
Enhancing the efficiency of supply chain processes
through web services

Seung-Hyun Rhee & Hyerim Bae & Yongsun Choi

Published online: 22 November 2006
Springer Science + Business Media, LLC 2006

Abstract Among business enterprises, keen competition is
accelerating the introduction of Supply Chain Management
(SCM). SCM entails the utilization of cutting-edge informa-
tion technology in elaborately designing, managing and
integrating supply chain processes so that participating
companies’ processes are interoperational at the global level.
Recently, new Business Process Management (BPM) tech-
nology has attracted much attention as an indispensable tool
for managing the supply chain synthetically and systemat-
ically. This next-generation technology, a great advance on
existing BPM systems, can greatly enhance overall process
efficiency in run-time. The critical path(s) in a process, and
the slack time of each task, being the typical determiners of
supply chain process efficiency, are the basis of a method,
proposed in this paper, of efficiently executing global supply
chain processes. The proposed method acts as a dispatching
rule that can guide prioritization of the tasks in order to
improve the run-time efficiency of supply chain processes.
We provide several simulated results to demonstrate the
effectiveness of our method, propose a web-service-based
system architecture for the communication of the run-time
data of tasks among processes in heterogeneous environ-
ments, and present a prototype of the system implemented.

Keywords Business Process Management . Supply Chain
Management . Process efficiency . Process interoperability .

Dispatching rule .Web service

1 Introduction

In rapidly revolutionizing business environments, collabo-
ration with partners is considered an essential element of
success (Hammer, 2001), because the competitiveness of a
company is derived from the entire scope of business
activity in delivering products to end users. Such collabo-
ration is achieved by systematic interfaces among business
partners, to the overall purpose of increasing customer
satisfaction (Kobayashia, Tamakia, & Komodab, 2003;
Seshasai, Gupta, & Kumar, 2005).

Supply Chain Management (SCM) is a systematic method
of collaborative management among companies (Kobayashia
et al., 2003; D. Simchi-Levi, Kaminsky, & E. Simchi-Levi,
2000). SCM requires a systematic approach to procedures,
to the overall process, occurring in the supply chain. In this
paper, that process is called the Supply Chain Process
(SCP). Business Process Management (BPM), which is
widely accepted as an effective managing and executing
business process tool (Latimer, 2004), is an integrated
approach to management of the SCP. BPM is a general
methodology or a software system that increases company
productivity through the systematic design, management,
integration and improvement of business processes (Rhee et
al., 2005; Smith & Fingar, 2003; Stohr & Zhao, 2001).
BPM facilitates interoperations among heterogeneous sys-
tems, and sometimes serves as a platform for developing
process-based applications (Rhee et al., 2005).

The introduction of BPM to manage an SCP provides
several benefits. First, each stage of the SCP, and the
interrelations among stages and participants, are defined
clearly. In addition, BPM monitors and measures the
performance of SCP execution (McCoy, 2004), making it
possible to improve the SCP by analyzing the process

Inf Syst Front (2007) 9:103–118
DOI 10.1007/s10796-006-9020-5

Copyright © 2006, by S.-H. Rhee, H. Bae, and Y. Choi. All rights
reserved. No portion of this work may be reproduced, or stored in any
form, without written permission.

S.-H. Rhee :H. Bae (*) :Y. Choi
Department of Industrial Engineering, Pusan National University,
Pusan 635-709, Republic of Korea
e-mail: hrbae@pusan.ac.kr

performance results (Smith & Fingar, 2003). Existing
BPMs can assure that an individual process is executed in
the proper order in exact accordance with the process model
(Pozewaunig, Eder, & Liebhart, 1997; Zhao & Stohr,
1999). However, this does not guarantee that all of the
processes proceed efficiently (Rhee, Bae, Ahn, & Seo,
2003), which is a very important issue in the SCM field.
This is the BPM dilemma, and it demands a resolution.

Accordingly, in this paper we propose, from the
perspective of overall process efficiency, a novel method
of managing the execution of the supply chain process with
BPM technologies in the web service environment. We
expand the PERT/CPM (Program Evaluation & Review
Technique/Critical Path Method) technique to handle the
selective execution of path(s) and the nested processes. We
suggest a prioritization rule of executing tasks based on the
slack time of each task computed and demonstrate the
effectiveness of our method with several simulated results.
We propose a web-service-based architecture to deliver the
run-time data of tasks among processes, and, finally, we
introduce a prototype of the implemented system.

2 Background

2.1 BPM and process efficiency

Business Process Management Systems (BPMS) have been
employed as a tool to overcome interoperability barriers
among heterogeneous systems and to collaborate with
partners effectively. That is, BPM technology, especially
combined with web service architecture, is generally
acknowledged to be useful in solving technological prob-
lems that occur when composing a global process from
heterogeneous business processes, each of which is executed
independently by a participating company (Kobayashia
et al., 2003). With multiple companies interacting in such
global processes, SCM is a typical and recurring problem
area of BPM integration.

Generally, BPMS handle a business process as an object
that can be managed in a digital form. The main functions of
BPMS are conceived as being related to two distinct phases of
build-time and run-time of these process objects (J. Bae,
H. Bae, Kang, & Kim, 2004; Rhee, Bae, & Kim, 2004;
Workflow Management Coalition, 1999a). In build-time,
each process model is designed so that the process is ready
for execution (van der Aalst, Weske, & Grunbauer, 2005;
Workflow Management Coalition, 1999b). Activities includ-
ing their attributes and precedence relations, among the
activities in each process, are defined during this phase, and
these will be explained further in the subsequent section. In
run-time, process instances that will actually be performed
are created based on the build-time process models (Work-

flow Management Coalition, 1999b). Once a process model
is prepared, process instances are generated repeatedly
whenever they are needed (van der Aalst et al., 2005). The
controlled execution as well as the creation of process
instances is carried out by the BPM engine (Y. Kim, Kang,
D. Kim, Bae, & Ju, 2000). Since a typical BPMS deals with a
large number of process models at the same time and each
process model generates multiple instances, a task performer
will have many tasks to do at a certain point in time. The
average execution time of a task performed by a separate
system is negligible compared with those of human-
performed tasks. Therefore, we will consider only the set of
tasks assigned to a human user, called a worklist (Workflow
Management Coalition, 1999b).

The efficiency of business processes has two perspec-
tives. One is the performance of the BPM engine that
carries out management of the process lifecycle, and the
other is the capacity of users that handle tasks assigned by
the BPM engine. The former is related to scheduling a
process model and assigning tasks considering the status of
the model (Bae et al., 2004; Kumar & Zhao, 2002). The
latter is related to providing information on the respective
priorities of the user’s tasks, and this is the issue to be
treated in this paper.

2.2 Related studies on process efficiency

A large amount of research has been conducted in the area of
efficient production processes in relation to scheduling and
assigning problems (Baker, 1974; Holthaus & Rajendran,
1997; Hu, Minciardi, Paolucci, & Pesenti, 1992; Lu &
Kumar, 1991; Park, Raman, & Shaw, 1997; Rajendran &
Ziegler, 2001). However, in a business process environ-
ment, where processes are automated and controlled by
software systems such as WfMS (Workflow Management
Systems) or BPMS, the efficiency issue has not been a
major topic (Pozewaunig et al., 1997; Rhee et al., 2003).
Most research in the area of BPM including workflow has
placed a disproportionate emphasis on process modeling,
process interoperability, relevant applications, and related
issues (Chang, Son, & Kim, 2002; Klein & Dellarocas,
2000; Pozewaunig et al., 1997; Rhee et al., 2003; Zhao &
Stohr, 1999). However, as the areas in which automated
business processes take place have expanded, the run-time
efficiency of the business processes have received more
attention (Son & Kim, 2001). In this section, we briefly
review the previous work on process efficiency.

Pozewaunig et al. (1997) noting that time management is
hardly supported in workflow systems, provide a concept for
managing time in workflow processes. The proposed concept
consists of calculating internal deadlines for all activities
within a workflow process, checking time constraints, and
monitoring time in run-time. It is notable that they extend the

104 Inf Syst Front (2007) 9:103–118

PERT technique to support the structures usually found in
workflows. Chang et al. (2002) from a similar point of view
and with the purpose of contributing to the management of
time and resources within a single workflow process, also
support the identification and analyses of a critical path.
However, both Pozewaunig and Chang simply deliver time
information, and do not explain how this information is used
systematically to improve the process.

Zhao, going further, introduces a concept of process
efficiency in Zhao & Stohr (1999). He uses time-driven
processes to predict turnaround time and to allocate expected
processing time to each activity in the process, and then
explores some traditional dispatching rules. Although he
offers a sound conceptual foundation, he fails to fully
demonstrate the effectiveness of the approach for process
efficiency. Rhee et al. (2004), improving on Zhao, propose a
practical approach to improving process efficiency by
calculating slack time and finding a critical path based on
modified PERT/CPM algorithms. They introduce the LST
(Least Slack Time) rule and show how it can increase
process efficiency. However, their approach is limited to
single process models and cannot be applied to complex
processes, such as SCP, that contain nested processes.

All of the previous research forms a robust foundation
for this paper, in which we focus on the efficiency of SCPs
managed by the BPM system. In so doing, we extend the
LST Rule, originally proposed in Rhee et al. (2004) where
it was applied only to a single process.

3 Representation of the supply chain processes

3.1 The SCP model

For the effective implementation of the SCP, it is prerequisite
to represent the process in a computer-understandable form. In
this section, we represent the SCP as a process model. The
process model specifies the tasks and the relations among
processes. The definition of the process model is presented
below.

Definition 1 (Basic Process Model: Process, Activity, Link,
Split and Merge)

A process structure is defined as a directed graph P=(AP,
LP) and a labeling function f (•) for split or merge types, such
that

& AP={ai | i=1,..., N} is the set of activities, where ai is the ith
activity and N is the total number of activities in P;

& LP⊆{(ai, aj) |ai∈AP , aj∈AP , and i≠ j} is the set of links,
where an element (ai, aj) represents that ai immediately
precedes aj.

& For a split activity aj, such that |S|>1, where S={ak | (aj,
ak)∈L}, f(aj)= ‘AND’ if all aks should be executed;
otherwise, f(aj)=‘OR.’

& For a merge activity aj, such that |M|>1, where M={ai | (ai ,
aj)∈L}, f (aj)= ‘AND’ if all ais should be executed;
otherwise, f (aj)=‘OR.’

However, to represent the SCP, it is not enough to define
the above basic process model. A nested process model, as
follows, must also be considered.

Definition 2 (Nested Process)

A second independent process is often associated with a
process P. That second process is expressed as a set of
constituent activities of P. Thus, the independent process is
dealt with as an activity (aPs) as well as a process (Ps). This
process is called a nested process, which is defined below.

& Ps ¼ Aps ; Lps
� �

, Ps∈AP is a sub-process that belongs to
process P, where Aps is the set of activities and LPs is the
set of links.

The concept of the nested process is very useful to the
design of a process model. If some parts of the process
model already exist as an independent process, they can be
modeled by reusing that independent process, and in the
newly designed process they are expressed as a nested
process. In a practical SCP where several partners intero-
perate, it is also reasonable to regard the internal process of
the partner as a nested process. In information systems that
digitize and manage processes, the nested process is
actively employed. Nested processes strengthen companies’
competitiveness by introducing the best practices of each
partner industry through Business Process Outsourcing
(BPO) or web services (Smith & Fingar, 2003). Effective
collaboration among partners also requires the close
integration of other processes (Hammer, 2001). The
concept of the nested process can satisfy all such require-
ments from the viewpoint of a process structure.

When a process model is defined as above, multiple
paths can exist between two different tasks, as in the
following definition.

Definition 3 (Path)

Consider two activities ai and aj (i≠ j), in a process model
P=(AP, LP). It is possible that multiple paths exist between
the tasks. When there is the pth path between them, rp,
which is a set of ordered activities such that

rp ¼ ai; ak ; akþ1; . . . ; akþn; aj
� �

ai; akð Þ; ak ; akþ1ð Þ; . . . ; akþn; aj
� � 2 LP

Inf Syst Front (2007) 9:103–118 105

aj can be reached from ai by visiting the activities in the
order of the connecting links.

Generally, the complexity of the process model is
determined by the form of AND structures, OR structures,
and nested processes (Bae et al., 2004; Workflow Manage-
ment Coalition, 1999a). For successful execution of the
AND structure, all of the paths should be executed, but for
the OR structure, it is enough to carry out only one of the
paths. The OR structure is further classified into Normal
OR (NOR), Priority OR (POR), or Conditional OR (COR)
depending on the selection strategy of succeeding paths to
execute (Bae et al., 2004). The types that will be performed
are determined as follows.

& NOR: After the split activity, some of the branches can be
executed. When one of those reaches the merge task
successfully, the process proceeds to the subsequent task of
the merge task while ignoring the other branches that have
not yet reached the merge task.

& POR: A priority is assigned to each path. After the split
activity, the path with the highest priority is performed
first. If this successfully reaches the merge task, all of the
other paths are ignored. Otherwise, the path with the next
highest priority is tried until a successful one is found.

& COR: Each path is associated with a set of conditions.
After the split task, the conditions are assessed, and only
the paths that satisfy the conditions are carried out. The
condition satisfaction is determined at or prior to the split

task. Notice that this structure can be used as an XOR
structure that allows only one path to execute.

3.2 A sample SCP (supply chain process)

Our method is devised for an SCP where two or more
processes in heterogeneous environments interoperate with
one another. In Fig. 1, a sample SCP is illustrated, and the
process is used to describe our method presented in this
paper. The SCP begins when a customer places an order to
buy a large amount of product. When a customer order is
received, a seller reviews the current available inventory
and checks if it is sufficient to fulfill the customer order. If
the current inventory amount is sufficient to fulfill the
customer order, an ordinary order fulfillment is executed,
and, additionally, the inventory data is updated. Based on
this updated inventory data, the seller can determine when
to reorder from an external manufacturer. When the seller
reorders, the manufacturer, naturally, produces the product
and conveys it to the seller. If, however, the manufacturer’s
current inventory amount is not sufficient, emergency
production is initiated, the manufacturer producing the
product and dispatching it to the seller. The seller, in turn,
delivers the product to the customer.

As shown in Fig. 1, there are distinct processes cor-
responding to each of the three participating companies.
The seller cooperates with two partner manufacturers who

Fig. 1 A sample SCP

106 Inf Syst Front (2007) 9:103–118

provide relevant product for that seller. Obviously, since the
two partners’ processes are performed on heterogeneous
systems, they need to be integrated with the seller’s
process. Those two nested processes (Emergency Produc-
tion, Production) are shown in the dotted square. ‘Emer-
gency Production’ responds to the activity ‘Request for
production of the shortage’ in the seller’s process and
requests the execution of the activity ‘Receiving the
Request’ within the heterogeneous process. Once the
activity ‘Dispatching’ is completed, data relevant to the exe-
cution of the nested process is delivered to ‘Emergency
Production,’ and then ‘Emergency Production’ is completed.
The other nested process, ‘Production,’ is executed in a
similar way.

4 Efficient methods of SCP execution

This section presents a method of calculating the slack time
of each activity in an SCP. A dispatching rule and
exchanging information are also discussed.

4.1 Slack time and critical path in a basic process model

In order to furnish urgency information for each task, the
critical path should be found, and the slack time should be
computed. Computation of the slack time of each task is based
on the PERT/CPM method, which was first proposed in a
previous paper of ours (Rhee et al., 2004). Whereas a split in
PERT/CPM networks always entails use of the AND
semantic, workflow process structures have an alternative
path (that is, an OR block is included), and we consider it as
the single path presented in Fig. 2. Prior to finding the
critical path and computing the slack time of tasks in an OR
structure, the expectation time of each path is required. Since
the AND structure is the same as that of the PERT/CPM
network, we calculate the expectation time for only three
representative types of OR structures; the computation of the
expectation time of each type is summarized in Table 1. Any
reader who requires a detailed description of the computation
can refer to (Rhee et al., 2004).

The next section details the procedures for calculating
the slack time in an SCP including nested processes.

4.2 Calculation of slack time in SCP and a dispatching rule

An SCP usually includes nested processes, and the highest
level process containing the nested processes is called a
global process. The calculation of the slack time for an SCP
as a global process is based on that for a basic process
model, described in the previous section. In this section, we
describe how to find the critical path and calculate the slack
time in an SCP. Our dispatching rule, conceived in
accordance with the slack time, is also provided at the
end of this section.

In our method, the slack time is calculated in three
different cases. In the first case, the initial critical path and
slack time need to be calculated before a process is
executed. In the second case, the calculation is required
when each activity in the global process is completed. Since
the actual completion time of the activity can contribute to
correctness, once an activity is completed, the slack time of
all of the activities is recalculated using the exact
completion time. In the third case, when an activity in a
nested process is completed, the time information of all of
the constituent activities of the nested process in the SCP is
updated using the actual processing time.

Let us explain the first case. We use a modified version
of Fig. 1 (i.e., Fig. 3) to explain our method. As shown in
Fig. 3, before executing an SCP, we find the critical path
and calculate, based on the expected processing time, the
initial slack time of all of the activities. The two numbers
shown in the parentheses for each activity in Fig. 3 indicate
the expected processing time and deadline. Whereas in this
chapter the expected processing time is utilized, in the
experimental chapter (Chapter 5) the deadline will be
employed to measure the average number of completed
process instances and the average delay time for each
activity. In the nested process aP1 , there exist two paths, r1=
{a1−1, a1−2, a1−4}, r2={a1−1, a1−3, a1−4}, between activity
a1−1 and activity a1−4. The nested process is regarded as a
normal activity, aP1 , in global process P, and the expected

Fig. 2 A representative activity
of an OR structure

Inf Syst Front (2007) 9:103–118 107

processing time of the nested process at the level of the
global process needs to be computed.

Let ETai and ETi denote the expected processing time of
activity ai and path ri, respectively. Then, the expected
processing time of aP1 becomes

ETaP1
¼ Max ET1;ET2f g: ð1Þ

It is straightforward to generalize this for a nested
process Ps with n paths, as follows:

ETaPs ¼ MaxfETij1 � i � n; i is a natural number;

and n is the number of paths in Psg:
ð2Þ

Once the expected processing time of a nested process is
acquired, the critical path of a global process and the slack
time of its constituent activity can be calculated using the
PERT/CPM algorithm. The slack time of the nested process
is computed as that of a representative activity. Note that
the slack times of the constituent activities in the nested
process are also calculated using this slack time. Let STP

ai
be the slack time of activity ai in process P. Then, the slack
time of each activity in the nested process is computed at
the global process level as follows:

STP
a1i

¼ STP
aP1

þ STP1
a1i

i ¼ 1; 2; . . . n: ð3Þ
In Eq. 3, by applying the PERT/CPM algorithm, the

value of STP
a1i

is exactly the same as the calculated slack

a1

a3

a2

a9 a11

EndStart

a4 a6

a5 a7

a8 a10AND

COR

AND

a2-1 a2-2 a2-3

a1-1

a1-2

a1-3

a1-4

(60, 100)

(45, 50)

(70, 110)

(70, 100)

(30, 50) (40, 65)

(85, 120)

(40, 70)

(55, 95)
(50, 80)

(35, 60)

(15, 45) (35, 50) (30, 45)

(35, 35)

(25, 50)

(30, 60)

(25, 45)

1Pa

2Pa

0.3

0.7

AND

Fig. 3 The modified version for the calculation of slack time

Table 1 Expected processing time of each OR type

Type Expected processing time Pi (λi)

NOR
Pn

i¼1

Qn
j¼1;j 6¼i

1i
1iþ1j

� �
ETi λi: The service rate with which the distribution of the actual

processing time of the ith path follows an exponential
distributionPOR

POR
P1 � ET1 ; n ¼ 1

P1 � ET1 þ
Xn

i¼2

Yi�1

j¼1
1� Pj

� �n o
Pi

Xi

k¼1
ETk

n oh i
; n � 2

8<
: Pi: The probability that, when the ith path, rI, is determined to

be executed, the path is successfully completed
COR

Pn
i¼1 Pi � ETið Þ Pi: The probability that ri is chosen for execution

ETi: Expected processing time of activity ai

108 Inf Syst Front (2007) 9:103–118

time of each activity in P1, assuming that that value
constitutes the global process at the highest level.

The nested process and the COR structure must be
transformed into their representative activities. The slack
time is calculated using Eq. 2 and Table 1 as follows:

ETaP1
¼ max 35þ 25þ 25; 35þ 30þ 25f g
¼ max 85; 90f g ¼ 90;

ETCOR ¼ ETa8 þ ETaP1
þ ETa10

� �
� 0:7þ 0� 0:3

¼ 40þ 90þ 35ð Þ � 0:7 ¼ 115:5:

ETaP2
can also have its value 80 following the same

method. Accordingly, the expected processing time in
build-time is computed as shown in Fig. 4.

Figure 4 presents a modified version of the original
global process, where aP2 is a nested process and aCOR is a
representative of the COR block. Now, the process has
three paths r1, r2, r3, as follows:

r1 ¼ a1; a2; a4; a6f g;
r2 ¼ a1; a2; a5; a7; aCORf g;
r3 ¼ a1; a3; aP2 ; a9; a11f g:
Based on the expected processing time of each task, the

expected processing time of the three paths is calculated as
follows:

ET1 ¼ 60þ 70þ 70þ 85 ¼ 285;

ET2 ¼ 60þ 70þ 30þ 40þ 115:5 ¼ 315:5;

ET3 ¼ 60þ 45þ 80þ 55þ 50 ¼ 290:

Since r2 becomes the critical path, the slack time of all of
the tasks on r2 is 0. The slack time of the representative
activity aCOR also is 0. Although aCOR comprises the three
activities including the nested process, the folded activity
aCOR is maintained in build-time. Contrastingly, the slack
time of all of the tasks on r1 and r3 is 30.5 and 25.5,

respectively. We can give slack time to constituent activities
in aP2 using STP

aP2
, the value of which is 25.5 from the

viewpoint of the global process. The slack time of activity
a2−1 in the nested process aP2 on the level of global process
P is

STP
a2�1

¼ STP
aP2

þ ST
aP2
a2�1 ¼ 25:5þ 0 ¼ 25:5:

In a similar way, the slack time of the remaining activities
in aP2 can be obtained. As a result, we can calculate the
initial slack time of all of the constituent activities in build-
time.

Now let us describe the second case. Once a global
process P is launched by the BPM engine, a more exact
slack time can be acquired using the actual processing time
(Kim & Rhee, 2002). Suppose that activities a1 and a3 were
completed earlier than expected, and that their actual
processing times were 55 and 30, respectively. We also
assume that activity a2 is executing and that the other
activities are not yet started. The actual processing time is
employed to update the slack time of the uncompleted
activities excepting the activities a1, a2, and a3. We will
now consider the slack time of activity aP2 and its
constituent activities. The expected processing time of the
three paths in P is updated using the actual processing time
as follows:

ET1 ¼ 55þ 70þ 70þ 85 ¼ 280;

ET2 ¼ 55þ 70þ 30þ 40þ 115:5 ¼ 310:5;

ET3 ¼ 55þ 30þ 80þ 55þ 50 ¼ 270:

We can obtain the updated slack time of activity aP2, the
value of which is 40.5. The slack time of the constituent
activities in aP2 is also calculated from the viewpoint of the
global process using Eq. 3. STP

a2�1
is updated to 40.5. In this

way, we can provide updated slack time to internal
activities of nested processes during the execution of a
process.

Finally, let us take a look at the third case. When an
activity in a nested process is completed, the slack time

a1

a3

a2

a9 a11

EndStart

a4 a6

a5 a7

AND

AND

(60, 100)

(45, 50)

(70, 110)

(70, 100)

(30, 50) (40, 65)

(85, 120)

(55, 95)
(50, 80)

CORa

2Pa

ET=115.5

ET=80

Fig. 4 Folded process for
calculation in build-time

Inf Syst Front (2007) 9:103–118 109

needs to be recalculated. That is, when an activity in a
nested process is completed, the slack time of the activities
in a nested process must also be updated. Suppose that the
activities a1−1 and a1−2 in the nested process aP1 are
completed with their actual processing times, 30 and 35,
respectively. We also suppose that all of the activities were
completed obeying their expected processing times except-
ing the activities a6, a10, a11, a1−3, and a1−4. We need to
assign a new slack time to the uncompleted activities with
which task performers participate, according to a dispatch-
ing rule that will be presented at the end of this chapter.
Note that the activities in the nested process aP1 do not
possess their slack time in build-time because only the
representative activity (aCOR) of the COR structure is
considered. When an actual path is determined in the
COR structure and the nested process aP1 is executed, the
constituent activities of aP1 can have their own slack time.
Now, the slack time of activity a1−3 being computed, ST

aP1
a1�3

is easily acquired, the value of which is 5, and the actual
processing time of activity aP1 is 90 according to Eq. 2. The
slack time of the activities on three paths are recalculated,
and the slack time of aP1 is updated to 0. Finally, STP

a1�3
is 5

by Eq. 3.
When an activity is assigned to a task performer, that

performer also receives the calculated slack time. These
values are attached to every activity of every process
instance. Hence, a task performer uses the slack time when
he determines the order of performing his tasks from the
viewpoint of the global process. The slack time, providing
insight into which activity is most urgent, allows the user to
prioritize. That is, according to the information, the user
participating in an SCP deals with the most urgent task first.
We call this dispatching rule the ‘S-LST Rule.’ We expect
that the S-LST rule contributes to the increase of SCP
efficiency, which is verified by the simulation experiments
presented in Chapter 5.

4.3 Web service for SCP integration

Our method is applied to an environment in which
heterogeneous processes of partners form a global SCP.
For effective execution of such an SCP, important informa-
tion such as inventory and final demand information as well
as process description is required to be shared among
participants in the supply chain in real time. Using that
inter-communicated information, it is necessary to make
decisions in real-time and to operate the supply chain syn-
thetically, that is, by way of high-level process integration
(Seshasai et al., 2005). For this purpose, a web service for
facilitating interoperability among heterogeneous processes,
which is already applied to various business areas such as
inter-company negotiation (Kim & Segev, 2005) and more
intelligent and freer e-marketplaces, is employed. A web

service is used for two different purposes. One is to design
and execute process models, and the other is to exchange
relevant information used to fulfill the processes.

For designing and executing processes, various kinds of
standard languages, such as BPEL4WS, WSCI, BPML
(Business Process Modeling Language), and XPDL (XML
Process Definition Language), have been developed. In the
present study, we employed BPEL to represent processes
among heterogeneous systems (Wohed, Aalst, Dumas, &
Hofstede, 2002). Originally, BPEL was used to describe
business processes based on web services, and it is known
that the expressive power of the language is not poorer than
that of system-specific PDL (Process Definition Lan-
guages). Most patterns of the BPM process model can be
transformed into BPEL codes (Wohed et al., 2002). We use
BPEL codes as an executable form of an SCP managed by
BPM, which form includes the following attributes:

& The SCP includes processes of multiple companies par-
ticipating in the supply chain whose internal operations are
expressed as nested processes in a high-level process.

& The SCP is complex structurally and requires a design tool
that provides GUI (Graphic User Interface) and transforms
graphical representation of a process into BPEL codes.

& The nested processes of partners are executed in heteroge-
neous system environments.

& There is a lack of tools to execute and manage the SCP
effectively and efficiently.

According to our method, all constituent activities of a
global process have their slack time, which should be
updated whenever activities are completed. This slack time
information needs to be exchanged among the multiple
partners that participate in a global SCP. The process itself
is described using BPEL, and definition of additional
elements for slack time information in the code is also
required to be added as shown in Fig. 5. The information is
dealt with as a kind of process variable, the variable
containing both the slack time of individual processes and
that of the global process.

A web service can also be used to exchange time
information among partners. For exact calculations of slack
time in real time, time information such as expected
processing time, actual processing time, and slack time
has to be shared continuously among a global process and
its nested processes (Seshasai et al., 2005). Figure 5
presents a BPEL code for nested process aP2 in Fig. 3.
The two elements in the dotted square are designed to deal
with two kinds of slack time. One variable, the name of
which is ‘pv_slacktime,’ refers to the slack time of the
constituent activities from the viewpoint of aP2 . The other,
‘pv_overall_slacktime,’ is related to slack time with regard
to the global process P. Once two process variables are
declared and initialized, the values are updated repeatedly.

110 Inf Syst Front (2007) 9:103–118

The BPEL code is required to deliver current values of
slack time from a nested process to a global process or from
a global process to a nested process.

In order to deliver the relevant time information, SOAP
(Simple Object Access Protocol) is employed. The SOAP
enables the sharing and delivering of accurate information
in heterogeneous environments. A SOAP message is
constructed to exchange the information. Figure 6 shows
SOAP messages utilized in the SCP. Figure 6a shows a
message of the global process P, and Fig. 6b illustrates that
of the nested process aP2 .

SOAP messages possess an important element, the de-
livering of slack time information to other processes. The
element of messages differs according to the utility of the
messages. If a SOAP message is delivered to a nested
process, its element (GlobalSlackTime in Fig. 6a) contains
the new slack time of the nested process (calculated from
the viewpoint of the global process). On the other hand, if
a SOAP message is delivered to a global process, its
element (NestedSlackTime in Fig. 6b) includes the slack
time result of constituent activities within a nested process at a
point in time.

5 Simulation experiments

In this chapter, we describe simulation experiments, carried
out for the sample process in Section 3.2 using Arena 6.0,
to verify the effectiveness of the S-LST rule for the SCP. It
was assumed that the processing time of a task and the
arrival rate of the process instances follow an exponential
distribution, and a simulation model including rules for

assigning work and prioritizing tasks (Bae, Jeong, Seo,
Kim, & Kang, 1999) was prepared. Each simulation
scenario was simulated during replication time 30,000,
and this is repeated 30 times. The warm-up period was set
to 3,000, which is approximately the time needed for the
total number of ongoing process instances to become
constant.

5.1 Comparison with traditional methods

In existing BPMs, participants usually carry out their jobs
according to rules such as SPT, FIFO, or Random Rule.
When a deadline is provided for each activity, they employ
EDD (Early Due Date), proposed in Lu & Kumar (1991). In
our experiments, the S-LST Rule was compared with the
traditional methods, and the result was analyzed for process
efficiency. Since process efficiency can be influenced by
the arrival rate of process instances, the arrival rate was
initially set at 120. Process efficiency is measured in two
ways: the average completion time of process instances
(PE1), and the average number of process instances
completed during a simulation run (PE2). The experimental
results are summarized in Table 2.

Table 2 shows that the S-LST rule outperforms the
others. The improvement rate of the S-LST rule over the
second best rule, EDD, is about 30% for both PE1 and PE2.
The comparison between the S-LST and the EDD is also
statistically significant.

Another analysis was performed to measure the average
delay time, which is the average of the subtraction of due
date from completion time. A portion of the results are
presented in Table 3.

<process name=“Urgent Production Process" targetNamespace="http://abc.com/supplychain"
suppressJoinFailure="yes" xmlns:tns="http://abc.com/supplychain"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/
business-process/" xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
xmlns:ora="http://schemas.oracle.com/xpath/extension" xmlns:factory="http://abc.com/factory"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<partnerLinks>
<partnerLinkname=“globalSCM" partnerLinkType="tns:supplychain" myRole="supplychainProvider"

partnerRole="supplychainRequester"/>
</partnerLinks>

<variables>
<variable name="input" messageType="tns:supplychainRequestMessage"/>
<variable name="output" messageType="tns:supplychainResponseMessage"/>
<variable name="pv_slacktime" type="xsd:string"/>
<variable name="pv_overall_slacktime" type="xsd:string"/>

</variables>
<sequence name="main">

<receive name=“Receive Request" partnerLink=" lobalSCM" portType="tns:supplychain" operation="initiate"
variable="input" createInstance="yes"/>

<invoke name=“Production”/>
<invoke name=“Dispatch Products”/>
<invoke name="callback SCM" partnerLink=" lobalSCM" portType="tns:supplychainCallback"

operation="onResult"
inputVariable="output"/>

</sequence>
</process>

Process Variable Declaration

Fig. 5 A process designed
using BPEL

Inf Syst Front (2007) 9:103–118 111

As shown in Table 3, the difference of the average delay
time between the two rules is not statistically significant for
some of the constituent activities. This insignificant
difference was also applied to the other activities. The
EDD is usually considered to be useful for observing the
deadlines. However, when the workload is larger than that
in this experiment, it is uncertain whether the rule is still as
effective as the S-LST rule. The effect of workload
variation on process efficiency is detailed in Section 5.2.

5.2 Influence of workload

Workload, determined by the arrival rate of process
instances, is an important factor affecting process efficien-
cy. The smaller the arrival rate is, the larger the workload is.
Whereas the analysis in the previous section assumed a
fixed workload, in this section we study the effect that a
varied workload has on the effectiveness of the S-LST rule.

We ran multiple simulation sessions, each of which had a
different arrival rate. The simulation results are presented in

Fig. 7. The X-Axis is the arrival rate of the SCP. The Y-
Axis indicates the process completion time (PE1) and the
number of completed instances (PE2). The Figure plots the
significant maximal difference to compare S-LST with
EDD. The maximal difference means the maximal differ-
ence that is statistically significant. We used the hypothesis
of the t-test to acquire the maximal differences for each
arrival rate as follows:

H0: (PEi of the second rule)−(PEi of the best rule)=c,
H1: (PEi of the second rule)−(PEi of the best rule)>c′,

i=1 and 2, c=0.

Table 2 Comparison of process efficiency

Performance EDD FIFO Random S-LST

PE1 750.90 1,008.25 1,102.77 537.61 (28.4)a

PE2 243.56 127.00 130.91 306.78 (26.0)a

a The improvement rate of the best rule over the second best rule

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-
instance">
<SOAP-ENV:Header>
<Request encoding="java"></Request>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns1:eReceiveGlobalSlackTime
xmlns:ns1="urn:com-bpm-adapter-SCMeIntegrator“
SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/so
ap/encoding/">
<ProcessIDxsi:type="xsd:string">
497
</ProcessID>
<ProcessNamexsi:type="xsd:string">
SCM_Seoul_R00003
</ProcessName>
<NestedProcessIDxsi:type="xsd:string">

498
</NestedProcessID>
<GlobalSlackTimexsi:type="xsd:string">
101:2^102:3.3^103:5.6^104:2
</GlobalSlackTime>
</ns1:eReceiveGlobalSlackTime>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/“x
mlns:xsi="http://www.w3.org/1999/XMLSchema-
instance">
<SOAP-ENV:Header>
<Request encoding="java"></Request>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns1:eSendLocalSlackTime xmlns:ns1="urn:com-
bpm-adapter-SCMeIntegrator"
SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soa
p/encoding/">
<ProcessIDxsi:type="xsd:string">
498
</ProcessID>
<ProcessNamexsi:type="xsd:string">
SCM_Seoul_R00003_out
</ProcessName>
<ParentProcessIDxsi:type="xsd:string">
497
</ParentProcessID>
<NestedSlackTimexsi:type="xsd:string">
101:0^102:1.3^103:3.6^104:0
</NestedSlackTime>
</ns1:eSendLocalSlackTime>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

(a) SOAP message to the nested process (b) SOAP message to the global process
Fig. 6 SOAP messages to share slack time information among heterogeneous systems

112 Inf Syst Front (2007) 9:103–118

The graphs show clearly how the improvements of
process efficiency that S-LST produces are affected by the
workload. As the arrival rate decreases, the improvement
tends to increase. In other words, the larger the workload is,
the more improvement is effected. The reason is that a large
workload makes taking activity deadlines into consideration
difficult for participants using EDD. This leads us to
conclude that the LST rule is a more effective strategy in
an SCP when the workload is sufficiently large.

5.3 Combinations of rules

We have shown that the S-LST outperforms the traditional
dispatching rules in overall process efficiency. This is
because the S-LST takes task urgency into account during
the entire process. However, this does not mean that S-LST
is always the best rule. Additional information or measure-
ments can improve the efficiency of the S-LST rule. The
following analysis illustrates this possibility.

We devised the W-LST (Weighted-LST) rule using the
suggestions in (Holthaus & Rajendran, 1997) and (Zhao &
Stohr, 1999). Although S-LST focuses on process efficiency,
it does not discriminate between important and unimportant
process instances. Importance tends to depend on the
customers’ or the company’s point-of-view. To improve
process efficiency, then, S-LST must take the importance of
each instance into consideration. Let STi and wi denote the
slack time and importance of the ith instance, respectively.
For convenience in developing the complemented rule, we
define importance by the smallness of the value. Partic-
ipants using the W-LST rule prioritize activity instances
with W-STi (=STi+wi) and execute the activities with the
smallest values first.

Table 4 presents the completed number of process
instances (CN0) whose importance is 0 during a simulation
run. Clearly, W-LST is more effective than S-LST, the
difference between S-LST a-nd W-LST being statistically
significant at 0.05. This simple analysis leads us to
conclude that, from the viewpoint of global SCP efficiency,
the S-LST rule is a more effective dispatching rule when
used in various combinations with elaborate indicators.

6 System implementation

The essence of our approach is a method of integrated
execution and management of the SCM process using a
BPM engine and guidance regarding which activity task
performers work on first. For the purposes of a prototype
with which to implement the proposed methodology to

0

50

100

150

200

250

300

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Arrival Rate

Pr
oc

es
s

C
om

pl
et

io
n

T
im

e

(a) PE1: S-LST – EDD

0

10

20

30

40

50

60

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Arrival Rate

T
he

 n
um

be
r

of
 c

om
pl

et
ed

 in
st

an
ce

s

(b) PE2: S-LST - EDD
Fig. 7 Influence of workload on process efficiency

Table 3 Average delay time for each activity

Task EDD S-LST FIFO Random

a1 12.33 14.35 23.67 20.12
a2 13.68 13.13 21.01 19.97
a3 9.66 8.16 15.64 13.88
a6 17.45 16.23 27.42 28.64
a7 10.62 10.66 15.31 13.75
aP1 35.57 32.69 45.10 47.33
aP2 28.83 26.14 39.18 41.12
a10 7.14 6.67 11.89 11.51

Inf Syst Front (2007) 9:103–118 113

enhance the SCP’s efficiency, we used BizFlow 9.0, a
product available worldwide to more than 300 companies.

6.1 Prototype design

Our prototype’s design fully utilizes the advantage of BPM,
integration on the basis of a process, and employs SOAP to
construct interfaces among heterogeneous systems. Biz-
Flow 9.0 provides interfaces designed for integration of
legacy applications and facilitates process interoperability
using web services or Enterprise Java Beans (EJB). Process
interoperability is addressed by BPEL-based process mod-
els and SOAP messages, both specified in Section 4.3. The

system architecture of the prototype, based on the sample
SCP shown in Fig. 1, is presented in Fig. 8.

A global process of an SCP is modeled on a BPM server.
The server possesses a process designer tool and an engine.
The engine executes the process, delivers work items to
participants, and requests the execution of external appli-
cations. It also calls on a ‘Web Service Integration Module’
(WSIM) to perform processes that are designed on other
BPM servers or registered in web services. The WSIM
delivers necessary information to the external processes by
constructing SOAP messages, and then receives results
from the execution of those processes. This module
interprets the received SOAP message and delivers the
actual processing time of activities to the engine when the
activities are completed and slack time has to be recalcu-
lated. By using the time information, the engine calculates
critical path and slack time, displays them on the monitor,
and transfers them to the BPM DB using developed API.
The BPM DB handles relevant data such as process,

Fig. 8 Overall system architecture

Table 4 Comparison with S-LST and Weighted-LST

Performance S-LST W-LST

CN0 23.41 52.76

114 Inf Syst Front (2007) 9:103–118

activity, instance, participants, process variables, and
interface. The two squares on the right side of Fig. 8
present the common nested processes in an SCP from the
viewpoint of the system architecture. We provide more
systematic descriptions of this overall procedure using
sequence diagrams in UML, which consist of some JAVA
classes and their methods in the BPM modules such as the

engine and the WSIM. Figure 9a shows the flow that takes
place when an activity is completed in a global process and
slack time is delivered to nested processes. Figure 9b
illustrates that when an activity in a nested process is
completed, the slack time of the nested process is returned
to the global process and then updated as the slack time of a
constituent activity.

Fig. 9 Sequence diagrams
describing the logical flows of
our prototype

Inf Syst Front (2007) 9:103–118 115

Four classes are considered in the sequence diagram.
Figure 9a shows a procedure by which a message is
delivered from a nesting process to a nested process. The
class Activity Manager (AM) is a class of the BPM engine,
and it usually handles time information such as actual
processing time and slack time, and delivers the informa-
tion to the table ‘process variables’ in the database. The
AM sends the actual process time of an activity to the class
Slack Time Calculator (STC) whenever any activity is
completed. Once the STC receives the time, a new slack
time is calculated using this information and is returned to
the AM. The AM updates the newly calculated values to
the DB table and then sends these values to the class
WSIM. The WSIM, including methods to construct SOAP
messages, constructs them and then sends the constructed
messages to the nested processes. For the nested processes,
the class e-Gate for SOAP is located in heterogeneous
systems, and receives the SOAP messages delivered from
the global process. For the global process, another e-Gate
for SOAP is embedded in the BPM. As illustrated in
Fig. 9b, a message is delivered in a reversed direction, the
procedure of which is similar to that shown in Fig. 9a.

The proposed system architecture becomes a character-
istic structure where legacy applications and independently
executable services are rearranged on the basis of a global

process. To allow for effective implementation of the global
process, the structure leads each participant to take care of
his/her own process and to execute it by referring to well-
defined interfaces. It also enables the recalculation of the
slack time information of the global process and its nested
processes in real time as well as the sharing of that
information among those processes.

6.2 Prototype implementation

The process designer of our system can be used to design
SCPs. The sample process shown in Fig. 1 comprises
normal activities, in which task performers work on their
work items using SCM applications, as well as nested
processes, in which some requests are carried out by
external partners. The nested processes designed by BPEL
are registered to UDDI for execution in the global process.
Two process variables are also declared for dealing with
slack time calculation. The first is to serve slack time
calculated for a nested process. The second is to provide
slack time calculated on the basis of a global process.

The prepared process is executed by a BPM engine. The
BPM carries out the nested processes to facilitate interop-
eration with external processes: the engine delivers time
information with SOAP messages to the external processes,

Fig. 10 Client interfaces of our prototype system

116 Inf Syst Front (2007) 9:103–118

and then returns new information from them, as explained
in Section 6.1. Once the nested processes are specified with
BPEL, their details are registered to UDDI by the WSIM of
the product. External partners perform the nested processes
in the UDDI following the predefined procedure. The
procedure is defined in BPEL, and its details are presented
in Fig. 5 in Section 4.3.

Task performers can observe several activities to work
on in their worklist. Each of the listed activities possesses
its own slack time value calculated for the current time.
This information helps task performers determine which
activity must be completed first. Each performer can choose
a work item to be executed depending on the slack time
information displayed in the right-most column of his/her
worklist, as shown in Fig. 10. On the bottom-left of Fig. 10,
there is a pop-up window that informs the performer of the
activities that reach his/her worklist.

7 Conclusions and further research issues

This paper proposes a method of increasing the efficiency
of Supply Chain Process (SCP) execution that enables
interoperability among heterogeneous information systems.
In SCP, multiple partners having their own processes form a
global process. Therefore, SCP requires functions for
process execution that have particularized features such as
monitoring of the global process, interoperability among
partners, and information sharing. These requirements can
be satisfied by employing a BPM system. However,
traditional BPM systems do not provide an efficient method
of SCP execution, since they focus mainly on process
integration, automation, and correctness. A dispatching
rule, as explained in this paper, is provided for users, with
which they can prioritize tasks in their worklists according
to the extent of urgency. In formulating this rule, we
determined the critical path based on expected processing
time, and computed the slack time of each task in a process.
While executing the SCP, partners participating in the
process need to exchange information, which includes
urgent information. We use a service-oriented system
architecture for effective sharing of information, as well as
a BPEL4WS standard to describe processes communicated
among heterogeneous parties. Our method not only
improves the overall efficiency of the SCP but also enables
each partner involved in an SCP to monitor the process
either in whole or in part. Henceforth, we expect that our
approach will contribute to the competitive power of a
supply chain in which multiple nested processes form a
global SCP.

Some interesting further research issues remain, of
which there are two aspects: one is efficient process
execution for more complex processes, and the other is

solid process interoperability. From the perspective of the
first aspect, we need to consider for our method more
complex SCPs than the basic-structured SCP presented in
this paper. We expect that workflow patterns developed in
Wohed et al. (2002) can be good comprehensive structures
for our method. In addition, whereas our method is
originated from the traditional project management, more
effective theories can be introduced to improve process
efficiency. Techniques developed in such areas as schedul-
ing and TOC (Theory of Constraints), for example, might
be employed. Finally, it is very important to take into
account various factors that affect process efficiency. In this
paper, arrival rate and combinations of other rules are
considered. However, there are more influential factors in
process efficiency, such as participants’ skill level, the
number of participants, involvement of automated tasks,
dynamic variation of arrival rates, and others.

Our work is also associated with process interoperability
or integration. We first need to escape a platform-dependent
environment and apply our method to diverse supply chain
environments that use standard e-commerce frameworks
such as ebXML and RosettaNet. Then, new interface
methods and analysis tools to compare the environments
will be required. Finally, it is necessary to pay attention to
the four dimensions of the process interoperability descrip-
tion framework proposed in Zhao (1999): connectivity,
expressivity, visibility, and flexibility. Especially, our
method must enable easier alteration of global or nested
process specifications. Consequently, we will have to
consider an expanded framework that enables calculation
and modification of slack time independently regardless of
the alteration of the processes.

Acknowledgements This work was supported by the Regional
Research Centers Program (Research Center for Logistics Information
Technology), granted by the Korean Ministry of Education & Human
Resources Development.

References

Bae, J., Bae, H., Kang, S., & Kim, Y. (2004). Automatic control of
workflow processes using ECA rules. IEEE Transactions on
Knowledge and Data Engineering, 16(8), 1010–1023.

Bae, J., Jeong, S.-C., Seo, Y., Kim, Y., & Kang, S. (1999). Integration
of workflow management and simulation. Computers & Indus-
trial Engineering, 37(1–2), 203–206.

Baker, K. R. (1974). Introduction to sequencing and scheduling. New
York: Wiley.

Chang, D.-H., Son, J. H., & Kim, M. H. (2002). Critical path
identification in the context of a workflow. Information and
Software Engineering, 44(7), 405–417.

Hammer, M. (2001). Agenda: What every business must do to
dominate the decade. New York: Random House.

Inf Syst Front (2007) 9:103–118 117

Holthaus, O., & Rajendran, C. (1997). Efficient dispatching rules for
scheduling in a job shop. International Journal of Production
Economics, 48(1), 87–105.

Hu, Y., Minciardi, R., Paolucci, M., & Pesenti, R. (1992). Techniques
for dynamic scheduling in a manufacturing environment. In
Proceedings of the 31st IEEE Conference on Decision and
Control (pp. 404–408).

Kim, Y., Kang, S., Kim, D., Bae, J., & Ju, K. (2000). WW-flow: Web-
based workflow management with runtime encapsulation. IEEE
Internet Computing, 4(3), 55–64.

Kim, Y., & Rhee, S.-H. (2002). Algorithm of real time computation of
slack time for workflow processes. In SNU Information Systems
Lab. Technical Report, SNUIS-TC-1017.

Kim, J., & Segev, A. (2005). A web services-enabled marketplace
architecture for negotiation process management. Decision
Support Systems, 40(1), 71–87.

Klein, M., & Dellarocas, C. (2000). A knowledge-based approach to
handling exceptions in workflow systems. Computer Supported
Cooperative Work, 9, 399–412.

Kobayashia, T., Tamakia, M., & Komodab, N. (2003). Business
process integration as a solution to the implementation of supply
chain management systems. Information and Management, 40
(8), 769–780.

Kumar, A., & Zhao, J. L. (2002). EROICA: A rule-based approach to
organizational policy management in workflow systems. In
Proceedings of the 3rd conference on web-age information
management (Beijing, China, August 11–13).

Latimer, N. (2004). Business process management preliminary market
size and forecast. SWSI-WW-MT-0123, Gartner.

Lu, S. H., & Kumar, P. R. (1991). Distributed scheduling based on due
dates and buffer priorities. IEEE Transactions on Automatic
Control, 36(12), 1406–1416.

McCoy, D. (2004). The convergence of BPM and BAM. Gartner
Research Note, SPA-20-6074.

Park, S. C., Raman, N., & Shaw, M. J. (1997). Adaptive scheduling in
dynamic flexible manufacturing systems: A dynamic rule
selection approach. IEEE Transactions on Robotics and Auto-
mation, 13(4), 486–502.

Pozewaunig, H., Eder, J., & Liebhart, W. (1997). ePERT: Extending
PERT for workflow management systems. In The First European
Symposium in ADBIS (pp. 217–224).

Rajendran, C., & Ziegler, H. (2001). A performance analysis of
dispatching rules and a heuristic in static flowshops with missing
operations of jobs. European Journal of Operational Research,
131(3), 622–634.

Rhee, S.-H., Bae, H., Ahn, D., & Seo, Y. (2003). Efficient workflow
management through the introduction of TOC concepts. In
Proceedings of the 8th annual international conference on
industrial engineering theory, applications and practice
(IJIE2003), Las Vegas, America.

Rhee, S.-H., Bae, H., & Kim, Y. (2004). A dispatching rule for
efficient workflow. Concurrent Engineering—Research and
Applications, 12(4), 305–318.

Rhee, S.-H. et al. (2005). Process-oriented development of job manual
system. In Lecture notes in computer science, vol. 3482
(pp. 1259–1268). Berlin Heidelberg New York: Springer.

Seshasai, S., Gupta, A., & Kumar, A. (2005). An integrated and
collaborative framework for business design: A knowledge engineer-
ing approach. Data & Knowledge Engineering, 52(1), 157–179.

Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2000). Designing
and managing the supply chain. Singapore: McGraw-Hill.

Smith, H., & Fingar, P. (2003). Business process management—The
third wave. Tampa, FL: Meghan-Kiffer.

Son, J. H., & Kim, M.-H. (2001). Improving the performance of time-
constrained workflow processing. Journal of Systems and
Software, 58(3), 211–219.

Stohr, E. A., & Zhao, J. L. (2001). Workflow automation: Overview
and research issues. Information Systems Frontiers, 3(3), 281–
296 (September, special issue on workflow automation and
business process integration).

van der Aalst, W. M. P., Weske, M., & Grunbauer, D. (2005). Case
handling: A new paradigm for business process support. Data &
Knowledge Engineering, 53(2), 129–162.

Wohed, P., Aalst, W. M. P., Dumas, M., & Hofstede, A. H. M. (2002).
Pattern Based Analysis of BPEL4WS. Technical Report FIT-TR-
2002-4, QUT.

Workflow Management Coalition: Process Definition Interchange,
Document no. WfMC-TC-1016-P (1999a). http://www.wfmc.org.

Workflow Management Coalition: Terminology & Glossary, Docu-
ment no. WfMC-TC-1011 (1999b), http://www.wfmc.org.

Zhao, J. L. (1999). Interoperability requirements for cooperative
workflows in electronic commerce. In Proceedings of the 2nd
international conference on telecom and electronic commerce
(ICTEC99), Nashville, TN.

Zhao, J. L., & Stohr, E. A. (1999). Temporal workflow management in
a claim handling system. SIGSOFT Software Engineering Notes,
24(2), 187–195, March.

Seung-Hyun Rhe is a researcher in the Department of Industrial
Engineering at Seoul National University. Before becoming a research-
er, he had been with Handysoft Corporation, an international business
process management (BPM) vendor located in Korea, for two and a half
years. In Handysoft, he was responsible for designing its client
companies’ processes, integrating their legacy systems and developing
a software product. Now, he is interested in business process design, e-
marketplace design using web service technology and industry redesign
by IT. His current research activities include the improvement of BPM
using theory of constraints and the development of personalized content
service on the internet.

Hyerim Bae is an assistant professor in the Industrial Engineering
Department at Pusan National University (PNU), Korea. He received
Ph.D., M.S., and B.S. degrees from the Industrial Engineering
Department at Seoul National University, Korea. He had been a
manager for information strategic planning at Samsung Card Corpora-
tion before he joined PNU. He is interested in the areas of business
process management (BPM), process-based B2B integration and
ubiquitous business computing. His current research activities include
analysis of business process efficiency, controlling of logistics
processes with context awareness and convenient modeling of business
processes.

Yongsun Choi is an associate professor in the Department of Systems
Management and Engineering, Inje University, Korea. He received his
B.S. degree in Industrial Engineering from Seoul National University
and his M.S. and Ph.D. degrees in Industrial Engineering from Korea
Advanced Institute of Science and Technology. He has been to Stanford
University, Tokyo University and University of Arizona as a visiting
scholar. His research interests include workflow and business process
management, Web services, Semantic Web, etc.

118 Inf Syst Front (2007) 9:103–118

http://www.wfmc.org
http://www.wfmc.org

	Enhancing the efficiency of supply chain processes through web services
	Abstract
	Introduction
	Background
	BPM and process efficiency
	Related studies on process efficiency

	Representation of the supply chain processes
	The SCP model
	A sample SCP (supply chain process)

	Efficient methods of SCP execution
	Slack time and critical path in a basic process model
	Calculation of slack time in SCP and a dispatching rule
	Web service for SCP integration

	Simulation experiments
	Comparison with traditional methods
	Influence of workload
	Combinations of rules

	System implementation
	Prototype design
	Prototype implementation

	Conclusions and further research issues
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

