
Integrated model-driven dashboard development

Themis Palpanas & Pawan Chowdhary & George Mihaila &

Florian Pinel

Published online: 18 May 2007
Springer Science + Business Media, LLC 2007

Abstract Business performance modeling and model-driv-
en business transformation are two research directions that
are attracting much attention lately. In this study, we
propose an approach for dashboard development that is
model-driven and can be integrated with the business
performance models. We adopt the business performance
modeling framework, and we extend it in order to capture
the reporting aspect of the business operation. We describe
models that can effectively represent all the elements
necessary for the business performance reporting process,
and the interactions among them. We demonstrate how all
these models can be combined and automatically generate
the final solution. We further extend the proposed frame-
work with mechanisms that can detect changes in the
models and incrementally update the deployed solutions.
Finally, we discuss our experience from the application of

our technique in a real-world scenario. This case study
shows that our technique can be efficiently applied to and
handle changes in the underlying business models, deliver-
ing significant benefits in terms of both development time
and flexibility.

Keywords Model-driven development . Dashboard .

Business performance management

1 Introduction

Enterprises are leveraging information technology solutions
in order to increase their productivity and their business
value in the marketplace by describing and monitoring their
business operations. Nowadays, many vendors provide
sophisticated tools to represent business process models
(Kumaran 2004; McGowan and Bohmer 1993) and
business activity monitoring models (Jeng et al. 2002,
2003). Business Performance Management (BPM) (Zeng et
al. 2005) includes a suite of components that are used to
monitor the health of the business, and offers them the
ability to react promptly to changes in their environment
(Bhattacharya et al. 2005).

The integration of various systems in the business allows
for continuous monitoring of business performance, using
carefully selected metrics, also known as Key Performance
Indicators (KPIs). The KPIs are displayed to the analyst
through a dashboard, that is, a user interface that organizes
and presents information in a way that is easy to read and
interpret.

In contrast to the usefulness and ease of use that
dashboards represent, the amount of effort that is required
for their development can sometimes be daunting. User

Inf Syst Front (2007) 9:195–208
DOI 10.1007/s10796-007-9032-9

Work done while Palpanas was a member of the IBM T.J. Watson
research Center.

T. Palpanas (*)
University of Trento,
Trento, Italy
e-mail: Themis@dit.unitn.it

P. Chowdhary : F. Pinel
IBM T.J. Watson Research Center,
Yorktown, NY, USA

P. Chowdhary
e-mail: Chowdhar@us.ibm.com

F. Pinel
e-mail: pinel@us.ibm.com

G. Mihaila
IBM T.J. Watson Research Center,
Hawthorne, NY, USA
e-mail: Mihaila@us.ibm.com

interface development in general, and dashboard develop-
ment too, requires a considerable investment of time, and
can often take as much as 65–80% of the overall
development time in a model-driven business transforma-
tion project (Sukaviriya et al. 2005).

In this paper, we claim that dashboard development can be
fast and easy, while maintaining flexibility in the design, and
without sacrificing versatility or performance. We propose a
framework for dashboard design that is model-driven. This
framework includes a number of user-customizable models
that can effectively capture the functionality of a dashboard.
We provide different models for modeling the data, the users
and their data access privileges, and the navigation among the
various data views.

Once the user has designed the dashboard with the
desired functionality using the provided models, our
framework is able to automatically generate code for the
deployment of the dashboard, leaving only minor custom-
ization issues for the developer. The generated code covers
all the aspects of the dashboard, such as the following.

& Management of the data to be displayed, involving the
creation of relevant databases.

& Design of different views of the data, and of the
navigation among those views.

& Assignment of access privileges to the users of the
dashboard, so that each user can only access the data
and views that are relevant to her.

Our approach allows the developer to focus on the
dashboard functionality, and relieves her from the burden of
the user interface development experience (Myers et al.
2000). The benefits of model-driven dashboard develop-
ment include the graphical representation and easy manip-
ulation of the solution, the error free code-generation, and
the ability to capture the changes in business reporting
processes quickly and cost effectively. To the best of our
knowledge, this is the first comprehensive approach for
model-driven dashboard design, and in Section 6 we
demonstrate its application to a real-world problem.

The contributions of this paper can be summarized as
follows.

& We describe a framework for model-driven dashboard
design. The models we employ cover the many facets of
this process, that is, the data to be displayed, the users
of the system, the roles and access privileges of each
user, the content of each dashboard page view, and the
navigation among those views.

& The method we propose is complementary to business
process and business performance modeling, and
extends such models to provide a seamless experience.

& Our framework enables the automated generation of all
the code necessary for the deployment of the dashboard.

Therefore, it removes the burden of tedious program-
ming, and it significantly reduces the time required for
delivering the solution.

& We explicitly handle updates within the proposed
framework, therefore, making changes to the dashboard
design painless. Changes only have to be made in the
high-level models, and then the new code is automat-
ically regenerated. Furthermore, our mechanisms sup-
port incremental maintenance of the deployed solutions,
thus, changes can be integrated in an efficient manner.

& Finally, we validate our approach using a real-world
scenario. We discuss our experiences from applying the
proposed method to a real problem, and demonstrate the
benefits of our technique with regards to development
time and flexibility of the solution.

The rest of this paper is organized as follows. We review
the relevant literature in Section 2, and we discuss some
necessary background material in Section 3. In Section 4,
we present in detail the models and the process we employ
in our framework, and in Section 5 we describe the
mechanisms we have put in place for handling changes in
the models. that In Section 6, we present a case study,
where we apply our technique to a real-world problem, and
we conclude in Section 7.

2 Related work

There is a growing trend in using model-driven methodol-
ogies (Kleppe et al. 2003; Miller and Mukerji 2003) for
developing large system software, due to their high level
abstraction and code re-use (or regeneration). They have
been widely applied in related areas, such as software reuse
(Frakes and Kang 2005; Greenfield et al. 2003), reverse
engineering (Rugaber and Stirewalt 2004; Yu et al. 2005),
and user interface design (Sukaviriya et al. 2005). The
benefits of adopting model-driven design include reduced
software development time, enhanced code quality, and
improved code maintenance (Kleppe et al. 2003; Czarnecki
and Helsen 2003). There are also numerous related works
about business processes. Business process management
enables the management and analysis of operational
business processes (van der Aalst et al. 2003).

Business processes can be implemented using a work-
flow or a state machine model (Koehler et al. 2002). BPEL
(Business Process Execution Language for Web Services,
http://www-128.ibm.com/developerworks/library/ specifi
cation/ws-bpel) defines a program understandable language
to represent business processes for web service environ-
ments. Yet, BPEL can only orchestrate the flow execution;
business data are still not synchronized, correlated, or
linked together for the auditing and analysis purposes.

196 Inf Syst Front (2007) 9:195–208

http://www-128.ibm.com/developerworks/library/ specification/ws-bpel
http://www-128.ibm.com/developerworks/library/ specification/ws-bpel

An approach that tries to overcome the above short-
comings is the Model-Driven Business Transformation
(MDBT) (Kumaran 2004, Kumaran and Nandi 2005).
MDBT models business operations from the point of view
of a business analyst, without regard to existing or planned
information technology solutions. In other words, an MDBT
operation model is a truly computation independent model.

Change management has been studied in various
different contexts (Mumick et al. 1997; Palpanas et al.
2002; Marian et al. 2001). In all the cases, the main goal is
to reduce the time and effort needed for incorporating the
changes to a minimum. This is achieved by identifying
which specific parts of the system are affected by the
changes, and only updating those ones. In this study, we
follow the same general principles, but apply them in a new
environment.

There is also much interest around the concept of
dashboards, with several companies providing relevant
solutions, such as IBM (AlphaBlox, http://www.alphablox.
com/), Business Objects (http://www.businessobjects.com/),
and Hyperion (http://www.hyperion.com/). Nevertheless,
these approaches do not integrate with the business process
and business performance models, requiring much effort to
develop and maintain. In contrast, we propose a method for
dashboard design that is model-driven. The high-level
models we define integrate seamlessly with the business
performance models, leveraging the common parts of the
design, and enabling an end-to-end design process.

3 Background

In addition to espousing a business artifact-centric approach
to operation modeling, MDBT (Kumaran 2004; Kumaran
and Nandi 2005) offers a model-driven development toolkit
and technique. The tools automatically transform an
operation model into a platform-independent solution
composition model in UML2. In this stage of modeling,
the solution architect fills in much of the IT detail that is
outside the domain of the business analyst. These details
include integration with external services as well as role-
players. Following the completion of the solution compo-
sition model, MDBT code generation tools automatically
create J2EE components that manage the process and
provide a simple user interface by which users can interact
with the solution. The automated transformations and code
generation enable rapid prototyping, accelerate the devel-
opment cycle, and allow for a fast turnaround iterative
development regimen.

The solution composition model also provides the
platform on which an observation model can be con-
structed. The elements of the observation model (e.g.,
events) are linked to those of the solution composition

model (e.g., states and transitions) so as to define how the
performance metrics will be gathered.

Business Performance Management (BPM) (Chen et al.
2006; Chowdhary et al. 2005) is an effective means of
monitoring business processes. Model-based BPM normal-
ly includes an observation model that conforms to a pre-
defined meta-model, such as the one provided by MDBT,
which we discussed above. Entities such as input events,
metrics, outbound events, situation detectors, and actions
can be composed, monitored, and scheduled through the
observation model. Using BPM, we can detect bottlenecks
of business operations in real-time, and identify anomalies
by correlating event sequences. Based on the observation
model, actions triggered by the above situations may
involve generating alerts or displaying statistics and
aggregated information onto a dashboard.

In previous work, we implemented a BPM solution based
on the model driven development methodology (Zeng et al.
2005). There are two approaches that we adopted for
representing a BPM solution. The first approach utilizes the
Unified Modeling Language (UML) with UML2 profile
extension. The second approach utilizes XML schemas for
defining BPM entities and the relationships between the
entities. Both approaches are implemented as plug-ins on
IBM Rational Software Architecture (RSA).

Although the work we describe in this paper fits under
the general framework of MDBT and BPM, and we discuss
it within this context, we stress that our approach is not tied
to this framework in any way. As we explain in more detail
in the next section, we have defined an XML interface that
allows our method to operate with any other business
process modeling framework.

4 Model-driven dashboard framework

In Fig. 1 we depict the high level architecture of the
proposed dashboard framework. As mentioned earlier, the
framework extends the existing BPM model in order to
support the dashboard reporting needs. Specifically, we
extend the BPM Observation Model (OM), one of the UML
Models of MDBT Toolkit that captures the monitoring and
alerting requirements of an enterprise. In order to visually
represent these requirements as models, the OM makes use
of the UML2 profiles to extend the base UML elements.
The Dashboard Model employs similar techniques to
represent its modeling elements, so that the solution
designer gets to work with consistent models for the entire,
end-to-end solution design. The models capture the follow-
ing aspects of the BPM Dashboard.

& Definition of metrics and related context information to
be displayed on the dashboard.

Inf Syst Front (2007) 9:195–208 197

http://www.alphablox.com/
http://www.alphablox.com/
http://www.businessobjects.com/
http://www.hyperion.com/

& Organization of information into pages, and definition
of navigation paths among these pages.

& Assignment of access control privileges to the dash-
board information, depending on the user roles.

In order to capture the UML representation of Dashboard
Models, we used the Rational Software Architect (RSA)
tool. Note, however, that RSA can be interchanged with
any other editor supporting the UML2 notations.

Even though we use UML for all the modeling require-
ments in our framework, we also provide an equivalent
XML representation, which serves as our meta-model. In
fact, the representation that the proposed approach uses

internally is the XML representation. The transformation
between the UML and the XML representations is lossless,
in the sense that all the modeling elements and the
relationships among them are preserved.

The decision to have the Dashboard XML Meta-Model as
an additional level of abstraction allows us to decouple the
dashboard modeling process from the modeling of the rest of
the business processes. Therefore, changes in the OMwill not
affect the Dashboard Framework. Moreover, we may replace
the OM with any other business modeling approach, without
affecting the dashboard model. This option is represented in
Fig. 1 by the box labeled “external modeling.”

When the Dashboard Model has been transformed into the
Dashboard Meta-Model representation, we feed this repre-
sentation to the CodeGenerator, which subsequently produces
the deployable dashboard application (refer to lower part of
Fig. 1). The generated application consists of the Dashboard
Application, which is the set of files that contain the actual
code for the application, and the Dashboard DDL, which is
the set of files that generate the auxiliary structures needed
by the application, such as database tables. These tables are
required to be created in the BPM Data warehouse.

The Dashboard Application can be readily deployed on a
J2EE application server. The particular choice of the
application server is orthogonal to our solution, and the
Code Generator can be modified to generate deployable
components for any application server.

Figure 2 shows the overview of the end-to-end dashboard-
design process flow. We start by defining custom reports to be
used by the dashboard, or by simply selecting some of the
predefined reports from the template data store. As we will
discuss later, the role of these report templates is to retrieve the

Fig. 1 Model-driven dashboard framework

Fig. 2 End-to-end dashboard component flow

198 Inf Syst Front (2007) 9:195–208

appropriate data and handle the presentation of these data on
the screen. Then, the solution designer models the dashboard
elements using the Model Editor, transform the result into the
Dashboard Meta-Model representation, and invoke the Code
Generator to generate the deployable software components.
Once deployed, the Dashboard can be accessed using a web
browser. The details of the different Dashboard Model
elements are discussed in the subsequent sections.

4.1 Dashboard model artifacts

The dashboard model artifacts used in our approach can be
classified into three categories. The first category is related
to modeling the data that are necessary for the dashboard. It
includes the data and the metric models. The second
category corresponds to an abstract presentation layer,
including navigation and the report template models.
Finally, the third category is related to user roles and data
access privileges. It includes models that define the
dashboard access control, by relating user roles to data
elements, as well as elements in the presentation layer.

In the following paragraphs, we elaborate on the
different model artifacts.

4.1.1 Dashboard model definition

As discussed earlier in the paper, we chose to use UML for the
entire dashboard modeling requirements as it is widely
accepted in the industry, and also because it provides to the
solution developer a consistent platform to work with, across
the variousMDBTmodels. In order to accommodate our needs
for the Dashboard Framework, we have extended the UML
meta-classes and relationships by introducing new stereotypes
using UML2 profiles to model the dashboard elements.

Dashboard data model In our framework, we assume that
all the necessary data can be stored in a data warehouse,
using a star schema (Gray et al. 1996). Therefore, we use
the data model shown in Fig. 3, where each data element is
marked as either a dimension, or a metric. In Section 5,
where we discuss issues related to management of changes

in our framework, we elaborate on the data model and its
implementation.

Even though the data model we support is simple, its
semantics are rich enough to be able to model many real-
life scenarios. This is because it is usual for real-world data-
modeling problems (especially the ones that we are
targeting) to have a natural star-like representation. An
example scenario is product sale information, where the
metrics include number of units sold and revenue, and the
dimensions include geographies and time.

In Fig. 3 we are also introducing the Metric Group
modeling element, which is used for grouping relevant
metrics. Such a grouping is useful when modeling relation-
ships to other artifacts, where all the members of the Metric
Group participate. Figure 3 depicts the Metric Group UML
class that connects to the Metric class in an aggregation
relationship.

Dashboard navigation model In Fig. 4, we illustrate the
GUI modeling Elements (stereotypes), that is, the Naviga-
tion Tree, Page, and Menu classes. These three classes form
the Dashboard Navigation Model. In a typical scenario, the
analyst starts by defining some pages, and she then
associates these pages with menus. In the last step, she
introduces a Navigation Tree element, in order to capture
the navigation paths among the pages, which eventually
form the Dashboard reports.

Dashboard report template model The Report Templates
are used to define the information content of the individual
pages. Figure 5 shows that a Report Template can be
associated with a page, and may refer to several Metric
Groups. When the page is displayed on the dashboard, the
information about all the metrics corresponding to the
templates is rendered on the screen. Note that each page can
be associated with one or more Report Templates.

The Report Templates also define the details for the
visual presentation of the data they contain. By creating a
report template, the user can choose to display a set of
metric data as a table, as a chart, or using both display
modes.

Fig. 3 Dashboard data model Fig. 4 Dashboard navigation model

Inf Syst Front (2007) 9:195–208 199

Dashboard access control model This model defines all the
access control properties relevant to the dashboard. Using
the various modeling elements, we can specify for each
user role the access privileges to different parts of the data,
as well to different pages of the dashboard. Thus, the
dashboard users, according to their assigned roles, only
have access to a subset of the dashboard reports.

Figure 6 illustrates how we model the above require-
ments in our framework. The business analyst can model
the access privileges to the reporting data according to User
Role (such as manager, data administrator, etc.), and by
Metric Group and Dimension. We now explain in detail the
relationships between user roles and metrics, and user roles
and dimensions.

& UserRole-MetricGroup: This relationship specifies the
access privileges of User Role to Metric Group. When
the analyst creates an aggregation link between the
above two modeling elements, all the users assigned to
User Role gain access to all the metrics described by
Metric Group. This lets the model capture the role
based access to metrics. At runtime, based on this
model, the system can determine what metrics to show
on the dashboard based on the User Role (i.e., only
those metrics for which the user has access are
displayed on the dashboard).

& UserRole-DimensionScope: This relationship defines
the User Role access privileges to various dimensions,
as well as to the dimension levels in each dimension.
This lets the business analyst define fine grained access
control at the metric context.

When the dashboard has been deployed and is ready for
use, the administrator has the ability to further refine the
data access control by the specific data values. The details
of such access privileges are defined later in the paper (see
Section 4.2.3).

Access by Report Template is another aspect of
dashboard-report access-control modeling. A User Role
may have access to one or more Report Templates, and the
business analyst may select a set of (already defined)
templates and associate them to the User Role elements.
This lets the dashboard framework filter the templates that
are shown to the user of the dashboard. Figure 7 shows the
User Role to Report Template relationship.

Finally, our framework allows the business analyst to
define access control based on the Navigation Trees
(Fig. 8). We expect that a single Dashboard Model will
involve several Navigation Trees. In this case, the business
analyst may wish to provide different access privileges to
each one of the navigation trees, according to User Role.

All the access control models discussed in the previous
paragraphs comprise a powerful and flexible toolset. Not
only do they provide coarse- and fine-grain access control
to the data, but they also allow the business analyst to
design a small set of pages, which at run-time will display
different information, according to the access privileges of
the user accessing the dashboard.

4.2 Dashboard model solution methodology

We now turn our attention to the solution methodology we
have in place for our Dashboard Framework, and describe
the required steps for developing a solution. Even though
the model-driven approach brings efficiency to BPM
solutions development, there is a need to understand and
follow a specific methodology that can lead to a successful
and efficient solution.

The Dashboard modeling methodology can be divided in
the following three main activities.

1. Pre-modeling activity.
2. Modeling activity.

Fig. 5 Dashboard report template model

Fig. 6 User role to metric and dimension model

Fig. 7 User role to report template model

Fig. 8 User role to navigation tree model

200 Inf Syst Front (2007) 9:195–208

3. Post-modeling activity.

In the next paragraphs, we discuss in detail each one of
these activities.

4.2.1 Pre-modeling activity

Before starting to create models in order to capture the
dashboard requirements, the business analyst is required to
understand the predefined components and templates that
are included in the Dashboard Framework tool. These
components can aid in quickly and efficiently designing the
solution.

One of the important parts of this framework is the
predefined data templates (data structures). Since the data
model is only comprised of a well-defined, limited set of
data elements (that is, metrics and dimensions), the
framework publishes predefined sets of data structures as
part of the tool. Then, each report template may choose the
data structures that are suitable for its reporting purposes.

The framework provides another software component,
the view component, which is responsible for connecting the
data layer with the presentation layer of the dashboard.
The view component uses the data structure and User Role
elements to connect to the data sources, and to generate an
instance of the data structure, which during runtime is
passed to the Report Template instance (discussed below)
that renders the visual widgets. In order to achieve seamless
integration, the view components need to be embedded in
the Report Templates. In our implementation, they are
included as JSP tag libraries.

Finally, we also provide a set of predefined Report
Templates. In the current version of our tool, we offer a
table and a chart component. Our framework can also
support user-defined Report Templates. The only restriction
is that the new template has to support the data templates in
its input.

4.2.2 Modeling activity

After the custom Report Templates have been defined, the
next step is to model the reporting requirements. During
this step, the user may need to perform the following
tasks.

& Identify the metrics that will become part of the
dashboard views, and create Metric Groups by grouping
together similar metrics.

& Create report templates for all the different types of
information that are to be displayed on the dashboard.

& Create page elements, and associate them to one or
more of the report templates defined earlier.

& Create the menu elements for the dashboard portal, and
link the menu items with the corresponding pages.

Finally, introduce navigation tree elements in order to
define the navigation flow of the portal.

& Define the different user roles that need access to the
dashboard portal. Individual users are assigned a role by
the portal administrator during the portal configuration
time.

& Associate each user role with Metric Groups, Dimen-
sions, Report Templates, and Navigation-Trees, so as to
specify the access control privileges.

Once the Dashboard Model is ready, it is automatically
transformed into our intermediate XML representation,
which is independent of the tool used to build the
Dashboard Model. Subsequently, this model is processed
by the Code Generator that produces all the required
deployable software components.

4.2.3 Post-modeling activity

We now discuss the artifacts related to the post-modeling
phase. The CodeGenerator produces two deployable software
components, namely, the Dashboard DDL and the Dashboard
Application. The Dashboard DDL contains the definitions for
all the tables that need to be created in the BPM Data
Warehouse. It also contains the necessary SQL scripts for
reading data from and inserting data in those tables.

The Dashboard Application is a J2EE application that
needs to be deployed on a J2EE Application Server. It
contains the web module that consists of the chosen report
templates along with other supporting software components
provided by the framework.

As the final step in the dashboard deployment procedure,
the user has the ability to define fine-grain data access
control, according to specific data values of the warehouse.
When we discussed access control in the Dashboard Model
(see Section 4.1.1.4), we described how the model allows to
define access privileges based on the data dimensions. For
example, we may allow a particular user role to roll-up and
drill-down on the geography dimension. Even though the
above kind of access control is very useful, in some cases it
may not be enough. Consider the situation where two
different managers are responsible for the Europe and
America geographies. In this case we may want to restrict
the access of each manager to the geography for which she
is responsible.

In order to achieve this fine-level access control, we
augment the User Role to Dimension model with special
annotations that specify the levels of each dimension that
can be accessed by the User Role. Note that we cannot
perform this step of access control during the modeling
phase, because it depends on the specific data of the
application, which are only available in the warehouse after
the application has been deployed.

Inf Syst Front (2007) 9:195–208 201

5 Change management

We now turn our attention to the problem of change
management within the proposed framework. In this case,
when we use the word “change,” we refer to insertions,
updates, or deletions that may occur to any of the
Dashboard Models we described in the previous section.

Note that a model-driven development environment
offers a de facto advantage in handling changes over the
non model-driven approach. This is because changes
happen at the model level, which is much easier to
manipulate. Therefore, when any of the models change,
we can simply re-generate and re-deploy the entire
application. This procedure is to a large extent automated,
and consequently relatively fast.

Nevertheless, re-generating and re-deploying an entire
application can often times be overkill. This is especially
true when the changes that trigger this procedure are rather
insignificant, or pertain to a small part of the application. In
such cases, we would like to be able to propagate only the
necessary changes to the deployed applications, thus,
minimizing the resulting downtime.

In the following paragraphs, we describe the methods we
employ in order to support incremental maintenance within
the proposed framework. These methods aim at identifying
the portions of the models that have changed, and
subsequently, at applying the required changes only to the
affected parts of the deployed applications. We focus our
discussion in the incremental maintenance of the data
model and the data warehouse, since this forms the basis
for the entire Dashboard Model.

5.1 Data warehouse level

As mentioned earlier, the Observation Model (OM) covers
the business performance management aspects of the
business process modeling, and includes business perfor-
mance monitoring (observation) and control. OMs are
typically constructed top–down starting from the business
measures or Key Performance Indicators (KPI), and are
assigned to process specific events (Zeng et al. 2005). For
each relevant incoming event, a monitoring context will
typically compute one or more measures, and store them in
a data warehouse for subsequent analysis. In the context of
the data warehouse, some of these measures are treated as
dimensions (e.g., customer type, time, and location) and
others as metrics (e.g. revenue, cost, and profit).

As part of the model-driven approach to design, the data
model, and consequently the database schema for the data
warehouse are automatically generated from the OM. Then,
when the OM changes, the data warehouse schema needs to
be updated. This would normally require the migration of
the already collected data to a new data warehouse schema
associated with the new OM. Such migration of data would
cause unnecessary downtime for the data warehouse and
the dashboard application.

What we propose instead is a method for incremental
maintenance of the data model, which can efficiently keep
the data warehouse up to date with the changes in the OM.
This is achieved by extending our models with special
annotations that are used to track the changes triggered by
the users of the system, and propagate those changes to the
data model.

Fig. 9 The incremental maintenance process

202 Inf Syst Front (2007) 9:195–208

In Fig. 9 we depict the process we have incorporated in
our framework in order to support the incremental mainte-
nance of the data model. The business analyst starts by
specifying the events of interest and the associated metrics in
the Observation Model Editor (OME). The OME Annotation
Wizard is used to annotate each of the measures identified in
OME either as a dimension or a metric. (This information is
necessary for building the data model.) The OME Annota-
tion Wizard also takes as input an existing data model, if
such a model already exists for the data warehouse. In the
next step, the data model is produced, and the associated
database operations generate the appropriate schema (i.e., the
physical model) in the data warehouse. At the same time, a
set of metadata that describe the generated schema are
produced, for use by the OME Annotation Wizard and the
Metadata Outline Wizard. The role of the latter is to provide
a graphical user interface for displaying detailed information
about the data model, and also for managing different
versions of the model.

In the case where the business analyst changes an
existing OM, the OME Annotation Wizard recognizes all
the changes and tags them with information related to the
nature of the changes that occurred. Subsequently, the Data
Model and Metadata Evolution Engine parses the set of
changes, and translates them to updates in the data model.
In order to do this, the engine uses special rules for
transforming the data model into a data warehouse schema.
The above rules ensure that the resulting data model can
accommodate updates, without the need to be re-generated
from scratch. In the interest of space, we will not get into
the details of these rules. We present though some key ideas
that make this functionality possible.

First, the metrics in the data model are organized in
multiple tables (also know as fact tables), according to the
dimension measures associated with them. This decision
makes it possible to have several different types of business
events that are monitored, under the same OM. Further-
more, event types can be added or dropped from the OM
and the Data Model, without affecting the rest of the objects
in the models.

Second, in contrast to traditional data models for data
warehouses, there is an implicit dimension associated with
the metrics themselves. This way, we are able to decouple

the functionality of the metric (i.e., keeping track of some
real-world quantity) from its characteristics as a member of
the model (i.e., name, associated event type, etc.). As a
result, we can easily handle changes in metrics. Name
change and addition of a new metric are straightforward
operations. When a metric is removed, we mark it as
inactive. Therefore, we can still access, manipulate, and
compute aggregations on all the past values for that metric,
all of which are desirable properties.

Last, when there are changes in dimensions, the situation
is less involved. In these cases, we just have to add a new
dimension and connect it to the relevant fact tables, or
update the name of an existing dimension. If a dimension is
removed, then we insert a dummy value (null) in its place
in the fact table, so as to maintain all the past associations
between the removed dimension and the related metrics.

Fig. 11 Data model

Fig. 10 Metric group definition

Inf Syst Front (2007) 9:195–208 203

5.2 Dashboard application level

In the previous paragraphs we described how changes in the
environment of the dashboard (that is, in the OM) affect the
data model, and what mechanisms we have in place in order
to support efficient incremental maintenance. This represents
the most important part of change management within the
proposed framework. We now turn our attention to the rest of
the Dashboard Model, and briefly discuss the effect that
changes have in the other components of the model.

In the Data Model, changes in the Dimension and Metric
classes reflect the corresponding changes in the OM, as
discussed earlier. The business analyst in this case may only
change the Metric Groups by reorganizing dimensions and
metrics. All the above changes cascade seamlessly to the rest
of the Dashboard Model, and reveal themselves when the
dashboard application renders the various pages on screen.

The same is true for several of the other changes that the
business analyst can apply to the Dashboard Model. In
other cases, the changes manifest themselves within the
Dashboard Model. For example, when the Navigation Tree
class is changed in the Navigation Model, these changes are
automatically reflected in the User Role to Navigation Tree
Model.

Finally, there is the special case of the Dimension Scope
class in the User Role to Metric and Dimension Model.
Changes to this class pertaining to specific dimension-level
values may only be applied at deployment time (see
Section 4.2.3). These changes do not affect any of the
other models, but make a difference in the way data are
presented to the user. This kind of changes is also
efficiently handled at run-time, through the use of database
tables that store the necessary information.

6 Case study

In order to assess the feasibility and effectiveness of the
proposed approach, we applied it to a real-world problem.
In this case, the objective was to develop a dashboard to
support the business operation of TeleSale Representatives
(TSRs) that are responsible for the sales of an entire range
of products across the globe. The TSRs are responsible for
the entire life-cycle of a sale. Initially, a customer expresses
an interest to buy, to which the TSR responds with a quote.
If the customer decides to close the deal, then the quote is
turned into an order.

In their day-to-day operations, the TSRs need to have a
concise view of their business, so as to plan their actions
accordingly. The dashboard has to display information on
both, the quotes and the orders, capturing various metrics
related to these activities, such as number of quotes and
orders, revenue, and others. These metrics may be
organized according to several dimensions, such as time,
geography, product type, customer type, and others.
Furthermore, access restrictions should be in place, limiting
the views of the data offered to the TSRs and the region
managers.

We now describe the steps we went through during the
solution development process, using the Dashboard Frame-
work.

Fig. 13 Navigation tree model

Fig. 12 Report template

204 Inf Syst Front (2007) 9:195–208

6.1 Dashboard solution model

We start by presenting the models we created for the
dashboard. Note that for brevity, in all the following
diagrams, we only depict part of the models that form the
complete solution.

As mentioned in Section 4.2, we first identify the Report
Templates that are needed. If the existing, predefined tem-
plates are not suitable, then we define custom Report Tem-
plates. For this case study, we are using pre-defined
summary templates (e.g., OrderSummaryTemplate), as well
as some custom-made templates (e.g., OrderDetailTemplate).

Subsequently, we identify similar metrics and group
them together as MetricGroups. As shown in Fig. 10,
Revenue and average revenue for orders are grouped into
OrderMetricGroup, while average number of quotes and
average quote value are grouped into QuoteMetricGroup.
(Section 4.1.1 discusses the benefits of such groupings.)

The relationships among metrics and dimensions are
captured by the data model, shown in Fig. 11. This diagram
contains relationships that connect dimensions to metrics,
as well as metric groups. The latter case is translated as a
relationship between the dimension and each one of the
metrics under the Metric Group. A link between a metric
and a dimension means that the metric can be aggregated
along this dimension.

In order to organize the information into different views
(or pages), we use the Report Template model. Figure 12
shows this model for a summary view we have defined,
which will display data relevant to orders and quotes. More
specifically, this summary page will contain data for orders
revenue and average revenue (represented by OrderMe-
tricGroup), and average number and value of quotes
(represented by QuoteMetricGroup).

Once we have defined all the pages and menus that we
are going to use in our dashboard, we proceed to model the
Navigation Trees. The Navigation Trees represent the paths
that the dashboard user can follow when navigating from
page to page. As Fig. 13 shows, we can define several
Navigation Trees, and each page may belong to more than
one Navigation Tree.

Subsequently, we define all the data access privileges for
our dashboard. Figure 14 depicts the assigned privileges for
the Telesales and Manager user roles, with respect to
metrics and dimensions. The model we created allows
Telesales users to access quote metrics and aggregate them
along the brand dimension. In addition to the above,
Manager users can also access order metrics and aggregate
these metrics along the geography dimension.

Figure 14 also illustrates how we model fine-grain data
access control using the dimension levels. In this example,
we limit the access on the Brand and Geography data. A
Telesales user will only be able to aggregate data up to the
sub brand level (i.e., level 2) in the Brand dimension
hierarchy. (The “own member” annotation only instructs
the tool that fine-grain access control is required to be
applied (Fig. 15).

Figure 16 show the User Role access privileges in terms
of Navigation Trees and Report Templates, respectively.
For our dashboard, we specify that Telesales and Manager
users access different Navigation Trees, which translates to
a different experience, both visually and content-wise. We
also specify that Manager users can access the summary
templates for the orders and the quotes, while Telesales
users only have access to the quote summary template.

When we complete the modeling phase, we initiate the
deployment of the different software components, described
in the following section.

Fig. 15 Role to navigation tree access mapping

Fig. 14 Role to data access
mapping

Inf Syst Front (2007) 9:195–208 205

6.2 Dashboard deployment

There are two deployable components generated as a result
of the modeling activity. The Dashboard DDL component
is the data warehouse schema script that supports the
dashboard functionality. This schema stores and manages
all the information relating to metrics, and maintains the
fine grained access control to this information by user role.

The Dashboard Application component is an Enterprise
Application that must be deployed on a J2EE application
server, and can subsequently be accessed using a web
browser. In our implementation, the generated application is
deployed on WebSphere Portal Server, and uses Alphablox
(http://www.alphablox.com/) for rendering the reports (the
framework provides a tag-library that allows the report
template to connect to Alphablox; we provide similar tag-
libraries for other commercial data visualization tools, as
well).

In Fig. 17, we show a screen-capture from the deployed
dashboard application. This particular example illustrates a
page that uses tables to display two different types of data

regarding quotes (left side of the picture), and a graph to
visualize these data (right side of the picture)

6.3 Discussion

Our experience with the model-driven approach for
dashboard development shows that we can achieve signif-
icant savings in terms of time and cost. Using the proposed
framework, we were able to complete a project that would
normally require more than 3 months, in just a fraction of
the time (i.e., less than 1 month in our case).

Moreover, the benefits of our approach extend to the
future as well, since our framework makes it very easy to
maintain the dashboard in the presence of changes. When
there are changes in metrics or dimensions, we can
efficiently handle them by incrementally maintaining the
corresponding data model, and thus, we avoid the need for
data migration or service disruption. Changes in other
elements of the dashboard model, such as in navigation
paths, and access control are as simple as updating the
corresponding models, making the maintenance of the
dashboard an easy and manageable task.

Our experience with the real case study proved the
importance of the above functionality. Through the course
of modeling and deploying the dashboard, and even after
deployment, changes in requirements forced us to modify
the original design. Nevertheless, in all cases the changes
were seamlessly handled by our framework, allowing
smooth transitions from one state to the next, and avoiding
altogether downtimes and complete re-builts of the dash-
board application.

We should also note that the dashboard developers do
not need to have any in-depth knowledge of databases and
data warehouses, or access control mechanisms. All these

Fig. 17 Generated dashboard
page

Fig. 16 Role to report template access mapping

206 Inf Syst Front (2007) 9:195–208

http://www.alphablox.com/

aspects of the dashboard are completely hidden from the
developer, and managed by the proposed framework.

7 Conclusion

In this study, we propose an efficient and effective model-
driven dashboard design technique. We extend the business
performance modeling framework by providing a number
of new models that enable the process of dashboard design.
Our model-driven approach renders the dashboard design
and deployment process less time-consuming and less
cumbersome. It leads to automated code generation, and
allows fast and easy integration of design changes in the
final solution.

We applied the proposed technique for designing and
deploying a dashboard for a real-world business, and the
results of this experiment demonstrate the feasibility and
effectiveness of our approach. We observed a significant
reduction in terms of required development time when
compared to a more traditional dashboard deployment
process.

References

Bhattacharya, K., Guttman, R., Lyman, K., Heath, I. F. F., Kumaran,
S., & Nandi, P., et al. (2005). A model-driven approach to
industrializing discovery processes in pharmaceutial research.
IBM Systems Journal, 44(1), 145–162.

Chen, S.-K., Lei, H., Wahler, M., Chang, H., Bhaskaran, K., & Frank, J.
(2006). Amodel driven XML transformation framework for business
performance management model creation. IJEB, 4, 281–307.

Chowdhary, P., An, L., Jeng, J.-J., & Chen, S.-K. (2005). Enterprise
integration and monitoring solution using active shared space. In
ICEBE (pp. 295–304).

Czarnecki, K., & Helsen, S. (2003). Classification of model transfor-
mation approaches. In OOPSLA workshop on generative tech-
niques in the context of model-driven architecture, Anaheim, CA.

Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and
future. IEEE Transactions on Software Engineering, 31(7), 529–536.

Gray, J., Bosworth, A., Layman, A., & Pirahesh, H. (1996). Data
cube: A relational aggregation operator generalizing group-by,
Cross-Tab, and Sub-Total. ICDE.

Greenfield, J., Short, K., Cook, S., & Kent, S. (2003). Software
factories assembling applications with patterns, models, frame-
works and tools. In 18th annual ACM OOPSLA.

Jeng, J. J., Buckley, S., Chang, H., Chung, J. Y., Kapoor, S., &
Kearney, J., et al. (2002). BAM: An adaptive platform for
managing business process solutions. ICECR.

Jeng, J. J., Schiefer, J., & Chang, H. (2003). An agent-based architecture
for analyzing business processes of real-time enterprises. In EDOC
(pp. 86–97). Washington, DC: IEEE Computer Society.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA explained, the model
driven architecture: Practice and promise. Reading, MA:
Addison-Wesley.

Koehler, J., Tirenni, G., &Kumaran, S. (2002). From business process model
to consistent implementation: A case for formal verificationmethods. In
EDOC (pp. 96–106). Washington, DC: IEEE Computer Society.

Kumaran, S. (2004). Model-driven enterprise. In Proceedings of
global enterprise architecture integration summit (pp. 166–180).

Kumaran, S., & Nandi, P. (2005). Adaptive business objects: A new
component model for business integration. In Proceedings of
ICEIS (pp. 48–58).

Marian, A., Abiteboul, S., Cobena, G., & Mignet, L. (2001). Change-
centric management of versions in an XML warehouse. In VLDB
(pp. 581–590). San Francisco, CA: Morgan Kaufmann.

McGowan, C., & Bohmer, L. (1993). Model-based business process
improvement. ICSE.

Miller, J., & Mukerji, J. (Eds.) (2003). MDA guide version 1.0.1.
Object management group. Retrieved from http://www.omg.org/
docs/omg/03-06-01.pdf.

Mumick, I. S., Quass, D., & Mumick, B. S. (1997). Maintenance of
data cubes and summary tables in a warehouse. SIGMOD.

Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and
future of user interface software tools. In ACM ToCHI, vol. 7
(pp. 3–28). New York: ACM Press.

Palpanas, T., Sidle, R., Cochrane, R., & Pirahesh, H. (2002).
Incremental maintenance for non-distributive aggregate func-
tions. In VLDB (pp. 802–813).

Rugaber, S., & Stirewalt, K. (2004). Model-driven reverse engineer-
ing. IEEE Software, 21(4), 45–53.

Sukaviriya, N., Kumaran, S., Nandi, P., & Heath, T. (2005). Integrate
model-driven UI with business transformations. MDDAUI.

van der Aalst, W. M. P., ter Hofstede, A. H. M., & Weske, M. (2003).
Business process management: A survey. Eindhoven, The
Netherlands: BPM.

Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., &
Sampaio do Prado Leite, J. C. (2005). Reverse engineering goal
models from legacy code. In ICRE (pp. 363–372). Los Alamitos,
CA: IEEE Computer Society Press.

Zeng, L., Lei, H., Dikun, M., Chang, H., Bhaskaran, K., & Frank, J.
(2005). Model-driven business performance management. In
ICEBE (pp. 295–304).

Themis Palpanas is a faculty member in the Department of
Information and Communication Technology, at the University of
Trento, Italy. He received his Bachelor of Science degree from the
National Technical University of Athens, Greece, and his M.Sc. and
Ph.D. from the University of Toronto, Canada. Before joining the
University of Trento, Prof. Palpanas worked at the IBM T.J. Watson
Research Center. He has also worked for the University of California
at Riverside, and visited Microsoft Research, and the IBM Almaden
Research Center. Prof. Palpanas is serving in the program committees
of several top database and data mining conferences, is a member of
ACM and the Technical Chamber of Greece, and has been a member
of the IBM Academy of Technology Study on Event Processing. His
interests include data management, data analysis, streaming algo-
rithms, outlier detection, incremental view maintenance, caching, and
prefetching. He has applied his research solutions to real world
industry problems, and is the author of five US patents.

Pawan Chowdhary has been associated with various divisions of
IBM during his career span of 10 years, architecting, designing and
implementing complex, high performance and scalable distributed
object-oriented applications. In 2004, he joined IBM Research as an
Advisory Software Engineer in the Analytic Models & Architecture
Department and has been working on the Sense and Respond and
Business Performance Management (BPM) technologies. Lately he is
actively involved in the Model Driven Software Development
technology research. He has received several projected related awards

Inf Syst Front (2007) 9:195–208 207

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf

and writes extensively in the area of BPM and Model Driven
Techniques. He received his Bachelors degree in Electronics Engi-
neering from Nagpur University, India in 1996.

George Mihaila is a Research Staff Member at IBM Watson
Research Center. He has a Bachelor of Science degree from the
University of Bucharest and M.S. and Ph.D. degrees from the
University of Toronto, all in Computer Science. He also holds an
adjunct faculty appointment at Columbia University. Dr. Mihaila’s
research interests include Web-based information discovery, data
integration, data warehousing, event processing, and XML storage
and processing. His research was published in high quality journals
and conferences including the Journal of Digital Libraries, ACM
Principles of Database Systems (PODS), Extending Database Tech-

nology (EDBT), IEEE International Conference on Data Engineering
(ICDE) and W3C World Wide Web conferences. His research was
supported by grants from the Canadian Natural Sciences and
Engineering Research Council (NSERC) and the United States
Defense Advanced Research Projects Agency (DARPA).

Florian Pinel is an Advisory Software Engineer at IBM’s T.J. Watson
Research Center. He received his Master’s Degree in Computer
Science in 1999 from Ecole Centrale Paris, France. Since joining IBM
in 1999, he designed and implemented complex e-commerce
solutions. He currently works on Model-Driven Business Transfor-
mation in the Business Informatics department, focusing on Business
Performance Management. He is actively publishing his work, and
holds several patents in this field.

208 Inf Syst Front (2007) 9:195–208

	Integrated model-driven dashboard development
	Abstract
	Introduction
	Related work
	Background
	Model-driven dashboard framework
	Dashboard model artifacts
	Dashboard model definition

	Dashboard model solution methodology
	Pre-modeling activity
	Modeling activity
	Post-modeling activity

	Change management
	Data warehouse level
	Dashboard application level

	Case study
	Dashboard solution model
	Dashboard deployment
	Discussion

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

