
Inf Syst Front (2013) 15:35–53
DOI 10.1007/s10796-010-9252-2

Two-stage database intrusion detection by combining
multiple evidence and belief update

Suvasini Panigrahi · Shamik Sural ·
Arun K. Majumdar

Published online: 11 August 2010
© Springer Science+Business Media, LLC 2010

Abstract Insider threats have gained prominence and
pose the most challenging threats to a database sys-
tem. In this paper, we have proposed a new approach
for detecting intrusive attacks in databases by fusion
of information sources and use of belief update. In
database intrusion detection, only intra-transactional
features are not sufficient for detecting attackers within
the organization as they are potentially familiar with
the day-to-day work. Thus, the proposed system uses
inter-transactional as well as intra-transactional fea-
tures for intrusion detection. Moreover, we have also
considered three different sensitivity levels of table
attributes for keeping track of the malicious modifica-
tion of the highly sensitive attributes more carefully.
We have analyzed the performance of the proposed
database intrusion detection system using stochastic
models. Our system performs significantly better com-
pared to two intrusion detection systems recently
proposed in the literature.

S. Panigrahi (B)
School of Computer Engineering, KIIT University,
Bhubaneswar, India
e-mail: spanigrahifcs@kiit.ac.in, suvasini26@gmail.com

S. Sural
School of Information Technology,
Indian Institute of Technology Kharagpur,
Kharagpur, India
e-mail: shamik@sit.iitkgp.ernet.in

A. K. Majumdar
Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur,
Kharagpur, India
e-mail: akmj@cse.iitkgp.ernet.in

Keywords Database security · Dempster–Shafer
theory · Bayesian learning · Intrusion detection ·
Insider attack · Suspicion score

1 Introduction

Concern regarding the security of databases has be-
come more crucial than ever before in all informa-
tion infrastructures. According to a computer crime
and security survey conducted by the Computer Secu-
rity Institute (CSI) (Gordon et al. 2009) in 2005,
approximately 45% of the inquired entities who re-
sponded have reported increased unauthorized access
to information. The 2007 CSI computer crime and se-
curity survey (Richardson 2009) proclaimed financial
application fraud as the leading cause of financial loss
and found it had more than doubled as compared to
the loss estimated in the previous year. These figures
show the growing sophistication and stealth of infor-
mation attacks in databases. In addition to the sub-
stantial financial losses, these attacks can also tarnish
the reputation of organizations, cause loss of customer
confidence, and even lead to litigations.

Traditional database security mechanisms provide
security features such as authentication, authorization,
access control, data encryption and auditing. However,
they are often found to be inadequate in satisfying the
security needs of modern information systems. Despite
the use of these preventive measures, data contained
in a database can be corrupted by authorized insiders
with malafide intent, or outside attackers who have
assumed an insider’s identity. Moreover, in databases,
some of the attributes are more sensitive to malicious
modifications as compared to others. Since all attacks

36 Inf Syst Front (2013) 15:35–53

cannot be prevented, the development of effective
database intrusion detection systems (DIDSs) is essen-
tial for protecting sensitive and proprietary information
in databases, and yet it remains an elusive goal and a
challenging problem.

Anyone within or outside an organization could be
an intruder. Intrusion can be classified as outside or in-
side based on the source from which it occurs. In case of
outside intrusion, malicious transactions are executed
by unauthorized users from outside the organization,
who may gain access to the database by exploiting sys-
tem vulnerabilities. The person who intrudes the system
in such a manner is called an outsider. In this type
of intrusion, the intruder may not be aware of the
security layout of the organization and the database
schema. An inside intrusion (Furnell 2004) is one in
which unauthorized database transactions are carried
out by authorized users, within the organization. A
person who intrudes from within an organization is
called an insider. These attacks are particularly difficult
to defend against as the intruders are authorized users
of the system and may have certain access rights to
data and resources (Furnell 2004). Besides, insiders
are potentially familiar with a part of the database
schema along with the security setup the organization.
Once such intruders manage to get the authentication
information of a normal user, they can submit transac-
tions similar to the genuine ones. Inside intrusions can
remain undetected for a long time and thereby cause
serious damage to database systems. Murray (2005)
has found that the primary security threats come from
internal misuse rather than from external attacks. Thus,
insider attacks bring the most challenging threats to
a database system and for this reason we focus on
identifying this type of intrusion.

The attributes corresponding to a single transaction
are known as intra-transactional and attributes related
to multiple transactions are called inter-transactional.
An intrusion detection system (IDS) which detects in-
trusion only based on intra-transactional features like
query type, accessed table name, accessed attribute
name, transaction location and transaction time, cannot
identify the insider attacks as malicious. Therefore,
only intra-transactional features are not sufficient in
database intrusion detection. When an attacker re-
quests multiple transactions, it is possible to identify
inter-transactional deviation (which attributes are ac-
cessed after which attributes, which types of queries
are invoked after which types of queries, time gap be-
tween transactions by the same user, etc.) even though
the individual transactions are quite similar to the
normal transactions. Thus, inter-transactional features

should be considered as a significant part of intrusion
detection.

It is well known that each user’s normal profile/
activity is unique and is represented using certain intra-
transactional as well as inter-transactional features. The
uniqueness of individual user’s activity helps in identi-
fying attempts by intruders masquerading as genuine
users by capturing their deviation in current behav-
ioral patterns from the normal profile. This is typi-
cally the case of inside intrusion. Thus, the basic idea
of our approach is that as intruders are not totally
familiar with the normal database access sequences,
they usually show some intra-transactional as well as
inter-transactional deviation in their database access.
We use sequence alignment and spatio-temporal out-
lier detection and combine them using an extension
of Dempster–Shafer theory to evaluate dissimilarity
of any new database access sequence with respect to
existing normal access sequences. A high score indi-
cates potential abnormal activities in the system.
It should be noted that inter-transactional features
can be obtained only when multiple transactions are
requested.

It has been found that the basic Dempster–Shafer
theory does not quite well model evidences with a high
degree of conflict. In this paper, we have, therefore, em-
ployed the Extended Dempster–Shafer theory (EDST)
(Campos and Cavalcante 2003) for combining multiple
evidences from the rules to compute an initial belief.
Furthermore, the sensitivity levels of table attributes
are also taken into consideration. This is done to keep
track of the highly sensitive attributes more carefully,
thus minimizing the overall loss suffered by the data-
base owner due to intrusion.

The rest of the paper is organized as follows.
Section 2 describes related work on database intrusion
detection. We present the components of our proposed
system named Two-Stage Database Intrusion Detec-
tion System (TSDIDS) in Section 3.1 followed by the
intrusion detection steps in Section 3.2. In Section 4, we
discuss the results obtained from various experiments.
Finally, we conclude in Section 5 of the paper.

2 Related work

Research on intrusion detection has been conducted
for nearly two decades, yet most of the existing intru-
sion detection systems are not capable of sufficiently
identifying the presence of intrusions (Lunt 1996; Goan
1999). Existing work on intrusion detection has largely
focused on network-based intrusion detection systems

Inf Syst Front (2013) 15:35–53 37

(NIDSs) and host-based intrusion detection systems
(HIDSs) (Hoglund et al. 2000; Giacinto et al. 2008; Hu
et al. 2008; Triantafyllopoulos and Pikoulas 2002). In
either case, the IDS looks for attack signatures, specific
patterns that usually indicate malicious or suspicious
intent. However, these IDSs do not work at the ap-
plication level and hence are not capable of detecting
intrusions in databases. An IDS working at the appli-
cation level detects intrusions in the context of the
application. It can use the semantics of the application
to detect more subtle, stealth-like attacks such as those
carried out by insiders. There are two main reasons
for the requirement of database IDS (Kamra et al.
2007). Firstly, the actions considered as malicious in
a database application are not necessarily malicious
in network and operating system domain. Secondly,
the IDS designed for networks and operating systems
are not adequate to protect databases against insider
attacks.

In spite of the significant role of databases in infor-
mation systems, not enough attention has been paid
to intrusion detection in database systems. A limited
number of techniques have been proposed in the last
few years for the detection of intrusion in databases.
We briefly review some of them in this section.

Chung et al. (1999) present DEMIDS, a misuse de-
tection system for relational database systems. It uses
audit logs to derive user profiles which describe typical
behavior of users and exploit them to detect misuse.
The derived profiles are used to detect misuse behavior.
This method assumes that the legitimate users show
some level of consistency in using the database system.
If this assumption does not hold, it results in a large
number of false positives. Lee et al. (2002) designed a
signature-based database IDS which works by matching
new SQL statements against a known set of legitimate
transaction fingerprints to detect database intrusions.
However, generating the complete set of fingerprints
for all database transactions and maintaining its con-
sistency is a rigorous activity in case of large databases
with enormous number of users. Moreover, if any of
the legitimate transaction fingerprints are missing due
to incomplete training data, it can cause many false
alarms.

An interesting approach to mine user profile using
query templates was suggested by Zhong and Qin
(2004). They use constrained query template for im-
proving the system effectiveness. Damiani et al. (2003)
have suggested a robust single-server solution for re-
mote querying of encrypted databases on untrusted
servers by providing a hash-based method for database
encryption.

Transaction level data dependency, a novel approach
to represent genuine database access rules, was pro-
posed by Hu and Panda (2005). In this approach,
data dependency relationships among transactions are
mined and this information is used to detect anomalies.
Transactions not agreeable with any of the mined data
dependency rules are identified as malicious. In every
database, some of the attributes are considered more
sensitive to malicious modification compared to others.
Srivastava et al. (2006) have introduced the concept of
attribute sensitivity in their work. They find weighted
data dependency among data items and the transac-
tions that do not follow these rules, are flagged as
malicious.

Single-layered intrusion detection systems may raise
a high number of false alarms. Wenhui and Tan (2001)
proposed a two-layer mechanism to detect intrusions
against web-based database services. They use the first
layer to build historical profiles based on audit trails
and other log data provided by the web server and the
database server. A second layer is used to integrate the
alarm context with the alarms generated from the first
layer. Kamra et al. (2007) proposed a database IDS that
has similarity with role-based access control (RBAC)
model in profile granularity. Database log files are
mined to generate user profiles that model normal user
actions and is used to identify intrusions.

Till now, our discussion has been limited to user
transactions. A new aspect of real-time database intru-
sion detection at the level of sensor transactions was
proposed by Lee et al. (2000). They have employed the
time semantics of temporal data objects to detect intru-
sions, which is unknown to the intruders. Barbara et al.
(2002) suggested the use of Hidden Markov Model
(HMM) for mining malicious data corruption.

From the above discussions, it may be noted that,
Neural Network, Hidden Markov Model and Data
Mining techniques are mostly used in the field of data-
base intrusion detection. All these techniques aim to
detect malicious transactions, specifically in databases,
but an important problem in this field is to protect the
database from well-formed but damaging transactions
while limiting the generation of false alarms. Axelsson
(2000) has pointed out that due to base-rate fallacy, the
factor limiting the performance of an intrusion detec-
tion system is not the ability to identify intrusive be-
havior correctly but its ability to minimize false alarms.
One of the motivations of our current research is to
address this challenge.

It is well known that every user has a certain data-
base access pattern, which are captured as rules by
database intrusion detection systems. However, if these

38 Inf Syst Front (2013) 15:35–53

rules are static in nature, they become ineffective when
a user develops new patterns of behavior over a period
of time. Besides, new intrusion types, not known to the
detection system, mostly go undetected. Thus, systems
which do not combine multiple evidences or fail to
learn the changing behavior of users, result in a large
number of false alarms. Moreover, none of the existing
systems consider intra-transactional features and inter-
transactional features together for intrusion detection.

The normal database access profile of a user can be
modeled at different granularity levels. Some possible
transactional feature granularity levels include—query
type, sensitive attributes, all attributes, operation on
attributes and a combination of any of these. Never-
theless, the transactional feature used in each work as
discussed above is static in nature. In reality, an IDS
should be scalable enough to include all possible levels
of transactional feature.

In this paper, we propose a database IDS which
is designed with dynamic rules that support the se-
lection of transactional feature granularity. Multiple
evidences from these rules are combined using Ex-
tended Dempster–Shafer theory (EDST) (Campos and
Cavalcante 2003). Once a transaction is found to be
suspicious, belief update takes place based on its simi-
larity with malicious or genuine transaction history
using Bayesian learning. In addition, we consider both
inter-transactional features (sensitive attribute access
sequence as well as read/write operations on those
attributes) and intra-transactional features (time gap
between consecutive transactions by a user) together
at a detailed level of granularity for effective intrusion
detection. A preliminary version of this work has been
reported in Panigrahi et al. (2009). To the best of our
knowledge, this is the first ever attempt to develop a
database intrusion detection system using information
fusion and Bayesian learning.

3 Two-stage database intrusion detection
system (TSDIDS)

The proposed database intrusion detection system com-
bines evidences from current as well as past behav-
ior of users. A number of dynamic rules are used to
measure the deviation of each incoming transaction.
An extension of Dempster–Shafer’s theory (Campos
and Cavalcante 2003) is applied for combining multiple
such evidences and an initial belief is computed. First-
stage decision making is done about each incoming
transaction depending on its initial belief. If the initial
belief is less than a certain lower threshold, the transac-
tion is considered to be genuine. On the contrary, if the

initial belief exceeds an upper threshold, then the trans-
action is declared as intrusive. In case the initial belief
lies in between the two thresholds, the transaction is
treated as suspicious and its suspicion score is further
strengthened or weakened according to its similarity
with malicious or genuine transaction history using
Bayesian learning. The second stage decision making
takes place in a similar manner based on the updated
suspicion score of the transaction. TSDIDS may be
abstractly represented as a 5-tuple 〈U, P, ψ, θLT, θUT〉
as shown in Fig. 1 where:

1. U = {U1, U2, ..., Un} is the set of users on which
intrusion detection is performed

2. P = {P(U1), P(U2), ..., P(Un)} is the set of profiles,
where each P(Uk) corresponds to the profile of
the user Uk. The profile representing user’s normal
behavior facilitates reliable intrusion detection by
analyzing parameters of user’s current behavior
and comparing them with the user’s profile. We
have used multiple distinct intra-transactional as
well as inter-transactional features collectively for
profile representation since assimilation of multiple
features enhances the performance of an IDS as
compared to a single feature.
We consider the following example of a transaction
consisting of two queries t1 then t2 submitted to
achieve a specific task.

t1: Select a, b from table T1 where c = 1
t2: Update T4 set d = 10 where e = 1

where a, b and c are the attributes of table T1 and
d and e are the attributes of table T4. Suppose a
and d are high sensitive attributes, b is medium sen-
sitive and c and e are low sensitive attributes. The
attribute sequence < c, a, b > is considered to be an
intra-transactional feature sequence as it is related
to t1 only. Similarly, we can define < e, d > as an
intra-transactional feature sequence using t2. The
attribute sequence < c, a, b, e, d > is considered to
be an inter-transactional feature sequence where
the first three attributes are taken from t1 and the
rest from t2 sequentially.
Each user profile P(Uk) can be represented as a
7-tuple 〈user_I D, attrib_I D_seq, loc_I D, time_slot,
table_I D_seq, attrib_count, ρ〉 where:

– user_I D: a number that identifies each user
uniquely

– attrib_I D_seq: attribute access sequence in a
transaction. For this Eg. as discussed above,
attrib_I D_seq =< c, a, b, e, d >

Inf Syst Front (2013) 15:35–53 39

RULE-BASED COMPONENT

BELIEF COMBINATION COMPONENT
 (First Stage)

SECURITY SENSITIVE HISTORY
DATABASE COMPONENT

MTH

Legitimate Frequency Table

Malicious Frequency Table

LTH
Deviation
Analysis

Intrusion
Detection

Incoming Transaction
from specific user_ID loc_ID,

time_slot,
table_ID_ seq

BELIEF COMBINATION COMPONENT
 (Second Stage)

Initial Belief

Initial Belief

Posterior
 Belief

EvidenceSuspicion Score

attrib _ID_ seq Basic
Probabilities

BAYESIAN LEARNING COMPONENT

In
p

u
t

F
e
a
tu

re
s

Degree of
Dissimilarity

Degree of
ST_ Outlierness

time gap
attrib _count,

θLTθUT,

P(Uk)

Fig. 1 Block diagram of the two-stage database intrusion detection system

– loc_I D: identifies the location where a transac-
tion was carried out

– time_slot: time slot in which a transaction oc-
curs. We have partitioned a day into 48 time
slots, each of thirty minutes duration

– table_I D_seq: table access sequence in a trans-
action. Here, table_I D_seq = < T1, T4 >

– attrib_count = {HSWC,HSRC,MSWC,MSRC,

LSWC, LSRC}. It gives the count of the dif-
ferent types of attributes accessed in a transac-
tion based on their sensitivity where:

(a) HSWC (High Sensitive Write Count):
number of high sensitive attributes modi-
fied in a transaction. In this Eg. HSWC = 1

(b) HSRC (High Sensitive Read Count):
number of high sensitive attributes read in
a transaction. In this Eg. HSRC = 1

(c) MSWC (Medium Sensitive Write Count):
number of medium sensitive attributes
modified in a transaction. In this Eg.
MSWC = 0

(d) MSRC (Medium Sensitive Read Count):
number of medium sensitive attributes
read in a transaction. In this Eg. MSRC = 1

(e) LSWC (Low Sensitive Write Count):
number of low sensitive attributes modi-
fied in a transaction. In this Eg. LSWC = 0

(f) LSRC (Low Sensitive Read Count): num-
ber of low sensitive attributes read in a
transaction. In this Eg. LSRC = 2

– ρ is the time gap from the previous transaction
by the same user

3. ψ(TUk
j,ρ) is the suspicion score of the jth transaction

TUk
j,ρ by user Uk

4. θLT is the lower threshold, where {0 ≤ θLT ≤ 1}
5. θUT is the upper threshold, where {(0 ≤ θUT ≤ 1) ∧

(θLT ≤ θUT)}

3.1 TSDIDS components

To meet the functionality as identified above, a com-
prehensive architecture is proposed as shown in Fig. 1,
which consists of the following four major components:

– Rule-based Component (RBC)
– Belief Combination Component (BCC)

40 Inf Syst Front (2013) 15:35–53

– Security Sensitive History Database Component
(SSHDC)

– Bayesian Learning Component (BLC)

3.1.1 Rule-based component (RBC)

The RBC consists of a number of distinct generic as
well as user-specific rules which classify an incoming
transaction as malicious with a certain probability. It
measures the extent to which a transaction’s behavior
deviates from the user’s normal profile for each new
transaction submitted by the user. We briefly discuss
two of the rule-based techniques here.

– Sequence Alignment for Deviation Detection (R1)

A transaction is not an arbitrary collection of
queries. Each query in a transaction is chosen ap-
propriately to achieve a meaningful purpose. A
database user even submits a group of transactions
to achieve certain high level goals. The database
schema and the purpose to achieve a meaningful
task would make the user follow a particular se-
quence of database operations. Therefore, form-
ing a sequence is an effective way of representing
user profiles. Once the user profile is represented
using a sequence of transactional features, se-
quence alignment techniques can be used to raise
initial concerns about any suspicious activity. As
intruders are not entirely familiar with the normal
database access patterns of legitimate users, some
deviation is generally seen in their database access.
We use heuristic based local sequence alignment
tool BLAST (Altschul et al. 1990) for comparing
sequence information.
Behavioral patterns of a user are monitored by
comparing his most recent activity with his history
database access patterns. Each new transaction is
passed through the RBC and the new attribute
sequence is aligned with each of the normal profile
sequences. The degree of dissimilarity (ds) is deter-
mined based on the similarity between the new se-
quence and the user’s normal profile sequences. We
use a simple scoring system to evaluate the degree
of dissimilarity. A unit match score δ (0 < δ ≤ 1)

is assigned to each matched element and a unit
mismatch score δ′ (0 < δ′ ≤ 1) to each mismatched
element. Let L be the length of the new sequence
and M be the number of matches with the aligned
good sequence. The degree of dissimilarity (ds) is
then evaluated by the following expression:

ds =
⎧
⎨

⎩

δ′(L − M) − δM
L

if δ′(L − M) > δM

0 otherwise
(1)

Some of the possible transactional feature granu-
larity levels for any database transaction include—
query type, sensitive attributes, all attributes,
operation on attributes and a combination of any
of these. In the current work, we use attrib_I D_seq
as the transactional feature for sequence alignment
based deviation detection. The algorithm can be
extended to include other transactional features
as well.

– Spatio-Temporal Outlier Detection (R2)

In the real physical world, an individual exhibits
certain spatio-temporal characteristics which sig-
nify the correlation of a person’s behavior with
both time and location. Similar transactions carried
out by a user at certain location and time can be
visualized as part of a cluster. Analysis of the
spatio-temporal characteristics of a user’s current
behavior gives useful information on abnormal be-
havior in terms of his position (space) and time of
accessing the database. Thus, the normal spatio-
temporal profile associated with each user is mined
and used for the detection of intrusive activities
in databases. It may be noted that such spatio-
temporal coordinates are especially meaningful in
the context of mobile computing, in which users
access a database through mobile devices like lap-
top, PDA, mobile phone, etc. If the users are pre-
dominantly static, spatio-temporal access patterns
degrade to temporal access patterns.
Since an intruder is not likely to have complete
knowledge regarding the normal spatio-temporal
access patterns of users, some deviation from the
user’s profile is usually observed in his transactions,
which are detected as spatio-temporal outliers. We
have applied a spatio-temporal filtering method to
detect spatio-temporal outliers which are observa-
tions that are uncorrelated with the remainder of
the dataset in space and time. A spatio-temporal
outlier (ST-outlier) can be defined as a spatio-
temporal referenced object whose thematic attri-
bute values are significantly different from those of
other spatially and temporally referenced objects in
its spatial and temporal neighborhood.
An approach based on the distance-based out-
lier (DB-outlier) detection technique (Knorr et al.
2000) is utilized to filter out ST-outliers. Other
existing methods for outlier detection can only deal
efficiently with two dimensions or attributes of a
dataset. However, the concept of DB-outlier can be
applied to detect outliers effectively for any dimen-
sional dataset. Let N be the number of objects in
the input dataset T and let DF be the underlying
distance function that gives the distance between

Inf Syst Front (2013) 15:35–53 41

any pair of objects in T. An object O in a dataset
T is considered to be a DB(p, d) outlier if at least
a fraction p of the objects in T lie greater than a
distance d from O. The parameter p is the minimum
fraction of objects in a data space that must be
outside an outlier’s d-neighborhood denoted as dN .
For an object O, dN of O contains the set of objects
Q ∈ T that are within distance d of O, i.e., dN =
{Q ∈ T|DF(O, Q) ≤ d}. Let M represent the maxi-
mum number of data points within an outlier’s dN

(i.e., M = N(1 − p)). It means that an outlier needs
to have less than M objects within its dN . Thus,
for object O, if |dN| ≥ (M + 1), then the object is
considered as non-outlier. Otherwise, the point is
reported to be an outlier.
Formally, let C′ = {c1, c2, ..., cn} denote the clus-
ters in a database D for a specific user and
A = {a1, a2, ..., an} be the set of attributes used
to generate these clusters. The clusters can be
formed by using different attributes, although
in the current work, we use the attributes
〈loc_I D, time_slot, table_I D_seq〉 for generating
ST-outliers. The algorithm can also be extended
to include other attributes. We apply the most
commonly used distance measure, specifically
Euclidean distance, to compute the distance func-
tion DF which can be expressed as follows:

DF =
√

(loc_dif f)2 + (time_dif f)2 + (tdist_dif f)2

(2)

where loc_dif f : distance between current transac-
tion location and the user’s normal profile transac-
tion location, time_dif f : distance between current
transaction time slot and the user’s normal pro-
file time slot, tdist_dif f : schema distance between
current transaction table_I D_seq and the user’s
normal profile table_I D_seq.
For computing tdist_dif f, we use a distance measure
similar to that suggested in Chung et al. (1999).
We assume a database schema S with a set RS of
relation schemas. Attributes are structurally close
if they belong to the same relation or can be related
by exploiting a sequence of foreign key dependen-
cies. Consider two attributes ai ∈ r1, aj ∈ r2 where
r1, r2 ∈ RS. The pairwise schema distance between
ai and aj, denoted by PS_Dist(ai, aj) is defined as:

PS_Dist(ai, aj) = SD(r1, r2)

max{SD(rk, rl)|rk, rl ∈ RS} (3)

where SD(r1, r2) is the shortest distance between r1

and r2 based on the primary and foreign keys by

which they can be related. Given a set of attributes
A = {a1, a2, ..., an} ⊆ attributes(S), the schema dis-
tance function denoted by tdist_dif f, is defined as:

tdist_dif f(a1, ..., an) = avg{PS_dist(ai, aj)} (4)

We measure the extent of deviation of an incom-
ing transaction by its degree of ST_outlierness.
High score indicates high possibility of being an
ST-outlier. Suppose DFavg(TUk

j,ρ) and DFmax(TUk
j,ρ)

denote average distance and maximum distance
of an outlier transaction TUk

j,ρ from the set of ex-
isting clusters in C′ respectively. The degree of
ST_outlierness (dSTO) of TUk

j,ρ is then given by:

dSTO =

⎧
⎪⎨

⎪⎩

DFavg
(
TUk

j,ρ

)

DFmax
(
TUk

j,ρ

) if |dN| ≤ M

0 otherwise

(5)

We felt the necessity of the rule-based component
in TSDIDS not only for the inclusion of useful fea-
tures from existing systems but also to avoid handling
millions of transactions which are carried out due to
routine use of databases. The RBC separates out most
of the easily recognizable genuine transactions from
the rest.

Each of these rules R1 and R2 gives independent
evidences that results in some beliefs about the trans-
action’s maliciousness or genuineness. The suspicion
about the transaction is more intensified by combining
the evidences from the rules, which is handled by the
belief combination component of TSDIDS. We have
exploited two specific techniques as rules in the RBC
for the current work. However, functionality of the
component can be further enriched by incorporating
new rules according to existing trends and for each user,
the parameters used in the rule would vary depending
on his pattern of access.

3.1.2 Belief combination component (BCC)

The role of the BCC is to combine evidences from
the rules R1 and R2 and compute an initial belief for
each transaction submitted to the TSDIDS. It may be
noted that some attempts have been made to apply
Dempster–Shafer theory (DST) to computer security.
Wang et al. (2004) present a distributed intrusion de-
tection system, which uses DST to combine evidences
from distributed sensors. They show that multi-sensor
data fusion scheme gives better performance than a
single sensor. Chen and Venkataramanan (2005) have
applied Dempster–Shafer approach to distributed in-
trusion detection in ad hoc networks. Data from mul-
tiple nodes are combined to estimate the likelihood of

42 Inf Syst Front (2013) 15:35–53

intrusion. A useful application of DST is covered in
the work of Yi et al. (2000). They have introduced a
novel way of using the conflict value in DST for a given
sensor model and experimentally shown considerable
improvement in performance. Panigrahi et al. (2007)
have used DST for fraud detection in mobile commu-
nication networks.

The basic DST is a mathematical theory of evidence
based on belief functions and plausible reasoning. It
assumes a Universe of Discourse (UD), also called
the Frame of Discernment, which is a set of mutually
exclusive and exhaustive possibilities (Shafer 1976).
For every incoming transaction TUk

j,ρ , the rules R1 and
R2 contribute their independent observations about
the behavior of the transaction. Dempster’s rule for
combination (Sentz 2002) gives a numerical procedure
for combining together observations from the RBC to
compute an initial belief for a transaction. Two basic
probability assignments m1(h) and m2(h) are combined
into a third basic probability assignment m(h) by the
following Dempster’s combination rule:

m(h) = m1(h) ⊕ m2(h) = X
∑

x∩y=h

m1(x)m2(y) (6)

where, ‘⊕’ represents the Dempster’s combination op-
erator that combines two basic probability assignments
into a third basic probability assignment and X is the
normalization constant defined by the following Eq. 7:

X = 1

K
(7)

K = 1 −
∑

x∩y=φ

m1(x)m2(y) (8)

However, the basic DST has some major drawbacks.
It does not quite well model evidence with a higher
degree of conflict. The degree of conflict refers to
the lack of commonness or agreement among the evi-
dence obtained from independent sources. The normal-
ization constant in the Dempster’s combination rule
(Eq. 6) has the effect of completely ignoring conflict
and consequently, this operation yields counterintu-
itive results in the face of significant conflict in certain
contexts. Dempster’s combination operator is a poor
solution for the management of conflict between the
various information sources. Moreover, the conflict in-
creases with the number of information sources. That
is why a strategy for re-assigning the conflicting mass
is essential.

To solve this problem, we have employed the Ex-
tended Dempster–Shafer theory (EDST) proposed by
Campos and Cavalcante (2003) which presents a new
improved rule for combining evidences. EDST over-

comes the above mentioned pitfalls, allowing the com-
bination of evidences with higher degrees of conflict
reliably and rationally. The EDST combination rule
assigns the beliefs according to the degree of conflict
between the evidences and assigns the remaining belief
to the environment and not to the common hypothesis.
It makes possible to combine evidences with most of
their beliefs assigned to disjoint hypothesis without the
side effect of a counterintuitive behavior. The conflict
between two belief functions bel1 and bel2, denoted by
Con(bel1, bel2) is given by the logarithm of the normal-
ization constant as follows:

Con(bel1, bel2) = log(X) (9)

If there is no conflict between bel1 and bel2,
Con(bel1, bel2) = 0 and if there is nothing in common
between the two evidences, then Con(bel1, bel2) = ∞.
The modified Dempster’s combination rule automat-
ically incorporates the uncertainty coming form the
conflicting evidences which is given by the following
Eq. 10:

m(h) = m1(h) ⊕ m2(h) = X
∑

x∩y=h m1(x)m2(y)

1 + log
(

1
K

) (10)

For the database intrusion detection problem, EDST
is more relevant as compared to other fusion methods
since it introduces a new rule of combination that em-
bodies the conflict among the evidences. It provides a
rule for computing the confidence measures of three
states of knowledge: intrusion (I), ¬intrusion (¬I) and
suspicious (unknown) based on data from new as well
as old evidence. Hence, we use EDST for combining
evidences for this problem. The UD consists of two
possible values for any suspected transaction TUk

j,ρ which
is given as UD = {I, ¬I}. For this UD, the power set has
three possible elements: hypothesis h = {I} implying
that TUk

j,ρ is intrusive, hypothesis h = {¬I} that it isn’t,

and universe hypothesis UD that TUk
j,ρ is suspicious. The

Basic Probability Assignments (BPAs) for the two rules
R1 and R2 can now be given as follows:

– BPA for R1: For a transaction in which
attrib_ID_seq does not match completely with
the normal profile attrib_ID_seq, we make the
following basic probability assignments using the
degree of dissimilarity (ds) given by Eq. 1:

m1(h) = δ′(L − M) − δM
L

m1(h) = 0

m1(UD) = 1 −
(

δ′(L − M) − δM
L

)

(11)

Inf Syst Front (2013) 15:35–53 43

– BPA for R2: For a transaction detected as an ST-
outlier, we make the following basic probability
assignments using the degree of ST_outlierness
(dSTO) given by Eq. 5:

m2(h) = DFavg
(
TUk

j,ρ

)

DFmax
(
TUk

j,ρ

)

m2(h) = 0

m2(UD) = 1 −
(

DFavg
(
TUk

j,ρ

)

DFmax
(
TUk

j,ρ

)

)

(12)

The zero in the BPA of h in Eqs. 11 and 12 does not
imply impossibility. It means that neither of the rules
R1 and R2 gives any support to the belief that transac-
tion TUk

j,ρ is genuine. Following Eq. 10, the combined
belief of R1 and R2 in h is expressed as:

P(h) = m1(h) ⊕ m2(h) (13)

Based on the initial belief P(h), a transaction can be
initially classified as legitimate, malicious or suspicious.
Since P(h) and P(h) add to unity, P(h) = 1 − P(h).

3.1.3 Security sensitive history database component
(SSHDC)

In many decision making situations, an intermediate
possibility arises for which more information (evi-
dence) regarding the user’s database access behavior
needs to be obtained prior to deciding. Once a trans-
action from a user is labeled as suspicious, further
transactions from this particular user are permitted but
each new transaction is investigated by the SSHDC
component of TSDIDS.

For tracking such suspicious transactions, a large
volume of history database transactions is collected
and warehoused in the SSHDC. This is done to avoid
troubling the legitimate users who make occasional
high level of activity. Thus, we have built a legitimate
transactions history (LTH) for individual users from
their past behavior and a generic malicious transactions
history (MTH) from different types of past intrusive
data, taking into consideration the sensitivity levels
of table attributes. It should be noted that when an
intruder attacks through the login of a new user, there
is no history for that particular user. In such a situa-
tion, the proposed model reduces to a misuse detection
system, that recognizes the attacks by comparing the
current activity against the known patterns of abuse.

In recent years, database size has grown considerably
in terms of the number of tuples (objects) and number
of attributes (fields) in the database. It is now quite

common to have databases containing of the order of
109 tuples, each having 102 or 103 attributes (Fayyad
et al. 1996). However, in every database, there are a few
attributes that are more important to be tracked for ma-
licious modifications or leakage as compared to other
attributes. By grouping the attributes according to the
relative order of importance based on their sensitivity,
it becomes comparatively easier to track only those
sensitive attributes whose modification or leakage has
larger impact on the database security. It has been
observed that intrusion detection systems often raise a
large number of alarms, many of which are triggered
incorrectly by benign events (Julisch and Dacier 2002).
By classification of the attributes, the administrator
needs to investigate only the alarms generated due
to the unexpected modification of sensitive attributes
instead of checking all the attributes. Since the goal
of a DIDS is to minimize the losses suffered by the
customers and organizations, it is important to track the
high sensitive attributes more carefully.

We categorize the attributes into the following three
sensitivity levels—High Sensitivity (HS), Medium
Sensitivity (MS) and Low Sensitivity (LS). Also,
modification (write) of an attribute of a particular sensi-
tivity level is considered more important than accessing
(read) the same attribute, from database integrity point
of view. We consider an attribute say x, then W(xw) >

W(xr), where W is a weight function, xw denotes writing
or modifying attribute x and xr denotes reading of
attribute x.

For a given schema, we define six types of operations
on the attributes based on the different sensitivity levels
and mode of access. Numerical weights are assigned
to each operation, which signify their relative order
of importance. The six types of operations (op) are:
High Sensitive Write (HSW), High Sensitive Read
(HSR), Medium Sensitive Write (MSW), Medium
Sensitive Read (MSR), Low Sensitive Write (LSW)

and Low Sensitive Read (LSR) such that, WHSW >

WHSR > WMSW > WMSR > WLSW > WLSR. The weight
of a given attrib_I D_seq of a certain transaction is same
as the weight of the most sensitive operation applied on
the attributes in that sequence.

When a transaction is found to be suspicious, the
initial observation done by the rule-based component
is further strengthened by monitoring the frequency
of the most sensitive operation in the time_gap (ρ)

from the last transaction by the same user. For ac-
complishing this, we divide the time_gap (ρ) into
four units such that, ρ ∈ {1, 2, 3, 4} where ρ = 1 ⇒ 0 <

time_gap ≤ 8, ρ = 2 ⇒ 8 < time_gap ≤ 16, ρ = 3 ⇒
16 < time_gap ≤ 24 and ρ = 4 ⇒ time_gap > 24. It
may be noted that the time_gap values usually differ

44 Inf Syst Front (2013) 15:35–53

from user to user based on their access behavior. How-
ever, in the present work we have chosen fixed values
for the purpose of experimentation. The experiments
can be repeated by choosing any other suitable values
or by clustering past data to determine user-specific
time gaps.

We define 24 mutually exclusive and exhaustive
events Dopρ by considering the four time_gap units
(ρ) and the six types of operations (op) as discussed
above. Occurrence of each event Dopρ depends on the
most sensitive operation op carried out in a transaction,
where op ∈ {HSW, HSR, MSW, MSR, LSW, LSR},
and the time_gap unit (ρ) in which a transaction occurs.
The set of events is expressed as: Dopρ = {DHSW1,

DHSW2, DHSW3, DHSW4, . . . , DLSR3, DLSR4}. The event
DHSW1 is defined as the occurrence of a transaction
TUk

j,ρ by the same user Uk in which an HSW operation
is performed at ρ = 1 (0 < time_gap ≤ 8, i.e., another
transaction is carried out by the same user within
8 hours of the last transaction) which can be repre-
sented as:

DHSW1 = True|{∃TUk
j,ρ ∧ (op = HSW ∧ (ρ = 1))

}
(14)

Similarly, the events DHSW2, DHSW3 and DHSW4 can be
expressed as:

DHSW2 = True|{∃TUk
j,ρ ∧ (op = HSW ∧ (ρ = 2))

}
(15)

DHSW3 = True|{∃TUk
j,ρ ∧ (op = HSW ∧ (ρ = 3))

}
(16)

DHSW4 = True|{∃TUk
j,ρ ∧ (op = HSW ∧ (ρ = 4))

}
(17)

The definition of the remaining events follows from
the above. It may be noted that, we chose the above
definitions of Dopρs to handle frequent as well as in-
frequent users during experimentation. In the current
work, we have carried out various experiments by tak-
ing a specific case, in which twenty four events have
been defined with eight hours of time gap between
them. However, any number of events with other values
of time gap can be defined similarly. Building the user
profiles at a more detailed level of granularity results in
lower false positives. However, building the transaction
history databases and maintaining its consistency would
become more complex and rigorous. Therefore, we
have defined only twenty four events for simplifying the
profile building process. Other values could be similarly
defined. User-specific definitions of Dopρs can also be
derived by clustering time_gap for each user from the
history data.

We next compute P(Dopρ |h) and P(Dopρ |h) from the
MTH and the LTH respectively. P(Dopρ |h) measures

the probability of occurrence of Dopρ given that a trans-
action is originating from an intruder and P(Dopρ |h)

measures the probability of occurrence of Dopρ given
that it is genuine. The likelihood functions P(Dopρ |h)

and P(Dopρ |h) are given by the following expressions:

P(Dopρ |h) = #(Occurrences of Dopρ in MTH)
∑4

ρ=1 #(Occurrences of Dopρ in MTH)

(18)

P(Dopρ |h)

= #(Occurrences of Dopρ by Uk in LTH)
∑4

ρ=1 #(Occurrences of Dopρ by Uk in LTH)
(19)

We have created two look-up tables MFT (Malicious
Frequency Table) and LFT (Legitimate Frequency
Table) to maintain the values of P(Dopρ |h) and
P(Dopρ |h) respectively. Using Eqs. 18 and 19, P(Dopρ)

can be computed as follows:

P(Dopρ) = P(Dopρ |h)P(h) + P(Dopρ |h)P(h) (20)

We update the SSHDC frequently in order to retain the
accuracy of TSDIDS, thus reducing the number of false
alarms. SSHDC update is an offline procedure.

3.1.4 Bayesian learning component (BLC)

Bayesian learning is a tool to measure evidences sup-
porting alternative hypotheses and arrive at optimal
decisions. It gives a formal and consistent way of rea-
soning in presence of uncertainty. We use Bayesian
learning to update the suspicion score (ψ) of a trans-
action after getting the new evidence Dopρ from the
SSHDC. ψ gives the probability that the current trans-
action is intrusive. Belief update is done by using the
Bayes rule, which is given by the following Eq. 21:

P(h|Dopρ) = P(Dopρ |h)P(h)

P(Dopρ)
(21)

By substituting Eq. 20 in Eq. 21 we get:

P(h|Dopρ) = P(Dopρ |h)P(h)

P(Dopρ |h)P(h) + P(Dopρ |h)P(h)
(22)

The goal of Bayesian learning is to find the most prob-
able hypothesis hmap given the training data. This is
known as the Maximum A Posteriori Hypothesis (MAP
Hypothesis) which can be expressed as:

hmap = max
h∈H

P(h|Dopρ) (23)

Thus, for each hypothesis h in the hypothesis space
H, we calculate the posterior probability P(h|Dopρ)

Inf Syst Front (2013) 15:35–53 45

and P(h|Dopρ) by using Bayes rule and then output
the hypothesis with the highest posterior probability as
hmap. The database intrusion detection problem has the
following two hypotheses, h : I and h : ¬I. By substi-
tuting the values obtained from Eqs. 13, 18 and 19 in
Eq. 22, the posterior probability for hypothesis h : I is
given as:

P(I|Dopρ) = P(Dopρ |I)P(I)
P(Dopρ |I)P(I) + P(Dopρ |¬I)P(¬I)

(24)

Similarly, the posterior probability for hypothesis
h : ¬I is given as:

P(¬I|Dopρ) = P(Dopρ |¬I)P(¬I)
P(Dopρ |I)P(I) + P(Dopρ |¬I)P(¬I)

(25)

where I signifies intrusion. Depending on which of
the two posterior values is greater, future actions are
decided by the TSDIDS.

3.2 Methodology

Each incoming transaction is first examined by the
rule-based component of the system. Basic probability
values BPA(R1) and BPA(R2) assigned by the RBC
are combined using the BCC to get the initial belief
P(h) for the transaction. If P(h) < θLT, the transac-
tion is considered to be genuine and is allowed to go
through. On the other hand, if P(h) > θUT then the
transaction is declared as malicious and manual con-
firmation can be made with the legitimate user. In case
θLT ≤ P(h) ≤ θUT, the transaction is allowed but the
user_ID corresponding to the user is labeled as suspi-
cious. If this is the first suspicious transaction carried
out by the user, then the corresponding user_ID is
inserted into a suspect_table. TSDIDS then waits until
the next transaction occurs using the same user_ID.

When the next transaction occurs for the same user,
it is again passed through TSDIDS. RBC assigns ba-
sic probabilities and BCC computes the initial belief
P(h) for the new transaction. In case the transaction is
found to be suspicious, it is once more inserted into the
suspect_table. Since each transaction is time stamped,
from the time_gap (ρ) between the current and previ-
ous transaction and the most sensitive operation ap-
plied on the attrib_I D_seq in the current transaction,
our detection system determines which event E has
occurred out of the twenty four Dopρs and retrieves the
corresponding P(E|h) and P(E|h) values from the ta-
bles MFT and LFT, respectively. The posterior beliefs

P(h|E) and P(h|E) are next computed using Eqs. 24
and 25 and MAP hypothesis (Eq. 23) is applied.

P(h|E) and P(h|E) are the updated beliefs about the
last transaction by the user based on the evidence from
SSHDC and previous round suspicion score ψ (last
round). Since for the second suspicious transaction on
a user, there is no ψ (last round), the P(h) value of the
first round is itself taken as ψ (last round) and posterior
beliefs are computed based on this value. If P(h|E) ≥
P(h|E), then the TSDIDS applies the extended D-S
rule of combination to get the suspicion score ψ (cur-
rent round) by combining P(h|E) and current round
P(h). The current round ψ value is inserted into the
suspect table at the end of each round unless the sus-
picion score falls below θLT. Whenever a transaction
is found to be malicious and the abnormal behavior
is confirmed from the user, the corresponding user_ID
and associated transactions are moved from the LTH
to the MTH in order to maintain the consistency of the
SSHDC and to build the MTH.

It is to be noted that, the proposed model is able
to catch the outsides as well as the malicious insiders.
An outsider usually does not know what a typical user
pattern is. Thus, activities of these intruders grossly
deviate from normal activities and are easily detected.
However, the insiders are particularly difficult to de-
fend against as they can submit transactions similar
to the genuine ones as discussed earlier in Section 1.
Therefore, our proposed two-stage DIDS emphasizes
on detecting the insider attacks by identifying any
inconsistency or deviation of user activities from the
normal profile.

3.3 An example scenario

In Table 1, we show sample results over two rounds of
our proposed methodology to exemplify the system’s
workflow. Let us consider θLT = 0.3 and θLT = 0.8.
Suppose initial belief P(h) = 0.47 which is obtained
by combining the evidences from rules R1 and R2 by
extended D-S combination rule (Eq. 10). Since θLT ≤
0.47 ≤ θUT, the transaction is labeled as suspicious. We
assume that it is the first suspicious transaction on this
user_ID and hence, the transaction is entered into the
suspect_table.

When the subsequent transaction occurs from the
same user, it is again passed to the RBC and suppose we

Table 1 Sample result of TSDIDS over various rounds

Round Initial belief Posterior belief Suspicion score

1 0.47 – 0.47
2 0.59 0.65 0.85

46 Inf Syst Front (2013) 15:35–53

get P(h) = 0.59. The transaction is once more found to
be suspicious. We assume that the current transaction
occurs on the same user_ID within 8 h of the last trans-
action and the most sensitive operation performed on
the attrib_I D_seq by the current transaction be HSW.
From the time_gap (ρ = 1) and the most sensitive at-
tribute operation performed by the transaction (op =
HSW), we determine that the event DHSW1 has oc-
curred and retrieve the corresponding P(DHSW1|h) and
P(DHSW1|h) values from MFT and LFT, respectively.
Let P(DHSW1|h) = 0.248 and P(DHSW1|h) = 0.118. By
applying Eqs. 24 and 25, we get P(h|DHSW1) = 0.65
and P(h|DHSW1) = 0.35. Applying MAP hypothesis, it
is observed that P(h|DHSW1) ≥ P(h|DHSW1). The sus-
picion score (ψ) of the current round is now com-
puted by combining current round P(h) = 0.59 and
the posterior belief P(h|DHSW1) = 0.65 using extended
D-S combination rule (Eq. 10). We get ψ = 0.85 which
is greater than the upper threshold θUT, and hence,
the transaction is declared as malicious. An interesting
observation from Table 1 is that although the user is
not found to be strictly intrusive in the two transac-
tions individually, however, due to the belief update by
Bayesian learning, it is detected as an intrusion.

It may be noted that suspicion score may sometimes
go up for a legitimate user. This would represent a situ-
ation in which the user carries out a number of unusual
transactions. Similarly, suspicion score may also come
down for an intruder occasionally, which represents
a scenario in which the intruder’s behavior matches
exactly with the actual user. However, we will show in
Section 4 that the system is robust enough to handle
deviations from expected patterns to a large extent.

4 Experimental evaluation

We have carried out several experiments to show the
efficacy of the proposed method. A system has been
developed in MS-SQL Server 2000. We have used
the standard transactional web benchmark (TPC-W)
(Transaction Processing Performance Council 2002)
schema for large scale simulation as suggested by the
Transaction Processing Council (TPC). This bench-
mark provides us with a controlled database environ-
ment quite adequate for the evaluation of the proposed
detection and learning system. In this schema, we have
categorized all the attributes into three sensitivity lev-
els, namely, low sensitive, medium sensitive and high
sensitive. After categorizing the attributes, we define
sixty different types of SQL queries using the attributes
of this schema for accessing the database.

In this section, we first discuss the components of
our transaction simulator. Then, we describe the choice
of parameters of the TSDIDS and finally study the
performance of TSDIDS.

4.1 Experimental setup

A simulation model was developed in order to evaluate
the performance of the proposed database intrusion
detection system since there is no benchmark data set
for testing the accuracy of database intrusion detection
systems. Even a detailed survey of literature has not
revealed any reference to public availability of real data
sets. In this domain, it is found that determining the
desired distribution is an experimental art and requires
extensive empirical tests to find the most effective dis-
tribution. We pursued experiments by taking several
combinations of transactions generated by the simula-
tor as shown in Fig. 2. The simulator generates synthetic
transactions that represent the behavior of legitimate
users as well as that of intruders.

It may be noted that Hu and Panda (2005) tested
the performance of their database intrusion detection
system on sets of normal as well as malicious synthetic
data generated based on the average number of read
operations immediately preceding a write operation
and the average number of write operations in trans-
actions. Srivastava et al. (2006) have used normal dis-
tribution with user specified mean (μ) and standard
deviation (σ). It is seen that, these simulators are sim-
plistic and they generate data only at the level of read
and write operations. None of the existing synthetic
data generation methods combine appropriate distri-
butions for generating different parameters that may
affect the performance of intrusion detection systems.

The above mentioned elementary simulation models
do not have any control over the list of attributes that
are accessed by a transaction. Moreover, they do not
consider the arrival rate of transactions which is an im-
portant parameter for evaluating an intrusion detection
system. As the transaction arrival rate from attacker
increases, the probability of getting consecutive intru-
sive transactions also increases, which in turn increases
intrusion detection probability. Further, any real-world
database application normally contains malicious trans-
actions interspersed with regular genuine transactions
and these two types of transactions are generated by
two different parties, namely, genuine users and intrud-
ers. Hence, these are independent events with separate
arrival rates.

Moreover, database transactions are usually
skewed—occurrence of intrusive transactions is very

Inf Syst Front (2013) 15:35–53 47

Fig. 2 Transaction simulator

M

MMPPM

qML qLM

L

LNP LOC LNP TG LNP TS

LTMC

LSMC LIMC LDMC LUMC

MTMC

MSMC MIMC MDMC MUMC

LTGM MTGM

MNPTG MNPTSMNPLOC

λM

λL

low compared to genuine transactions. Hence, mixing
of genuine and intrusive transactions need to be
controlled properly. However, the existing synthetic
data generation models are not able to control the
mixing of genuine and intrusive transactions as well
as the arrival rate. Therefore, we have constructed a
comprehensive transaction simulator using a Markov
Modulated Poisson Process (MMPP) (A Discrete Time
Markov Chain (DTMC)) whose states determine the
arrival rates of the Poisson Processes. The MMPP
can control mixing of transactions along with the
transaction arrival rate from attacker and normal user.
Besides, three Gaussian distribution functions are
used for handling various user profiles and different
categories of intruders (based on loc_I D, time_gap
and time_slot). This simulator additionally supports
hierarchical level of Markov Chains for monitoring
the formation of transactions using four basic types of
queries—select, insert, delete and update. Transaction
generation is regulated in our simulator at the level of
table attribute, query and type of query.

Before describing our experimental findings, we give
a brief outline of our simulator components as shown in
Fig. 2 as well as the generation procedure for legitimate
transactions, malicious transactions and their appropri-
ate mixing.

– Markov Modulated Poisson Process Module
(MMPPM)
A Markov Modulated Poisson Process is a dou-
bly stochastic Poisson process where the default
rate is determined by the state of the underlying
continuous-time Markov chain. Since the Markov
chain has a finite number of states, the Poisson

arrval rate (λ) takes discrete values corresponding
to each state. λ is expressed as the average number
of arrivals during a unit period of time. The central
idea is to model the behavior of genuine users as
well as intruders through an Markov Modulated
Poisson Process (MMPP). The proposed MMPPM
uses a 2-state MMPP consisting of a legitimate
state L and a malicious state M with arrival rates
λL and λM respectively. Mixing of legitimate and
malicious transactions is controlled by the L and
M states of the MMPPM. Transition from L to M
takes place with probability qLM and from M to L
with probability qML. It may be noted that, in the
intrusion detection domain, the occurrence of mali-
cious transactions is very sparse as compared to the
genuine transactions (Axelsson 2000). For handling
various such real life scenarios, we vary different
simulation parameters like λL, λM, qLM and qML

that affect the overall working of the system.
– Legitimate Transaction Generation Module

(LTGM)
LTGM is used to generate synthetic legitimate
transactions comprising of four basic types of
queries—select, insert, delete and update. This
module consists of five finite Markov chains—
Legitimate Select Markov Chain (LSMC), Legi-
timate Insert Markov Chain (LIMC), Legitimate
Delete Markov Chain (LDMC), Legitimate Up-
date Markov Chain (LUMC) and Legitimate
Transaction Markov Chain (LTMC). Each Markov
chain has an associated transition probability ma-
trix (TPM) and an initial probability distribution
vector (IPDV). If the number of select type queries
be N, then the number of states in the LSMC is

48 Inf Syst Front (2013) 15:35–53

also N. The Markov chains LIMC, LDMC and
LUMC are defined similarly. Each transaction is
a collection of multiple queries and the formation
of transactions is controlled by a Markov chain
denoted as LTMC, which has four states, same
as the number of query types. The number of
queries in a transaction is chosen randomly within
a specific lower and upper bound. Furthermore, the
component LTGM also consists of three Gaussian
processes with user-specified mean (μ) and stan-
dard deviation (σ)—Legitimate Gaussian Process
LGPLOC 〈μLLOC, σLLOC〉 for generating loc_I D,
LGPTG 〈μLTG, σLTG〉 for generating time_gap and
LGPTS 〈μLTS, σLTS〉 for generating time_slot of le-
gitimate users, as shown in Fig. 2. We use Gaussian
distribution since it is the most commonly ob-
served probability distribution in many natural
processes. The TPMs and IPDVs related to the
various Markov chains and the mean and standard
deviation of the Gaussian processes are subjected
to change during generation of normal transac-
tions for handling different user profiles. In our
experiments, we set qLM = 0 to restrict transaction
generation within the L state of the MMPPM.

– Malicious Transaction Generation Module
(MTGM)
This component is used to generate synthetic ma-
licious transactions and is similar to LTGM. It
consists of five finite Markov chains—Malicious
Select Markov Chain (MSMC), Malicious Insert
Markov Chain (MIMC), Malicious Delete Markov
Chain (MDMC), Malicious Update Markov Chain
(MUMC) and Malicious Transaction Markov
Chain (MTMC). The three Gaussian processes for
building MTGM are—Malicious Gaussian Process
MGPLOC 〈μMLOC, σMLOC〉, MGPTG 〈μMTG, σMTG〉
and MGPTS 〈μMTS, σMTS〉, which are employed
for generating loc_I D, time_gap and time_slot for
intruders. We generate the malicious transactions
keeping in mind the insider as well as outsider
threat scenarios. In case of insider threat, anom-
alous query set will have high resemblance with the
genuine query set. However, there may be some
inter-transactional variations which is handled by
changing the TPMs and IPDVs related to the var-
ious Markov chains. For outsider threat, variation
is mostly seen in the intra-transactional patterns.
During experimentation, we set qML = 0 to restrict
transaction generation within the state M of the
MMPPM. The mean and standard deviation of
the Gaussian processes are changed during genera-
tion of malicious transactions for handling different
categories of intruders.

4.2 Choice of design parameters

The effectiveness of the proposed database intrusion
detection model relies on several parameters. In order
to determine the impact of these parameters on our de-
tection system, eight different simulator settings (SS1 to
SS8) are chosen by varying the simulation parameters
λL, λM, qLM, qML, μLTG and μMTG as shown in Table 2.
This achieves arrival rate variations for genuine users as
well as intruders. It is seen that, occurrence of intrusive
transactions reduces from SS1 to SS8 as qLM and λM

are decreased and μMTG is gradually increased over the
settings. Proper mixing of spatio-temporal parameters
μLLOC, μMLOC, μLTS and μMTS is done by choosing
six diverse spatio-temporal combinations (ST1–ST6) as
shown in Table 3 to capture the spatio-temporal access
patterns of users.

Standard metrics are used to study the performance
of the system under different test cases. True negative
(TN) is the percentage of genuine transactions labeled
as genuine, true positive (TP) is the percentage of
intrusive transactions caught by the system (also called
hit), false negative (FN) is the percentage of intrusive
transactions labeled as genuine (also called miss) and
false positive (FP) is the percentage of genuine transac-
tions labeled as intrusive (also called false alarm).

Before testing the performance of the proposed sys-
tem, we first perform a set of experiments to determine
a good combination of the design parameters, namely,
lower threshold (θLT) and upper threshold (θUT). From
the discussions in Section 3, it is obvious that the
effectiveness of the proposed system is dependent on
the two parameters θLT and θUT. The performance of
the system will degrade if these parameters are set
incorrectly. If θUT is set too high, then most of the
intrusions will go undetected whereas if θUT is set too
low then there will be a large number of false alarms
which will lead to serious denial-of-service. Similarly,
high value of θLT will let most of the intrusions go
through and low value of θLT will lead to unnecessary
investigation of a large number of genuine transactions.

Table 2 Simulator settings for arrival rate variations

Simulator setting qLM qML λL λM μLTG μMTG

SS1 0.50 0.50 1 4 5 1
SS2 0.15 0.50 1 4 4 1
SS3 0.15 0.70 1 4 4 2
SS4 0.10 0.80 1 4 3 2
SS5 0.10 0.80 1 2 3 3
SS6 0.10 0.90 3 1 2 4
SS7 0.05 0.96 4 1 1 5
SS8 0.05 0.99 8 1 1 5

Inf Syst Front (2013) 15:35–53 49

Table 3 Simulator settings for spatio-temporal data generation

Spatio-temporal setting μLLOC μMLOC μLTS μMTS

ST1 1 2 22 2
ST2 1 3 28 4
ST3 2 3 35 12
ST4 1 4 24 34
ST5 2 1 36 39
ST6 1 5 30 41

Hence, selection of θLT and θUT has an associated trade-
off. We, therefore, carried out experiments to deter-
mine a good choice of the θLT, θUT combination.

In Table 4, we show the variation of Mean TP/Mean
FP for different values of θLT and θUT. The values
shown in this table represent average of the results
obtained for the eight simulator settings of Table 2 and
six spatio-temporal settings of Table 3. In particular,
for every combination of simulator setting {SSi|1 ≤
i ≤ 8} and spatio-temporal setting {ST j|1 ≤ j ≤ 6}, the
average is estimated over 50 independent runs of the
simulator consisting of 100 transactions each. Amount
of space required is mainly dependent on the size of
history databases LTH and MTH. In our implementa-
tion, we have used 12 features as discussed earlier in
Section 3 for representing a transaction. Each transac-
tion requires approximately 706 bytes. We have experi-
mented with size of LTH = 1000 (user-specific) and size
of MTH = 500 (generic) and considered 100 users to be
present in an organization. Under these conditions, the
space requirement can be determined as follows:

Space requirement = size of LTH + size of MTH =
(no. of users × no. of txns for each user × size of each
txn) + (no. of txns × size of each txn) = (100 × 1,000 ×
706) + (706 × 500) = 70,600,000 + 353,500 = 70,953,500
bytes ≈ 71 MB.

From Table 4, it is seen that as θLT increases, TP
decreases reaching 79% for θLT = 0.35. The same trend
is true for θUT also. TP falls to 78% for θUT = 0.85.
FPs also show a similar trend. However, with θLT = 0.3
and θUT = 0.7, the difference between TP and FP is
the highest. We make this as our choice since it gives
a balance between the number of true positives and
false positives. Thus, our design parameter setting is
θLT = 0.3 and θUT = 0.7, which is kept fixed for the

Table 4 Variation of mean TP/Mean FP (%) with θLT and θUT

θUT θLT

0.2 0.25 0.3 0.35

0.7 84.5/9.2 83.4/8.7 83.2/5.1 79/5
0.75 82/8.5 81.2/7.5 78.6/5 77.5/4.8
0.8 81.4/7 80/5.4 78/4.7 74/3.8
0.85 78/5 77.1/4 76.3/3.5 73.6/2.3

0

20

40

60

80

100

0 20 40 60 80 100

Query Overlap (%)

T
P

/T
N

/F
P

/F
N

 (
%

)

TP TN FP FN

Fig. 3 Variation of TP/FP with the percentage of overlap
between the malicious query set and the legitimate query set

rest of the experiments. The effectiveness of TSDIDS
is also dependent on the two parameters, p and d. As
discussed in Section 3, following the heuristic given by
Knorr et al. (2000), we set the parameter p = 0.9 and
d = 8.

4.3 Performance analysis

First we study the performance of the proposed data-
base intrusion detection system with respect to changes
in the percentage of overlap between the malicious
query set and the legitimate query set. As discussed ear-
lier in Section 1, insiders are potentially familiar with
the organizational day-to-day activities and can submit
transactions similar, though not exactly the same, to the
genuine ones. Thus, the percentage of overlap between
the malicious query set and the legitimate query set will
be generally much higher for transactions generated by
a malicious insider as compared to those launched by
outsiders.

It is evident from the plot shown in Fig. 3 that the
true positive rate gradually decreases (or false negative
rate increases at the same rate) with increase in the
percentage of overlapping queries. The figure shows
that even at the point of 40% overlap, our system gives
76% TP, 93% TN, 7% FP and 24% FN. However,

0

20

40

60

80

100

0.6 0.7 0.8 0.9

Percentage of write operations in a transaction

T
P

 (
%

)

Fig. 4 Variation of TP with the percentage of write operations in
a transaction

50 Inf Syst Front (2013) 15:35–53

0

20

40

60

80

100

0.6 0.7 0.8 0.9

Percentage of read operations in a transaction

T
P

 (
%

)

Fig. 5 Variation of TP with the percentage of read operations in
a transaction

the performance is worst (lowest TP) at the point of
complete overlap (i.e. intrusive query set and genuine
query set are the same). The reason is that, with in-
crease in the percentage of overlap, similarity among
malicious query set and genuine query set increases
which makes it difficult to distinguish between them
leading to degraded performance. It is seen that FP rate
also reduces (or true negative rate increases in the same
way) with rise in the percentage of overlapping queries,
but the reduction is slower.

We next study the effect of the percentage of write
(insert/update) operations on the performance of the
intrusion detection systems. It is seen from Fig. 4 that
when the percentage of write operations increases,
the detection rate increases since write operation is
more important than read operation from information
warfare point of view. We also examine the influence
of read operations in a transaction on the accuracy
of intrusion detection. The experimental results are
shown in Fig. 5 which depicts that, with the increase
in the percentage of read operations, the percentage
of detected malicious transactions also increases. As
we compare this result with the previous observation
shown in Fig. 4, it is seen that the detection rate is
more sensitive to the percentage of write operations in
a transaction.

Finally, in Fig. 6, we show the performance of the
proposed system over various rounds by plotting the

0

20

40

60

80

100

0 20 40 60 80 100

FP (%)

T
P

 (
%

)

Fig. 6 Variation of TP and FP over successive rounds by ROC
curve

0

20

40

60

80

100

T
P

 (
%

)

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8

Simulator Setting

TSDIDS_TP DDIDS_TP WDIDS_TP

Fig. 7 Variation of TP with different simulator settings for
TSDIDS, DDIDS and WDIDS

true positive (TP) and false positive (FP) in the form
of Receiver Operating Characteristics (ROC) curve
(Fawcett 2006). The first round commences with the
first suspect transaction of a particular user. TSDIDS is
able to update the belief values over successive rounds
and the process continues as long as the suspicion score
is within the two threshold limits. It is seen that with
each successive round, the detection rate as well as
the false alarm rate goes up. In the example given
in Section 3.3, TSDIDS tracks the transactions of the
suspicious user and the belief is updated at each round.
Finally, the user was caught at the end of the second
round.

It is to be noted that, the proposed model is able to
catch the intrusive activities after one or more rounds
depending on the extent of deviation from the user’s
profile. It is seen from the Fig. 6 that the detection rate
gradually increases as the suspicion score increases with
each round.

0

2

4

6

8

10

F
P

 (
%

)

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8

Simulator Setting

TSDIDS_FP DDIDS_FP WDIDS_FP

Fig. 8 Variation of FP with different simulator settings for
TSDIDS, DDIDS and WDIDS

Inf Syst Front (2013) 15:35–53 51

4.4 Comparative performance

We next compare the performance of our proposed
database intrusion detection system with two other
systems proposed respectively by Hu and Panda
(2005), which uses data dependency relationships, and
Srivastava et al. (2006), which uses weighted sequence
mining. We use the notation DDIDS to represent the
DIDS in Hu and Panda (2005) and WDIDS to repre-
sent the DIDS in Srivastava et al. (2006). Our simu-
lator is used to generate transactions for comparative
analysis, and for this set of results, the spatio-temporal
parameters are set as: μLLOC = 1, μMLOC = 4, μLTS =
24 and μMTS = 34. We compute TP and FP at each
SSi, i = {1, . . . , 8} for all the three DIDSs as mentioned
above. Figure 7 shows that TSDIDS is able to detect
intrusive transactions more correctly (higher TP) as
compared to DDIDS and WDIDS.

It is found that choosing support and confidence
values is a problem in DDIDS as well as in WDIDS.
The TP rates in these two systems are strongly de-
pendent on the number of attribute dependency rules
mined. Even if a low support value is chosen, the
number of rules mined is quite low, which results in
degraded performance for these systems. However, the
performance of TSDIDS is slightly worse for FP rate
(higher value of FP) compared to both DDIDS and
WDIDS as shown in Fig. 8.

5 Conclusions

Providing convenience to users by letting them access
sensitive organizational data from anywhere makes it
equally important to safeguard the database from in-
truders within or outside the organization. In this paper,
a novel two-stage database intrusion detection system
has been proposed which applies anomaly detection for
first level inferences followed by misuse detection in
the second stage. The proposed system utilizes intra-
transactional as well as inter-transactional techniques
for intrusion detection. A number of rules are used to
analyze the deviation of an incoming transaction from
the normal profile of a user. In the current work, rules
like sequence alignment and spatio-temporal outlier
detection are employed for measuring the extent of
deviation of each new transaction submitted by a user.
An extension of Dempster–Shafer theory is applied to
combine multiple evidences from the rules for compu-
tation of an initial belief about each incoming transac-
tion. A transaction is classified as normal, abnormal or
suspicious depending on its initial belief. To keep track
of suspicious transactions, a legitimate transactions his-

tory is built for individual users from their past behavior
and a generic malicious transactions history is built
from different types of past intrusive data. Moreover,
three different sensitivity levels of table attributes have
been considered while building the history databases
to minimize the overall loss suffered by the database
owner due to intrusion. For a suspicious transaction, its
suspicion score is updated applying Bayesian learning
based on the evidence obtained from the history data-
bases. A final decision is made about the transaction
according to its suspicion score.

Experiments were carried out on a large collection
of simulated data to analyze the performance of the
proposed system. The simulation yielded up to 98% TP
and less than 10% FP. Use of Dempster–Shafer theory
for combining rules gives good performance, especially
in terms of true positives. Bayesian learning helps to
further reduce the number of false alarms, which is
one of the core problems of existing database intrusion
detection systems.

Acknowledgements This work is partially supported by a re-
search grant from the Department of Information Technol-
ogy, Ministry of Communication and Information Technology,
Government of India, under Grant No. 12(34)/04-IRSD dated
07/12/2004.

References

Altschul, S. F., Gish, W., Miller, W., Myers, W., & Lipman, J.
(1990). Basic local alignment search tool. Journal of Molec-
ular Biology, 215, 403–410.

Axelsson, S. (2000). The base-rate fallacy and the difficulty of
intrusion detection. ACM Transactions on Information and
System Security (TISSEC), 3, 186–205.

Barbara, D., Goel, R., & Jajodia, S. (2002). Mining malicious data
corruption with hidden markov models. In Proc. 16th annual
IFIP WG 11.3 working conf. on data and application security
(pp. 175–189).

Campos, F., & Cavalcante, S. (2003). An extended approach for
Dempster–Shafer theory. In Proc. IEEE int. conf. on infor-
mation reuse and integration (pp. 338–344).

Chen, T. M., & Venkataramanan, V. (2005). Dempster–Shafer
theory for intrusion detection in ad hoc networks. In Proc.
IEEE internet computing (pp. 35–41).

Chung, C. Y., Gertz, M., & Levitt, K. (1999). DEMIDS: A misuse
detection system for database systems. In Proc. integrity and
internal control in information system (pp. 159–178).

Damiani, E., Vimercati, S. D. C., Jajodia, S., Paraboschi, S., &
Samarati, P. (2003). Balancing confidentiality and efficiency
in untrusted relational DBMSs. In Proc. 10th ACM conf. on
computer and communications security (pp. 93–102).

Fawcett, T. (2006). An introduction to ROC analysis. Pattern
Recognition Letters, 27, 861–874.

Fayyad, U., Shapiro, G. P., & Smyth, P. (1996). The KDD process
for extracting useful knowledge from volumes of data.
Communications of the ACM, 39, 27–34.

Furnell, S. (2004). Enemies within: The problem of insider at-
tacks. Journal of Computer Fraud & Security, 2004(7), 6–11.

52 Inf Syst Front (2013) 15:35–53

Giacinto, G., Perdisci, R., Rio, M. D., & Roli, F. (2008). Intrusion
detection in computer networks by a modular ensemble of
one-class classifiers. Information Fusion, 9, 69–82.

Goan, T. (1999). A cop on the beat: Collecting and appraising
intrusion evidence. Communications of the ACM, 42, 46–52.

Gordon, L. A., Loeb, M. P., Lucyshyn, W., & Richardson,
R. (2009). 2005 CSI/FBI computer crime and security
survey. http://www.cpppe.umd.edu/Bookstore/Documents/
2005CSISurvey.pdf.

Hoglund, A. J., Hatonen, K., & Sorvari, A. S. (2000). A computer
host-based user anomaly detection system using the self-
organizing map. In Proc. IEEE-INNS-ENNS int. joint conf.
on neural networks (IJCNN) (Vol. 5, pp. 411–416).

Hu, W., Hu, W., & Maybank, S. (2008). AdaBoost-based algo-
rithm for network intrusion detection. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 38, 577–583.

Hu, Y., & Panda, B. (2005). Design and analysis of techniques for
detection of malicious activities in database systems. Journal
of Network and Systems Management, 13, 269–291.

Julisch, K., & Dacier, M. (2002). Mining intrusion detection
alarms for actionable knowledge. In Proc. ACM SIGKDD
conf. on knowledge discovery and data mining (pp. 366–375).

Kamra, A., Terzi, E., & Bertino, E. (2007). Detecting anomalous
access patterns in relational databases. The VLDB Journal,
17, 1063–1077.

Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based
outliers: Algorithms and applications. The VLDB Journal,
8, 237–253.

Lee, S. Y., Low, W. L., & Wong, P. Y. (2002). Learning finger-
prints for a database intrusion detection system. In Proc.
7th European symposium on research in computer security,
2502/2002 (pp. 264–280).

Lee, V., Stankovic, J., & Son, S. (2000). Intrusion detection in
realtime databases via time signatures. In Proc. 6th IEEE
real-time technology and applications symposium (RTAS)
(pp. 124–133).

Lunt, T. (1996). Inside risks: Securing the information infrastruc-
ture. Communications of the ACM, 39, 130.

Murray, A. C. (2005). The threat from within, network comput-
ing. http://www.networkcomputing.com/showArticle.jhtml?
articleID=166400792.

Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. K. (2007).
Use of Dempster–Shafer theory and Bayesian inferencing
for fraud detection in mobile communication networks. In
Proc. Australasian conf. on information security and privacy
(ACISP). Lecture notes in computer science (Vol. 4586/2007,
pp. 446–460).

Panigrahi, S., Sural, S., & Majumdar, A. K. (2009). Detection
of intrusive activity in databases by combining multiple evi-
dences and belief update. In IEEE symposium on computa-
tional intelligence in cyber security (CICS 2009) (pp. 83–90).
Nashville, Tennessee, USA.

Richardson, R. (2009). 2007 CSI computer crime and security
survey. http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.
pdf.

Sentz, K. (2002). Combination of evidence in Dempster–
Shafer theory. Sandia National Laboratories, US Depart-
ment of Energy. http://www.sandia.gov/epistemic/Reports/
SAND2002-0835.pdf.

Shafer, G. (1976). A mathematical theory of evidence. Princeton:
Princeton University Press.

Srivastava, A., Sural, S., & Majumdar, A. K. (2006). Weighted in-
tratransactional rule mining for database intrusion detection.
In Proc. Pacif ic-Asia knowledge discovery and data mining

(PAKDD). Lecture notes in artif icial intelligence, 3918/2006
(pp. 611–620). Springer.

Transaction Processing Performance Council (2002). TPC
Benchmark™ W (web commerce), specif ication, version 1.8.
http://www.tpc.org/tpcw/default.asp.

Triantafyllopoulos, K., & Pikoulas, J. (2002). Multivariate
bayesian regression applied to the problem of network
security. Journal of Forecasting, 21, 579–594.

Wang, Y., Yang, H., Wang, X., & Zhang, R. (2004). Distributed
intrusion detection system based on data fusion method.
In Proc. 5th world congress on intelligent control and automa-
tion (pp. 4331–4334).

Wenhui, S., & Tan, T. (2001). A novel intrusion detection system
model for securing web-based database systems. In Proc.
25th annual int. computer software and applications conf.
(COMPSAC) (pp. 249–254).

Yi, Z., Khing, H. Y., Seng, C. C., & Wei, Z. X. (2000). Multi-
ultrasonic sensor fusion for mobile robots. In Proc. IEEE
intelligent vehicles symposium (pp. 387–391).

Zhong, Y., & Qin, X. (2004). Database intrusion detection
based on user query frequent itemsets mining with item
constraints. In Proc. 3rd int. conf. on information security
(pp. 224–225).

Suvasini Panigrahi is an assistant professor at the School of
Computer Engineering, KIIT University, India. She received the
B.Tech and M.Tech degrees in Computer Science and Engi-
neering and Computer Science from Utkal University, India
in 2002 and 2004, respectively. She received the Ph.D. degree
from IIT Kharagpur in 2009. She has published various research
papers on database security in refereed journals and conference
proceedings. Her research interests include database systems and
database security.

Shamik Sural is an associate professor at the School of Infor-
mation Technology, IIT Kharagpur, India. He received the Ph.D.
degree from Jadavpur University in 2000. Before joining IIT, he
held technical and managerial positions in a number of organiza-
tions both in India as well as in the USA. Dr. Sural has served
on the program committee of many international conferences.
He is a senior member of the IEEE and a recipient of the
Alexander von Humboldt Foundation Research Fellowship. He
has published more than one hundred research papers in reputed
international journals and conferences. His research interests
include database security, data mining and multimedia database
systems.

Arun K. Majumdar is a Professor of the Computer Science and
Engineering Department of the Indian Institute of Technology,
Kharagpur, West Bengal. He received M.Tech. and Ph.D. de-
grees from the University of Calcutta, in applied physics in 1968
and 1973, respectively. He also earned a Ph.D. degree in Elec-
trical Engineering from the University of Florida, Gainesville,
Florida, USA, in 1976. Professor Majumdar is currently the
Deputy Director of IIT Kharagpur and earlier held other ad-
ministrative positions that include Dean (Faculty and Planning),
Head of the Computer Science and Engineering Department,
Head of the Computer and Informatics Centre and Head of
the School of Medical Science and Technology. He has been
a member of several technical committees advising different

http://www.cpppe.umd.edu/Bookstore/Documents/2005CSISurvey.pdf
http://www.cpppe.umd.edu/Bookstore/Documents/2005CSISurvey.pdf
http://www.networkcomputing.com/showArticle.jhtml?articleID=166400792
http://www.networkcomputing.com/showArticle.jhtml?articleID=166400792
http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf
http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf
http://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf
http://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf
http://www.tpc.org/tpcw/default.asp

Inf Syst Front (2013) 15:35–53 53

Ministries of the Central and State Governments as well as
Industries and Institutions in India on information technology
related matters. Before joining the IIT Kharagpur, in 1980, Pro-
fessor Majumdar served as a faculty member at Indian Statistical
Institute, Calcutta, and Jawaharlal Nehru University, New Delhi.
He was a Visiting Professor in the Computing and Information
Sciences Department of the University of Guelph, Canada in
1986–1987 and at Center for Secure Information Systems, George

Mason University, Fairfax, Virginia, USA in 1999, 2003 and 2007.
Professor Majumdar has more than 180 research publications in
international journals and conferences. Professor Majumdar is a
Fellow the Indian National Academy of Engineering, Fellow of
the Institution of Engineers (India), and a Senior Member of the
IEEE (USA). His research interests include Data and Knowl-
edge based systems, Multimedia Systems, Medical Information
Systems, and Information Security.

	Two-stage database intrusion detection by combining multiple evidence and belief update
	Abstract
	Introduction
	Related work
	Two-stage database intrusion detection system (TSDIDS)
	TSDIDS components
	Rule-based component (RBC)
	Belief combination component (BCC)
	Security sensitive history database component (SSHDC)
	Bayesian learning component (BLC)

	Methodology
	An example scenario

	Experimental evaluation
	Experimental setup
	Choice of design parameters
	Performance analysis
	Comparative performance

	Conclusions
	References

