is far from the

Fig. 4 iForestfire UML deploy-
ment diagram
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location of the fire. However, the visible feature of the forest
fire in densely wooded areas that can be used to detect fire in
its incipient stage is a smoke. Visible signs of fire are much
easily recognized during the night, when the fire produces
high contrast to the unenlightened landscape. The automatic
detection system has two operational modes for the detection

of the fire in daylight and during the night. The mode of
selection is automatic based on the video input.

Regardless of the operational mode, detection is carried
out in up to 16 preset positions covering the entire field of

Fig. 7 Monitoring station mounted on existing infrastructure (astro-
nomical observatory)Fig. 6 Stand-alone monitoring station

Fig. 5 iForestfire high level
functional software components
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view of the camera. The detection in single preset position
takes about 15 s, resulting in up to 4 min interval between
two detection cycles.

If the suspicious region in the visual range of the camera
is detected, the alarm is delivered to the human operator
who makes the final decision about delivering the alarm to
the fire fighters or discarding a false alarm. The sensitivity
of the automatic fire detection can be adjusted using several
parameters; thus the system can be easily tuned for different
landscapes and particular atmospheric and illumination
conditions.

To detect smoke with reasonably low error rates, several
algorithms based on different visual characteristics of
smoke are implemented. Postprocessing algorithms based
on meteorological and video data fusion are applied and
decision about raising an alarm is brought by a voting-
based strategy where weight is assigned to the output of
each detection algorithm.

The first processing step in smoke detection is motion
detection and background subtraction. Several methods
have been proposed in the literature (Benezeth et al. 2008;
Piccardi 2004). Time and space complexity constraints
enforced by simultaneous processing of several video
inputs in real time impose the selection of an algorithm
with low computational complexity and memory require-
ments. Accordingly, moving pixels detection is based on

the background subtraction method proposed in Collins et
al. (Collins et al. 2000). A foreground blob of pixels bn at
time step n is defined by

bn ¼ x : InðxÞ � BnðxÞj j > TnðxÞf g ð1Þ

where Bn(x) is the background, Tn(x) is threshold, and In(x)
is the current frame value at the pixel x and time step n. Both
the background Bn and the adaptive threshold Tn are
recursively estimated from the sequence of frames I0, …, In-1:

Bn ¼ aBn�1ðxÞ þ ð1� aÞInðxÞ; x 2 bn
Bn�1ðxÞ; x =2 bn

�
ð2Þ

Tn ¼ aTn�1ðxÞ þ 5� ð1� aÞjInðxÞ � Bn�1ðxÞj; x 2 bn
Tn�1ðxÞ; x =2 bn

�
ð3Þ

where α is a time constant that specifies how fast new
frames are adopted in the background model. Initial
background B0 is taken to be the first frame in sequence
and threshold T0 is set to a predefined value.

We have adapted this method to the multiple position
detection system with a long time interval between two

Fig. 8 iForestfire multiagent
system architecture
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visits to the same position. To cope with the long pause
between two subsequent frames, at the beginning of each
detection cycle in the particular position, background model
is updated with the first frame in the new cycle:

BnðxÞ¼ dBn�1ðxÞ þ ð1� dÞInðxÞ;
2
3 a < d � a

ð4Þ

The above equation takes into account the changes that
have occurred as a result of different illumination or
environmental conditions between two visits to the same
preset position. Constant δ defines the influence of first
frame in sequence to the previously adopted background
model. If a new object enters the scene between two visits
to the same position, it will still be detected. Even if the
larger change is erroneously adapted to the background
model, dynamic objects, like smoke, will be detected in the
subsequent frames.

Suspicious regions disclosed by background subtraction
are further processed by several algorithms based on
different visual characteristics of the smoke. As the system
is designed for monitoring wide areas, smoke can be
detected several miles from the camera position, and thus
the texture information content is usually low. However,
color, histogram features and shape attributes, both intra-
frame and temporal can be used to distinguish smoke-like
clusters of pixels from other artifacts in the input video
stream.

Color and histogram characteristics are empirically
acquired from the image collection gathered on the real
forest-fire monitoring sites (Bodrozic et al. 2006) and
images from the archive of the Professional Firefighting
Brigade of the Split-Dalmatian county of the Republic of
Croatia. Pixel-level segmentation of smoke colored pixels
(Krstinic et al. 2009) incorporates probabilistic model to
classify a pixel into the Smoke class (ωs) or into the Non-
Smoke class (ωns). Pixels belonging to the Smoke class are
assumed to have measurement vector x (color coordinates
in HSI color space) distributed according to the distribution
density function p(x|ωs) and the distribution of the Non-
Smoke class is defined with p(x|ωns). Once the distributions
have been estimated, the Bayes theorem is applied to
calculate the probabilities:

pðwsjxÞ ¼ pðxjwsÞpðwsÞ
pðxÞ ð5Þ

pðwnsjxÞ ¼ pðxjwnsÞpðwnsÞ
pðxÞ ð6Þ

where the prior probabilities p(ωs) and p(x|ωns) represent
the probabilities of Smoke and Non-Smoke classes before

observing the vector x. The newly encountered pixel,
represented with the measurement vector x, is classified as
smoke if

pðwsjxÞ
pðwnsjxÞ > 1 ð7Þ

Prior probabilities p(ωs) and p(ωns) can be estimated
from the training data: if a random sample of the entire
population has been drawn, the maximum likelihood of
p(ωs) is just the frequency with which ωs occurs in the
training data set. In practice, real forest fires are very rare
on any monitoring site, which would result in p(ωs)<<
p(ωns). We use the prior probabilities as a user-controllable
parameter, which controls the sensitivity of the smoke
detection algorithm. This way the algorithm can be biased
to minimize more expensive errors (it is obviously more
serious to miss the detection of a real forest fire than to
disturb the operator with a false alarm). Probability
distributions for the Smoke and Non-Smoke classes are
computed from the training set of images using the kernel
density estimation technique based on the assumption that
the probability distribution at a continuity point can be
estimated using the sample observation that falls within
region around that point (Fukunaga 1993; Scott and Sain
2004; Meer 2004).

Each input data sample (image pixel) in the training data
set is assigned a kernel, decreasing monotonically with the
distance from the origin. Density at some point x is
computed as the sum of the contributions of all data
samples:

f DðxÞ ¼ 1

Nhd
XN
i¼1

K
x� xi
h

ð8Þ

where N is the number of samples, h is the bandwidth, and
kernel K:Rd→R, K(x) ≥ 0 is a symmetric function satisfying

Z
Rd

KðxÞdx ¼ 1 ð9Þ

In the discrete histogram, pixel contribution is accounted
for in a set of cells surrounding pixel origin in the targeted
color space, rather than only in one cell. This approach
compensates the error introduced by the discretization of
the feature space (Krstinic et al. 2009), resulting in the
probability distribution that better reflects the underlying
true distribution.

In addition to pixel-level color segmentation of smoke
colored pixels, histogram features, based on the histogram
of a region of the image are also used to distinguish smoke-
like objects from other disturbances isolated by background
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subtraction. Dispersion μ̂1 and mean m1 are computed as
(Jain 1989, p 334):

m1 ¼ 1

N

XN
i¼1

xi ð10Þ

bm1 ¼
1

N

XN
i¼1

xi � m1j j ð11Þ

for the intensity and saturation components of the suspi-
cious regions on the input image in HSI color space.
Obtained values are compared with the ranges empirically
acquired from the training data set.

Background subtraction and confirmation based on color
and local histogram can efficiently identify the appearance of
smoke in the controlled region with zero miss rate. However,
there are situations when the smoke does not exist in reality,
but the automatic surveillance system recognizes character-
istics typical to the phenomena, which leads to an alarm that
does not correspond to the real occurrence of forest fire.
Primary causes for false alarms are natural phenomena
visually similar to smoke that at certain conditions can be
misinterpreted as smoke even by a human observer. These
include fog and clouds that are low to the ground (Fig. 9), dust
from the ground, etc. Other false detections include those
that can be easily dismissed by common-sense reasoning of
the human observer, like rain drops on the camera (Fig. 10),
intense changes in environmental illumination, and sun
effects, etc. In fact, the largest number of false alarms occurs
in periods of the dynamic changes in the environmental
illumination, especially in dawn and dusk. Such dynamic
changes can be easily detected as motion, which in turn
triggers the process of detection.

Different scenarios that can trigger false alarm have to be
covered by specific methods. Thus, several methods have
been developed to reduce the false alarm rate (Jakovcevic et
al. 2009). These methods are mainly based on spatial
characteristics of objects segmented as possible smoke
formations. Spatial attributes can be divided into intra-
frame attributes and temporal characteristics. The latter are
mainly used to eliminate abrupt changes detected as smoke.
Though the appearance of smoke is gradual, dynamic
changes in aerial illumination can result in large regions of
image detected as smoke (Fig. 11). Accordingly, if the ratio
of object size vs. evolution time is above a certain
threshold, the segmented object is discarded.

Intra-frame attributes are based on the geometry of
suspicious objects detected on a single frame and on the
observation that the smoke plumes have rather convex
shape that is not over-elongated. For all detected objects,
the axis of least moment of inertia is calculated,

corresponding to the intuitive length of the object, which
is used to calculate elongation factor (Jakovcevic et al.
2009), ratio of length vs. width of the object. Experimental
values acquired from the training set of images showed that
the smoke in the incipient stage of forest fire have
elongation factor less than 3. Elongation factor is efficiently
used to reject majority of alarms triggered by sunlight
effects on camera objective (Fig. 12).

False alarms triggered by raindrops and filth on the
camera objective can be rejected based on the observation
that smoke has no compact shape (Fig. 13), whereas objects
like raindrops are rather circular and compact (Fig. 14).
Compactness factor (Jakovcevic et al. 2009) is calculated
using the perimeter of the object and its area:

c ¼ l2

4pA
ð12Þ

where l is the perimeter of the object and A is the area of the
object. Another feature that can be used for distinguishing

Fig. 10 False alarm caused by rain drop on the camera objective

Fig. 9 Low clouds and fog can easily be misinterpreted as smoke
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smoke from raindrops is the curvature of the smoke shape,
which by nature of its spread is rather distorted. Bending
energy of the object shape is calculated according to:

B ¼ 1

l

X
a2 ð13Þ

where l is the perimeter of the object and α is the angle
between two pixels whose distance is 3 from neighboring
boundary pixels (Fig. 15).

Besides methods based solely on image processing and
analysis techniques, alarms can also be discarded using
more complex approaches based on sensor data fusion in
combination with common sense reasoning. These methods
combine information extracted from video input with
meteorological information. Thus, phenomena like rain-
drops and fog can be recognized by using a moisture
detector. Temporal characteristics of smoke could be
analyzed by comparing optical flow in suspicious regions

in image with the wind direction and speed (Fig. 16).
However, extreme importance of keeping zero miss rate in
fire recognition suggests that no alarm should be dismissed
based solely on meteorological information, because they
reflect meteorological situation on micro location where the
equipment is mounted, whereas fire and smoke can be
recognized several miles from the monitoring spot.

Besides the above-mentioned methods used for automatic
forest fire detection, several different approaches were tested
and evaluated, and the algorithm is continuously upgraded.
However, severity of the problem enforces constraints for the
implementation of detection methods in the real system. First
is the system reliability, which enforces constraints in the
complexity of the used methods with regard to the stability of
the system and computational resources needed for simulta-
neous handling of several video inputs.

Different problems arise from the versatile conditions in
which the system operates. Variations in the smoke color
tones, environmental illumination, atmospheric conditions
(clouds, mist, shadows, dust), varying quality of images of
wide outdoor areas, filth on the camera lens installed on
difficulty accessible sites, and other problems make smoke
detection a complex task. If a method is to be implemented as
part of the detection algorithm, it should produce detection
with reasonably low error rates in all possible conditions.

Fig. 13 Axis of least moment of inertia

Fig. 12 False alarm triggered by sunlight effect on the camera
objective (easily rejected using elongation factor)

Fig. 11 False alarm triggered by abrupt change in environmental
illumination (have large size vs. evolution time ratio)

Fig. 14 Detected objects a) raindrop, b) smoke
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All methods can be roughly divided into intra frame
(based solely on current image) and inter-frame. Inter-frame
methods explore temporal characteristics and changes in the
sequence of the images. Basic inter-frame method is the
motion detection and background subtraction, which is
used as the first processing step of the detection algorithm.
Deeper insight and information on temporal characteristics
of the regions in the visual field of the system can be
obtained by Markov model analysis and time-domain
wavelet transformation. However, regions that are far from
the camera do not reflect the actual dynamic characteristics
of the phenomena observed; thus temporal characteristics of
the smoke cannot be reliably detected with these methods.
Further, smoke can appear several miles from the monitor-
ing station as well as at a few hundred meters from the
camera. Besides dynamic characteristics of the smoke that
rapidly changes depending on the distance from the camera,

intra-frame attributes are also mutable. This makes methods
like frequency-domain wavelet analysis and neural net-
works, which heavily rely on texture information and intra-
pixels relations, hard to implement and unreliable.

The above-mentioned approaches were tested first in house
conditions and then implemented in the experimental system
mounted Zvjezdano selo research center. On the basis of
thorough analysis, methods that satisfy stability and speed
requirements are implemented as part of the production system.

3.3 Data archiving and retrieval

Data are archived during the process of data gathering from
video and meteo sensors in real time. Agents store data in a
database and data warehouse (images). The collected data
are accompanied with information relevant to the data
retrieval, like location from which data are acquired and
date when data are acquired. This metadata enables the
system to provide the correlated data to the user. For
example, correlated data enable retrieval of images acquired
directly from a camera and images generated during the
image processing from those “original” images, the so-
called alarm images. Data retrieval always starts from the
database. All metadata information is organized in the
database. Image data retrieval is expanded from the
database to the data warehouse. The storage is limited with
the server hardware. The user can choose different
hardware. A server can have 40 or 200 Gbytes of
permanent storage. The iForestFire system can be admin-
istrated to work regardless of the server storage changing
the system setup. Data stored in the database are small and
do not present a problem, but archived images in the data
warehouse require larger capacity. Usually, images are
collected as colored images with 768×576 pixel dimension.
Depending on the camera quality, each image is approxi-
mately ~50 Kbyte big. Collected images from video
cameras can be set up with different image properties. For
each camera, image is stored for every preset position
defined on the camera. If the system has two cameras with
eight preset positions and camera makes one full circle per
minute, collected image data is ~800 Kbytes/min. Storage
would be filled soon, so algorithm for cycle overwrite of
images is defined. Data archiving and retrieval component
uses the algorithm for image archiving. Image identifier
identifies the image uniquely in the data warehouse. It
includes image number from 0 to the image limit number.
Image limit number is a part of the system setup and can be
administrated by the user. Usually, image limit number is
set to 10,000. When that number of images is reached, the
counter is reset back to 0 and acquired images overwrite the
already stored images with the same image identifier. With
these settings, about one month’s input images and one year’s
alarm images can be stored for later analysis to 60 Gbytes ofFig. 16 Optical flow detection

Fig. 15 Angle α calculation
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permanent storage. Our experience gained in commercial
implemented systems shows that this is enough.

Metadata organization for archived images is shown in
Fig. 17.

Metadata for each archived image contains information
of camera location from which image is acquired, preset
position of the camera when image is collected, date and
time when image is taken, unique image identifier of the
image in the data warehouse, and information whether the
image is original or an alarm image generated from original
image by the automatic fire detection component. User,
wanting to retrieve archived images from iForestFire
system, can use image metadata to retrieve images and to
limit retrieved images by camera location, preset position,
date and time and original/alarm image. Figure 18 shows
the web page that provides the user with the selection of
parameters for image retrieval with retrieved images
presented to the user in a form of sliding sequential images.

Meteorological data and metadata on meteorological
data are stored in the database. Metadata for each archived
meteorological data is accompanied with information on
meteorological station location from which the data are
acquired, type of meteorological data (e.g. temperature,
wind speed, etc.), and date and time the data are taken. A
user wanting to retrieve archived meteorological data from
iForestFire system can use metadata to retrieve meteoro-
logical data and to limit retrieved data by a location, date
and time, and a type of meteorological data.

Figure 19 shows the web page that provides a user with
the selection of parameters for meteorological data retrieval
with retrieved data presented to the user in the form of a
graph with selected type of meteorological data drawn

together for comparison. In this figure, only wind speed and
temperature are selected for retrieval.

Meterological data storage is limited with the database
setup and hardware capacity. There are installed iForestFire
system (National Park Paklenica, Nature Park Vransko
jezero, Nature Park Biokovo all in Croatia) running for
2 years continuously without reaching capacity limit.

Fig. 17 Image metadata

Fig. 18 User interface for archived image retrieval
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3.4 Geolocation information system for positioning sensors
in space and fire risk and spreading simulation

As MacEachren (MacEachren 2010) said location is
fundamental to crisis management. iForestFire integrates
GIS information into several system functions. Geolocation
information system is used to determine the position of
monitoring stations. The user can locate monitoring station
in space using GIS map in the iForestFire. That function-
ality is provided by georeferencing monitor station’s
position (Stipanicev et al. 2009a). This component also
enables the user to direct video surveillance from multiple
monitoring stations in one direction by simply clicking on
the area on the georeferenced map.

GIS is important and used in all modes, but in simulation
mode, it is essential for fire behavior simulation and fire spread
calculation. Fire risk and spreading simulation component
(called MOPP-modeling of fire propagation in Croatian) is
based on semi-empirical Frandsen-Rothermels fire spreading
model (Rothermel 1972) and raster model based on cellular
automata for two-dimensional fire spreading simulation. Open
space vegetation can be observed as two-dimensional cellular
automata. Each cell presents attributes according to environ-
ment properties, first of all the vegetation flammability
properties and terrain topography.

These two components provide a user with:

& web interface for GIS information on fire initial
location,

& calculation of fire spreading,
& web visual simulation of fire spreading overlaid with

GIS data for the current meteorological data
& web visual simulation of fire spreading overlaid with

GIS data with user-set meteorological data for the if-
then situation (if the wind speeds up then how will the
fire spread?)

MOPP component is implemented on the top of open
source GRASS service for GIS calculation and MapServer
for presentation and GIS layers manipulation.

3.5 Comparison of iForestFire with similar systems

iForestFire can be compared with similar commercial
available systems. Automatic fire detection systems are
primarily divided into satellite-based and terrestrial-based
systems. Representatives of satellite-based systems are
Canadian FireM3 (Fire Monitoring, Mapping, and Model-
ing 2010), European EUMETSAT FIR (EUMETSAT
Active Fire Monitoring 2010), and NASA MODIS
(MODIS Rapid Response System 2010). Although satellite
image can cover large area, the main disadvantages of
satellite-based systems are low temporal and spatial
resolution of images. Terrestrial-based systems are based
on terrestrial monitoring stations with different sensors
(infra-red camera, visible spectra camera, lasers, optical
spectrometer, laser, temperature sensor, etc.).

Representatives of terrestrial-based systems are German
system FireWatch (FireWatch 2010) that uses special video
detector and Portuguese ForestFireFinder (Forest Fire
Finder 2010) that uses optical spectrometry. These systems
are fire detection systems, and when compared with
iForestFire, these systems lack tele-presence for fire fight-
ers. As stated in Introduction, our experience (Stipanicev et
al. 2006) in system development through users’ feedback
has shown that fire fighters intensively use tele-presence
and manual control of video cameras. Another advantage of
iForestFire when compared with similar systems is that the
system can work with different equipment (Samsung, Sony,
Pelco cameras,…). The only requirement for video cameras
and other sensing devices is accessibility via http (Hyper-
Text Transfer Protocol). The existing infrastructure in Istra
county was installed by fire fighters for monitoring and was
upgraded to automatic fire detection with iForestFire with
very little adjustment. iForestFire is quite open to different
hardware and software solutions, enabling integration of
different COTS (commercial off-the-shelf) components.
Openness of the system enables reuse of the existing
monitoring equipment and upgrading the existing plain
monitoring systems to systems with monitoring and
automatic fire detection. Monitoring and fire detection

Fig. 19 User interface for archived meteorological data retrieval
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integration is used in other similar systems like South
African FireHawk, French UraFire, and others. iForestFire
is a web-based information system. This enables access to
system from anywhere. It also facilitates publication of
gathered information to a general public in the form of
environment hazards notification systems.

4 Conclusion

Intelligent environmental sensor networks provide a way
for monitoring and controlling the physical environments.
Information collected by these systems gives new insights
into the environment and provides data for modeling and
simulation of environmental processes. Intelligent process-
ing of the collected data in real time can reduce hazards of
natural and man-made disasters by detection of dangerous
situations and raising early warnings. These systems relay
on the sensor and communication technologies to collect
and transmit data from field sensors, data warehousing
technology, and computational and artificial intelligence
algorithms used to generate complex conclusions and
decisions.

Such a system is Intelligent Forest Fire Monitoring
System presented in the paper. Croatia as well as whole
Mediterranean area belongs to regions with a high forest
fire risk. In summer season, seven coastal counties in
Croatia and in particular the Adriatic islands are perma-
nently exposed from high to very high fire risks, due to
densely spaced conifer forests. The only effective way to
minimize damage caused by forest fires is their early
detection and appropriate fast reaction. The presented
system is based on a network of remotely controlled video
cameras and meteorological stations integrated with the
geolocation information system and intelligent data pro-
cessing algorithms. Collected data are processed in real
time to provide early detection of possible forest fire. In the
case of a real incident, video presence is used to guide
firefighters’ efforts on the terrain and to prevent dangerous
situations, whereas the fire risk and spreading simulation
module is used to anticipate development of the fire.

iForestFire system benefits from multiagent technology
for data gathering and data integration in a highly modular
concept of the system. Agents are particularly suitable to
improve hte system robustness and decrease system
centralization while the system becomes more open and
easily expandable by simply adding new agents.

The system is developed in tight cooperation with
users, primarily fire fighters, and improved to the current
state through several iterations. Tight involvement of
users during entire SDLC ensures that iForestFire is
highly user-tailored. Also, openness to different hardware
solutions facilitates reuse of the existing monitoring

equipment and upgrading it to more automatized environment
protection.

Intelligent Forest Fire Monitoring system presented in
this paper is installed on several locations on the Croatian
coast and islands. Currently, the best coverage is achieved
in Istra county where complete coverage of the peninsula of
Istra is achieved by 29 field units (cameras and mini
meteorological stations) connected to seven data processing
centers. Systems installed on different locations have
detected several real forest fire incidents. Video archive of
the systems has also been used in police investigations
about incidents.

The presented system is highly modular and different
modules can be used separately or implemented as a part of
similar monitoring systems. Thus, by implementing alter-
native algorithms in automatic mode, the system can be
easily adapted for monitoring and detection of other natural
phenomena.
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