
A framework for deriving semantic web services

David Bell & Sergio de Cesare & Nicola Iacovelli &
Mark Lycett & Antonio Merico

Published online: 19 December 2006
Springer Science + Business Media, LLC 2006

Abstract Web service-based development represents an
emerging approach for the development of distributed
information systems. Web services have been mainly
applied by software practitioners as a means to modularize
system functionality that can be offered across a network
(e.g., intranet and/or the Internet). Although web services
have been predominantly developed as a technical
solution for integrating software systems, there is a more
business-oriented aspect that developers and enterprises
need to deal with in order to benefit from the full
potential of web services in an electronic market. This
‘ignored’ aspect is the representation of the semantics
underlying the services themselves as well as the ‘things’
that the services manage. Currently languages like the
Web Services Description Language (WSDL) provide the
syntactic means to describe web services, but lack in
providing a semantic underpinning. In order to harvest all
the benefits of web services technology, a framework has
been developed for deriving business semantics from
syntactic descriptions of web services. The benefits of

such a framework are two-fold. Firstly, the framework
provides a way to gradually construct domain ontologies
from previously defined technical services. Secondly, the
framework enables the migration of syntactically defined
web services toward semantic web services. The study
follows a design research approach which (1) identifies
the problem area and its relevance from an industrial case
study and previous research, (2) develops the framework
as a design artifact and (3) evaluates the application of the
framework through a relevant scenario.

Keywords Semantic web services . Ontological modeling .

Service content interpretation . Scoping . Harmonization

1 Introduction

Web service-based development represents an emerging
approach for the development of distributed information
systems. Web services are becoming the dominant tech-
nique for representing and distributing behavior across
multiple systems, even systems that were not initially
planned or designed to work together. As a modularization
technique, web services mimic the business environment of
any market in which economic operators offer and request
services as well as provide intermediation.

Although web services have been predominantly devel-
oped as a technical solution for integrating software
systems, there is a more business-oriented aspect that
developers and enterprises need to deal with in order to
benefit from the full potential of web services in an
electronic market. This ‘ignored’ aspect is the representa-
tion of the semantics underlying the services themselves as
well as the ‘things’ that the services manage. Semantics
have business significance because the representation (or

Inf Syst Front (2007) 9:69–84
DOI 10.1007/s10796-006-9018-z

D. Bell : S. de Cesare (*) :M. Lycett
Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex UB8 3PH, UK
e-mail: sergio.decesare@brunel.ac.uk

D. Bell
e-mail: david.bell@brunel.ac.uk

M. Lycett
e-mail: mark.lycett@brunel.ac.uk

N. Iacovelli :A. Merico
Svimservice S.p.A., Via Massaua, 18, 70123 Bari, Italy

N. Iacovelli
e-mail: nicola_iacovelli@svimservice.it

A. Merico
e-mail: antonio_merico@svimservice.it

description) of services and the ‘things’ they manage have
their real-world counterparts; moreover the outcome of a
web service can have real-world effects on the enterprises
involved (e.g., creation of an order and its legal
implications).

The adoption and diffusion of web services is rapidly
growing. This growth is encouraged also by the potential
benefits that the emerging Semantic Web can provide. The
Semantic Web is intended to be an extension of today’s
Web (Berners-Lee, Hendler, & Lassila, 2001). While the
current Web is fundamentally designed for human use, the
Semantic Web aims at achieving a greater degree of
communication, coordination and collaboration between
computer systems in an autonomous and proactive way for
the benefit of people and organizations. In the world of the
Semantic Web, ontologies and web services play a key role
(Burstein et al., 2004).

Ontologies model a domain in terms of the ‘things’
whose existence can be acknowledged by that domain
(Honderich, 1995; Guarino, 1998). Ontologies provide the
means for semantically describing web resources, allowing
web agents to share a common knowledge and understand-
ing of available resources and what these resources refer to.
Web services must however be discoverable; in other words
what a service offers must be described in a public, shared
and precise manner. The terms ‘public,’ ‘shared’ and
‘precise’ go hand in hand. For a web service (or any web
resource) to be publicly identifiable it must be represented
in a shared way (i.e., through ontologies) and for shared
representations to be accepted by the present and future
operators of a domain, it is necessary that the representation
be as precise as possible, i.e., clearly map to the real-world
domain.

Therefore, web services must be semantically described
(Medjahed & Bouguettaya, 2005). Service semantics
include (1) models of services themselves and (2) models
of the relationships between services and other web
resources. The former is normally referred to as service
ontology; an example is the OWL-S service ontology
described in the following section. The latter model types
aim at providing meaning to web services with reference
mainly to the ‘things’ they require (inputs) and the ‘things’
they produce (outputs). Such models integrate the ontology
of web services with the ontology of other web resources.
The result is the creation of semantic web services instead
of mere syntactic web services. This paper aims to provide
a contribution in this area.

Currently languages, like the Web Services Description
Language (WSDL), provide the syntactic means to describe
web services (Paar, 2003), but lack in providing a semantic
underpinning. In order to harvest all the benefits of web
services technology, a framework has been developed for
deriving business semantics from syntactic descriptions of

web services. The syntactic descriptions are interpreted in
order to extract their real-world business content and then
represent such content in domain/service ontological mod-
els. The benefits of such a framework are two-fold. Firstly,
the framework provides a way to gradually construct
domain ontologies from previously defined technical
services. Secondly, the framework enables the migration
of syntactically defined web services to semantic web
services that are integrated within their respective domain
ontologies. It should be noted that the proposed framework
can in principle also be applied to the development of new
web services or services derived from existing legacy
system functionality. However, in this paper focus is given
to the transformation of existing web services with limited
or no semantic underpinning. Evidence of the significance
of such a problem is provided by the general lack of
semantic support to web service definitions by development
technologies, such as .NET and J2EE, as well as by web
service description languages, like WSDL. Moreover, as
web service descriptions collected over two domains
demonstrate (see Bell, de Cesare, and Lycett (2005) and
Section 6 of this paper), industrial web service development
projects have tended to not model semantics.

The study follows a design research approach which (1)
identifies the problem area and its relevance from an
industrial case study and previous research, (2) develops
the framework as a design artifact and (3) evaluates the
application of the framework through a relevant scenario.

The paper is structured as follows. The following section
will place the research within the context of the web
services literature and previous related work. The relevance
of the problem of deriving semantic web services will be
demonstrated. Afterwards the research approach adopted
for this work will be presented, followed by a description of
the proposed framework as well as the application of the
framework to web services specifications drawn from an
industrial project. The framework will then be evaluated
and discussed.

2 Background

Web services have been an achievable distributed develop-
ment alternative for a number of years, with a more recent
focus on service composition. The Business Process
Execution Language for Web Services (BPEL4WS) has
proven to be the arena of this web services composition
debate—evolving from IBM’s Web Services Flow Lan-
guage (WSFL) and Microsoft’s XLANG. Issues such as
semantics, expressiveness and adequacy have been raised
(Staab et al., 2003). This is apparent in a typical service
environment where requestor and provider matching re-
quire concept translation between parties. The knowledge

70 Inf Syst Front (2007) 9:69–84

transformation processes have had little if any coverage
(Sycara, Paolucci, Soudry, & Srinivasan, 2004). It is in
recognition of these issues that review of the web services
paradigm is undertaken before addressing some of the
semantic approaches. The World Wide Web Consortium
(W3C) Web Services Architecture Working Group defines
web services as “a software application identified by a
Universal Resource Identifier (URI), whose interfaces and
bindings are capable of being defined, described, and
discovered as XML artifacts. Web services support direct
interactions with other software agents using these XML-
based messages exchanged via Internet-based protocols.”
move to web services technology is driven by three
communities: (1) The standards groups of the W3C, the
Organization for the Advancement of Structured Informa-
tion Standards (OASIS) and the Global Grid Forum (GGF);
(2) Middleware vendor adoption and; (3) The open-source
community. Figure 1 summarizes the result of much of this
activity in a layered model, highlighting dependency on the
underlying service description in WSDL.

Web services can be thought of as remote procedure
calls over the web. The messaging is XML-based conform-
ing to the Simple Object Access Protocol (SOAP). The
form and structure of this service communication is
described in another XML document (namely WSDL).
The discovery of web services, typically carried out using a
Universal Description, Discovery and Integration (UDDI)
registry, provides a yellow page style lookup on available
services. The approach relies on common business and

service categorizations having utility across a community.
The Semantic Web has added ontology to the web services
stack; this layer is supported through the Resource
Description Framework (RDF) and Schema (RDFS) lan-
guages as well as the Web Ontology Language (OWL).
These semantic languages have enabled the relation
between web resources (including subclassing) to be made
explicit.

XML and web services provide a low learning curve
(Sheth & Miller, 2003) and resulting in a wider adoption.
The amount of middleware and tooling gives the practi-
tioner varied choice, but with limited clear guidance on
how and when to use such technology. The diversity of
approaches in WSDL creation typifies this. For examples of
such approaches see (Fremantle, Weerawarana, & Khalaf,
2002; Gronmo, Skogan, Solheim, & Oldevik, 2004;
Kleijnen & Raju, 2003; Paolucci, Srinivasan, Sycara, &
Nishimura, 2003; Vinoski, 2003).

The Semantic Web is rooted in the Scientific American
article from Berners-Lee et al. (2001, p.3) who state “The
Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in co-operation.” The initial
ideas were targeted toward static web pages and it is
unsurprising that they gained resonance in the web services
community. This transition can be seen in the often cited
paper by McIlraith, Son, and Zeng (2001, p.46) who
describe semantic web services as making web services
“computer-interpretable, use apparent, and agent-ready.”

TRANSPORT LAYER: HTTP, SMTP, FTP, JMS or other

XML MESSAGING LAYER: SOAP

SERVICE DESCRIPTION LAYER: WSDL

SERVICE SUPPORT LAYERS

Discovery and
Registry: UDDI

Composition:
BPEL4WS, WS-T,

WS-Choreography...

Management and
Deployment: WS-M,
WS-License, WS-

Security...

Ontology: RDF,
RDFS, OWL-OWL-S

Resource
Management: WS-

RF, WS-Notification,
WS-Resouce

Logic and Rules:
Jess, Racer, Triple...

MIDDLEWARE SUPPORT LAYER: WS-Addressing, WS-Endpoint ...

Fig. 1 Web service technologies

Inf Syst Front (2007) 9:69–84 71

Current intersections between web services and the
Semantic Web have delivered a diverse body of research.
The agent community (Gibbins, Harris, & Shadbolt, 2003;
Martin, Cheyer, & Moran, 1999; McIlraith et al., 2001;
Sycara et al., 2004; Wang, Zhao, & Han, 2002) has
recognized the benefit of ontology if computer-to-computer
web architectures are to be achieved. Furthermore, the
combination of service and domain ontology is seen as a
key to achieving service synthesis (Chen et al., 2003). Work
on service ontology is currently centered on OWL-S, Web
Service Modeling Ontology (WSMO) and WSDL-S
(Akkiraju, Farell, Nagarajan, Sheth, & Verma, 2005; Lara
et al., 2004) groups. Recognizing the progress, by the
DAML Consortium and others, attention has moved from
ontology languages to the application of services.

OWL-S is used as a basis for this work due to its
maturity, although either WSMO or WSDL-S could also
have been used. WSMO, as with OWL-S, provides a
common semantic model for services, with additional focus
on goals. WSDL-S offers a lighter approach enabling
existing WSDL elements to reference OWL-based domain
ontologies. All service ontology proposals have been
submitted to the World Wide Web Consortium. The aim is
to provide semantics to web services, either through
common description in the case of OWL-S and WSMO or
annotated relations to domain ontology with WSDL-S.

Others have identified the need for specialized common
concepts within a web service context (Cardoso & Sheth,
2003; Curbera et al., 2002; Khalaf & Leymann, 2003;
Paolucci & Sycara, 2003; Tosic, Esfandiari, Pagurek, &
Patel, 2002), with one example being quality of service.
These concepts represent glue homogenizing a wealth of
asymmetrically described web resources. New issues
become pertinent in a semantic web of “great number of

small ontological components consisting largely of pointers
to each other” (Hendler, 2001; p.31). This semantic web
service environment, with recognition of the need to
combine service and domain ontology, warrants research
that identifies practical approaches for businesses to
combine the OWL-S Service ontology with existing or
new domain ontology. The foremost question in semantic
service orientation is how best this should be undertaken.
The research described in this paper points in this direction.

3 Rationale and research design

The study follows a design research approach. Design
research is a “search process to discover an effective
solution to a problem” (Hevner, March, Park, & Ram,
2004, p.88). The relevance of the problem for the research
community must be demonstrated and the solution must be
effective to a satisfactory level. Effective solution may not
(and generally does not) coincide with the “best” or
“optimal” solution. The effectiveness of the solution must
be demonstrable through an iterative evaluation of the
designed artifact(s).

The design research presented in this paper is method-
ologically based on and adapted from the approach
described by Nunamaker, Chen, and Purdin (1991) and
the guidelines Hevner et al. (2004). The research outputs
will also be described according to March and Smith’s
(1995) terminology for design research.

Adapting Nunamaker’s multimethodological approach to
design research (Nunamaker et al., 1991) the following four
research strategies are adopted (Fig. 2):

& Theory building: The study is theoretically based on
previous work conducted in the areas of web services

Framework
Development

and Evaluation

Theory Building

 Services modeling
 Ontological engineering
 Content sophistication

Scenario Analysis

 Scenario design
Application of framework

Observation

 Case study
 Proof of concept
 Comparative analysis

Fig. 2 Framework development
and research strategies [adapted
from Nunamaker et al. (1991)]

72 Inf Syst Front (2007) 9:69–84

development and ontological modeling. The proposed
framework builds upon this theory by covering an
existing gap represented by a lack of integration
between web services development and ontological
modeling. Although the dominant literature concurs on
the necessity of ontologically grounding web service
descriptions, limited work has been carried out on the
convergence of web service models and ontologies.
More specifically the research builds on the previous
work on interpretation of system models to derive
ontological models.

& Scenario analysis: The developed framework has been
evaluated primarily through its application to a typical
web services development scenario. The scenario itself is
not identifiable with a live project given the novelty of
the research; however the scenario description and
settings are drawn from a live industrial project described
later in this paper. The application of the framework to
the scenario represents the development of a “proof of
concept” project whose outcomes are to be evaluated by
the company from which the original service code
is taken.

& Observation: Two sets of observations have been con-
ducted. The first set of observations concerned a case
study consisting of a live industrial project in which
technical web services were developed. This case study
was observed in order to understand how a typical
software development project currently organizes the
development of a web service-based system. This obser-
vation allowed the research team to understand the
limitations of services developed with current technology
and methods in industry. The second set of observations
was carried out on the proof of concept developed to
evaluate the framework.

& Framework development and evaluation: The iterative
development and evaluation of the framework for deriving
semantics from syntactic or technical web services was the
focus of this research.

The aforementioned strategies permeated the research as
a whole. The strategies themselves should not to be
considered as process steps, but rather as means of
organizing the researchers’ thought processes. All strategies
were influential during every step of the study. In terms of
the iterative cycle adopted to materialize the various
research artifacts (i.e., constructs, models, method and
instantiations), the steps that were followed are schemati-
cally outlined in Table 1.

The instantiation of the research process is documented
throughout this paper. The previous section highlighted an
existing gap in the current literature. The following sections
will provide further evidence of such a gap, confirming the
relevance of the problem investigated. The results and
artifacts of the phases and steps documented in Table 1 will
be presented in a systematic manner.

4 Industrial grounding

The premise to the research is based on the observations
derived from an industrial case study project. The case
study served three purposes:

& To demonstrate from a live large-scale web service-based
project that the way in which web services are currently
used mostly relates to the adoption of a technology which
better enables good software engineering principles like
modularization. In other words, the reasons that drove the

Table 1 The adopted design
research process (based on
guidelines by Hevner et al.,
2004)

Phases of research Individual steps

Identify problem relevance Conduct literature review
Analyze industrial case study
Identify gap(s)

Framework design Define scope of framework
Define underlying concepts and constructs
Define framework process
Define framework artifacts (input and output)

Framework evaluation Apply framework to a realistic scenario
Observe framework in action with proof of concept

Improve and re-evaluate framework Identify limitations or areas of improvement
Refine (re-design) framework (iterate previous two steps)

Communicate and discuss research Identify limitations and further potential benefits
Define directions for future work
Disseminate (e.g., present and publish findings)

Inf Syst Front (2007) 9:69–84 73

use of web services were not the objectives of the
Semantic Web, but good system design which does not
necessarily require semantic content to be as explicitly
represented as possible.

& To make the case for the need for a framework that extracts
the semantics from syntactic web services and transforms
that content into rich technology-agnostic representations.
In fact, if the Semantic Web were to become mature, it
would be necessary to cope with semantically improving
previously developed web services.

& To design a realistic scenario to evaluate and refine the
framework defined by this research. Due to the current
level of immaturity of the Semantic Web and the
skepticism of some (including researchers and practi-
tioners), the framework could only be experimented on a
simulated pilot-project. Such a project would require a
scenario designed on the basis of previously developed
services with the related experience and domain expertise.

S-Service is a medium-sized software development
company located in southern Italy and founded 30 years
ago. S-Service specializes in the development of informa-
tion systems for the healthcare sector and local public
administrations (PA). Over the years it has extended its
presence throughout the national territory becoming one of
the leading software/information systems development
firms for the healthcare and PA sectors.

This case study concerns a large development project
carried out at a regional level for the Italian National Health
Service (INHS). The project is aimed at the realization of a
series of software services strategically intended to improve
the quality of service of the INHS allowing medics, health-
care staff and citizens to directly interact with local and
regional health structures through the Internet. The individ-
ual services were allocated to groups called Network
Application Services (NAS). Ten NAS were defined and
managed by distinct subprojects. The case study therefore
refers to a coordinated project divided into ten subprojects.
The NAS were from a technological perspective based on
web services.

The aim of the project was to design a family of
Information Technology (IT)-based services made available
on a network (Internet and/or intranet) to operators of the
Regional Health Service (Servizio Sanitario Regionale or
SSR) in Puglia (Italy). Such operators include healthcare
agents (for example, medics) and citizens (the customers of
the SSR). The services developed extended pre-existing
applications so as to make certain functionalities available
online via distributed web service-based architectures. The
web services developed are intended to provide added value
to all agents by improving the level of direct interaction
with the healthcare structures. The main areas of develop-

ment concerned the administration of prescriptions and the
provision of clinical and specialist healthcare services.
These services together addressed two fundamental objec-
tives: (1) to provide on request the complete clinical history
of a patient and (2) to manage accounts (receivables and
payments) between the healthcare structures involved.
More specifically the functionalities that were developed
include, for example:

& Retrieval of patient’s personal and medical details
& Retrieval of patient’s exemption status
& Registration of prescribed medication, specialist care and

hospital admissions
& Scheduling of appointments for specialist services provid-

ed by the healthcare structures depending on their
availability and the patient’s needs

& Consultation of medical reports (e.g., diagnostic reports)
by medics

& Retrieval of critical clinical information in emergencies
& Calculation of expenditures of the services provided

Web service technology was chosen because of its ability
to expose, in the form of services, functionalities of
previously developed applications with the least invasive
intervention possible. This allowed the organizations in-
volved to easily integrate such services without greatly
affecting the organizational structures and with minimal
impact on their pre-existing information systems. Therefore,
a web service based approach to carry out this transformation
was thought to be more favorably accepted by the client.

Observations carried out on the projects described above
led to the realization that the web service models and code
were well developed from a software engineering perspec-
tive, hence sufficiently suited for the short and medium
term objectives of both the developer and the client. In the
long run however the lack of well-defined semantics
underlying the web services would lead to their limited
applicability in the future Semantic Web. A framework was
therefore developed with the aim of alleviating the semantic
deficiencies of the web services designed and implemented
with current technologies such as WSDL, SOAP and J2EE.
The framework was subsequently evaluated in a pilot
project described in the following sections.

5 Framework for deriving ontological models
from web service descriptions

5.1 Underlying philosophy and concepts

A framework has been developed for deriving semantic
content from syntactic web services and representing such
semantics in ontological models. The framework is based

74 Inf Syst Front (2007) 9:69–84

on the principles of Content Sophistication described by
Partridge (1996) and Daga, de Cesare, Lycett, and
Partridge (2005). Content Sophistication represents a
process for improving the semantic contents of legacy
systems along several dimensions and representing such
improvements in technology-agnostic conceptual models.
The framework proposed in this paper provides the basis
for interpreting the semantics of syntactic web services in a
similar fashion. In this case the syntactic web services can
be viewed as “legacy code” from the perspective of the
Semantic Web and its ideals. In fact in order to achieve the
claimed benefits of the Semantic Web, it is necessary for
web services to be semantically well defined and related to
other types of web resources (Fensel & Lassila, 2000). In
this sense it is not exaggerated to state that, for the
Semantic Web, syntactic descriptions of services developed
today represent the ‘legacy of the future.’

According to the Collins Concise Dictionary (2001
edition) a framework is “a structural plan or basis of a
project” and “a structure or frame supporting or containing
something” (p.567). The principal artifact of this research
can be considered a framework for the following reasons:
(1) The framework defines a generic structure for a process
of semantic interpretation and transformation of syntactic
service content; (2) The framework is not a full-fledged
methodology but contains a basic set of guidelines and
heuristics, which can be integrated within software devel-
opment or reengineering methodologies; and (3) The
framework can be tailored to transform notational repre-
sentations of web services defined in any language. The
components of the framework will be expressed primarily
in terms of activities and input/output artifacts.

At the heart of the framework is the adoption of ontology
to drive the derivation of semantic content from syntactic
web services. From a philosophical perspective ontology can
be defined as a set of things whose existence is acknowl-
edged by a particular theory or system (Honderich, 1995).
Such ‘things’ include both types (such as the class of
Patients) and individual elements (such as the patient John
Smith). The adoption of such a definition is important
because, when compared with more computationally
orientated definitions of ontology (for example, Gruber
(1993; p.1) states that “an ontology is a specification of a
conceptualization”), there is an explicit reference to a
system’s ontic commitment (i.e., things whose existence is
acknowledged or recognized). This leads to representations
that are more closely mapped to real world objects. Such
mapping or reference (Frege, 1884) is essential to ontolog-
ical modeling. The meaning of a sign, used, for example, to
denote a service or a parameter, becomes well understood
when it is possible to identify the thing(s) the sign refers to.

The focus of the framework presented in this section is the
discovery of the semantics underlying a service description

in its fundamental parts (mainly name and parameters). This
process of discovery, called interpretation, identifies those
real world objects that individual service parts ontologically
commit to (or refer to). The semantics that are unraveled in
this way are then represented in technology-agnostic domain
and service ontology models.

Semantic web services require an ontological underpin-
ning. High level service ontologies such as OWL-S are
essential but not sufficient to exploit the full potential and
the claimed benefits of the Semantic Web. Along with the
technical means (e.g., programming tools such as J2EE and
.NET, or description, discovery and messaging technologies
such as WSDL, UDDI and SOAP), it is necessary to have a
complete integration between knowledge bases (in the form
of ontological domain models) and functional offerings (in
the form of semantic web services). In other words, web
services must be described in relation to the classes and
individuals modeled in shared and commonly agreed web
ontologies. Currently the Web Ontology Language (OWL)
and its predecessor DAML are the languages in which most
ontological models are represented.

5.2 Scope of the framework

The framework addresses the following objectives: (1)
Derivation of semantics from previously developed web
service syntactic descriptions; (2) Representation of the
derived semantics in ontological models; and (3) Integration
of models of semantic web services with models of other
web resources. These objectives define the scope of the
framework. A process was defined in order to achieve the
objectives listed above. The process presented here is the final
version of the iterative design research conducted.

It is important to state that the scope of the research
expanded as the work progressed. This is not unusual given
the iterative nature of design research. The initial scope of
the project was limited to deriving semantic content from
technical services and representing them in a commonly
accepted service ontology such as OWL-S. However, as it
became apparent, this led to models of services not totally
integrated with models of other types of resources. Thus, the
third objective emerged in recognition of the need for a
common representation of all web resources in order to
facilitate the discovery and composition of services. It is
however beyond the scope of this paper to describe in detail
how the ontological models derived from the framework can
be used by a semantic web search facility to discover and
compose services.

5.3 Framework process and artifacts

The process, which drives the discovery and representation
of semantic content from technical web services, is summa-

Inf Syst Front (2007) 9:69–84 75

rized in Table 2. The process is iterative and its outcome
(defined in terms of ontological models) outlives one
specific reengineering project. The framework’s ongoing
mission is to develop (within and across domains)
interlinked ontological models for the Semantic Web.
These models represent simultaneously all types of
resources including service offerings. The process con-
sists of three main activities: Service Interpretation,
Concept Scoping and harmonization. These activities
have been adapted from the Content Sophistication
process presented by Daga et al. (2005). As a whole the
process takes in technical service descriptions and produces
ontological representations. The individual process activities
also require and produce artifacts which progressively lead
to achieving the ontological models.

5.3.1 Interpretation

The first activity is Service Interpretation. This activity
works on service descriptions with limited or no explicit
semantic underpinning. The descriptions are normally
represented in the form of a service name with input
and output parameters and termed Web Elements. The
parameters themselves are named and typed. For
example, in WSDL a typical service description can be
found as a combination of service signatures and of

complex data type definitions. The number of Web
services reflects the number of operations defined within
the WSDL description. The number of elements (Web
Service Elements) identified are the service name, the
parameter names and the output name (all resident in the
WSDL document). The data types are described first,
decomposing each type into named elements of base type
such as String, Integer or Array. The service signatures
follow, under a port and operation name in WSDL
terminology. Each operation details the input and output
message, parameters and return values, using the earlier
type definitions.

Interpretation is aimed at representing the service’s
ontic commitment. This means unbundling and making
as explicit as possible the real world (business) objects
that the service descriptions recognize the existence of.
In fact interpretation is defined as “the act of clarifying
or explaining the meaning” of something (Collins
Concise Dictionary 2001, p.761). Analogously identifying
the real world objects that a service commits to is an act of
clarifying the meaning of service descriptions. Interpreta-
tion achieves its best results when actual service instantia-
tions, in terms of actual data inputted and produced by the
services, are made available. Individual level instance data
can in fact greatly help in clarifying the meaning of type
level data. However this is sometimes not possible due to

Table 2 Process for deriving semantic content from web services

Activities Description Input Artifacts Output Artifacts

Service
interpretation

A service description is broken down into its fundamental parts (e.g.,
name, input and output parameters). Each part is interpreted in order
to represent its ontic commitment.

Web service
descriptions (e.g.,
WSDL code)

Individual service ontic
commitment models

Concept
scoping

The concepts represented in the service ontic commitment models
are either mapped to pre-existing ontologies or assigned to newly
developed ones.

Service ontic
commitment models

Objects incorporated or
mapped to ontological
domain models

Domain ontologies
Harmonization Services are represented within ontological models and related to

other domain objects.
Service ontic
commitment models

Domain ontologies integrated
with service representations

Domain ontologies

Table 3 Methods of incorpo-
rating identified classes, prop-
erties and individuals

Object type Method of incorporation

Class Define the class a newly developed ontology without any relation to pre-existing
ontologies
Define the class as a subclass of a class defined in a pre-existing ontology
Define the class as an instance of a class defined in a pre-existing ontology
Define the class as equivalent to a pre-existing class

Property
types

Same as for classes

Individuals Instantiate a class

76 Inf Syst Front (2007) 9:69–84

privacy and confidentiality constraints. This was the case in
the pilot project described in the following section.

Interpretation produces Service Ontic Commitment
(SOC) models. SOC models adopt the Object paradigm
(Partridge, 1996). The Object paradigm, not to be
confused with the Object-Oriented paradigm, was specif-
ically designed for business modeling and is quite
effective in precisely representing real-world semantics.
Precise representation, in this case, refers to being able to
clearly identify the mappings between the representation
and the represented. It is beyond the scope of this paper
to describe the Object paradigm in detail. It is sufficient
to note that this paradigm models all “things” (including
classes, individuals and relationships) as objects with a
four-dimensional extension. The paradigm is attribute-less
unlike more traditional paradigms (e.g., entity-relationship
or object-oriented).

5.3.2 Concept Scoping

Concept Scoping is aimed at allocating the “committed”
objects of the SOC models to pre-existing ontological
models or, in the case of a newly explored domain, to
newly developed ontologies. There are various ways in
which content scoping can occur. With reference to an
ontology language like OWL, new objects (such as classes,
properties and individuals) can be incorporated into an
ontology as exemplified in Table 3.

Ontologies in general should be shared across the
community that they reference. The cause and implication
in choosing to extend or develop ontological artifacts
warrant coverage. Two reasons for creating a new ontology
are ownership restriction and privacy concerns. The owner-
ship of an ontology document on the Web may be outside the
control of the engineer and result from an inability to further
develop. A likely result is the creation of a hybrid ontology
that references and extends the common ontology. In terms
of privacy, detailed relationships to real world objects may
expose competitive knowledge from within the organization.
Hybrid ontology is again a likely approach with the shared
ontology (or core ontology) being referenced by the
organizations in specialized, private knowledge in a local-
ized ontology.

5.3.3 Harmonization

Web services are resources which provide agents (human or
software) with business offerings whose instantiations
produce real world effects. Web services can use other
web resources and can produce new resources. In this sense
services will become an integral part of the Semantic Web
and as such should be modeled similarly and in relation to
other types of web resources. Harmonization is aimed at
overcoming the traditional divide that is generally adopted
between static and dynamic resources. The argument here is
that if distinct types of representations are used for web
services and other resource types, the necessary integration
and semantic binding between them would become more
difficult to resolve. Ontological models, which simulta-
neously represent all types of web resources, provide the
benefit of facilitating the semantic discovery and composi-
tion of web services by software agents (Hendler, 2001).
Agents would be able to traverse semantic graph lattices (or
networks) in which services would be associated with the
objects they use, transform and produce.

Harmonization uses the SOC models produced by
Service Interpretation and the domain ontologies used in
Concept Scoping to produce domain ontologies which
incorporate service representations. The output artifact is
represented in an ontology language such as OWL.

6 Framework application

The framework was applied to a simulated project with the
aim of testing, improving and evaluating the framework.
Overall it was necessary to pragmatically validate the
assumption that the principles, concepts and process
underlying the framework were sufficiently well grounded
to: (1) Achieve the intended objectives (and purposes) of
the framework; and (2) Achieve such objectives in a setting
that would presumably be, to the best of the researchers’
knowledge, as industrially realistic as possible. It must be
said that the researchers’ backgrounds were mixed (aca-
demic and industrial) and two of the researchers were
involved in the original project in which the WSDL code
was produced. As previously stated, due to the novelty of
the research and to the current state of immaturity of the
Semantic Web, the decision to carry out the validation of
the framework through a “simulated project scenario” was
considered to be the optimal framework evaluation strategy.

The service descriptions were coded in WSDL. The pilot
project worked on a subset of the overall services produced
by the original project. The research was carried out on five
WSDL documents containing forty-five web services (or
operations in WSDL terminology). Due to the limited
length of the paper only one web service interpretation is

Table 4 getGPClinics web service

Service name: getGPClinics

Description Provides a list of general practitioner clinics open in
a given region (or territory) on a specific date.

Input
parameters

RegionCode: string
RefDate: datetime

Output
parameters

GPClinics: vector of String

Inf Syst Front (2007) 9:69–84 77

shown as an example in this section. The objects that are
derived from the service’s interpretation are then scoped
and harmonized.

The following worked example is carried out on a web
service called getGPClinics. Given a specific healthcare
region the web service determines which general practi-
tioner clinics are open on the specified date. The following
subsections will exemplify how the framework can be used
to interpret, scope and harmonize getGPClinics.

6.1 Interpretation

Table 4 summarizes the service’s main elements that will be
interpreted. These elements are the service’s name, input
and output parameters. All these elements ontologically
commit to one or more real world objects. The service ontic
commitment models are illustrated in Fig. 3.

As the diagrams of Fig. 3 show, each part of a service
can be unbundled and mapped to real world objects that

(a) Service name SOC (b) RegionCode parameter SOC

RegionCode

Regional
Codes

coded by

Regions

getGPClinics
(service
name)

GP Clinics

reside in

General
Practitioners

(c) RefDate SOC (d) Service output SOC

RefDate

Open Dates

open on

GPClinics

Dates

getGPClinics
service output

GP Clinic
Codes

coded by

GP Clinics

Regions

located in

Fig. 3 Service Ontic Commitment (SOC) models of the getGPClinics web service

78 Inf Syst Front (2007) 9:69–84

clearly define the part’s semantics. The object paradigm, as
stated previously, help in this unbundling process given that
all objects are explicitly revealed. For example, even the
reside in relationship between General Practitioners and
GPClinics is represented as a “committed” object. This type
of representation is similar to OWL in which relationships
are explicitly represented as properties.

6.2 Content scoping

Content scoping uses the SOC models to create or refine
the domain ontology that the overall process develops. In
this case the domain ontology that is being developed from
the web services is a healthcare ontology specific to the
Italian National Health Service. The initial domain model is
represented in Fig. 4. It is an initial model because only one
web service has been interpreted in the example presented
in this paper. Further iterations with a range of services
have refined the model. The objects identified in the
previous activity and represented with their relationships
in Fig. 4 are scoped to either the newly developed ontology

or to pre-existing ontologies. Table 5 summarizes the
decisions and actions to be taken for each object. Tools to
better identify existing (and supported) ontologies help with
scoping, including the opportunity to carry out semantic
search and object visualization. These enable the engineer
to identify related objects through subsumption or common
neighbors. A range of tools exist to support the engineer,
including, for example, Swoogle and SemWebCentral.
Scenario analysis provides a practical influence as models
are formed and tested with real-world usage scenarios.

6.3 Harmonization

In harmonization the web service(s) is combined with the
domain ontology. Ontologically this enables an explicit
mapping between a service (with its parts) and the domain
it serves. Figure 5 illustrates the harmonization model
derived from the previous interpretation and content
scoping. The getGPClinics service is defined within the
OWL-S service ontology and its parameters are typed in
relation to the respective domain ontology. The result is

Regions located in GP Clinics coded by GP Clinic Codes

coded by

Regional Codes

reside in

General Practitioners

open on

Open Dates

Dates

Fig. 4 First-cut domain model

Table 5 Scoping of getGPClinics SOC

Objects Scoped to ontology Action decided

Regional codes Geopolitical regions (defined in previous legacy
transformation projects (see Daga et al., 2005)

Subclass
Coded by Subclass
Regions Subclass
GP clinics Healthcare Develop new ontology
Reside in
General practitioners
GP clinic codes
Coded by
GP clinics
Open dates
Open on
GP clinics
Dates Time (defined in previous legacy transformation

projects (see Daga et al., 2005)
Define equivalence (e.g., OWL equivalent
class which refers to the definition
of synonymous classes)

Inf Syst Front (2007) 9:69–84 79

a combined semantic graph in which both domain
objects and services are represented and linked together.
Figure 6 exemplifies the mappings between the original
WSDL code and the OWL-S/OWL ontology produced.
Relationships with pre-existing ontologies are also
highlighted.

7 Discussion and evaluation

The research presented in this paper primarily targets the
process and activities required to construct ontological
domain and service models. This work acts as a
counterbalance to the much larger body of work on the
predominantly technical application of web services.
Applying a design research approach to this area, with
its support for process and constructed artifacts, has
proved to be an auspicious choice. The approach enabled
the development, validation and refinement of the
framework. The holistic nature of the design approach

has enabled practical issues associated with each step to
be exposed. These issues are detailed in Table 6.

The framework has implications on the important areas
of service interaction or message exchanges, discovery of
web services and service composition.

In terms of service interaction the ontological under-
pinnings of the models produced by the framework have
the potential to improve the validation of service
communication. Validated communication with a service
endpoint is dependant on the type system in operation
when starting such communication. Integrated domain
and service ontologies will support improved validation
through (a) the use of available ontological models, (b)
richer types (or classes) and (c) the inclusion of type
instances (for example, a region code parameter would
be validated not only against type, but also against actual
region codes). This improvement is reliant on the utilized
service models including appropriate domain ontologies.
It is the framework process activities that support the
choice and form surrounding each domain model.

Regions located in GP Clinics coded by GP Clinic Codes

coded by

Regional Codes

reside in

General Practitioners

open on

Open Dates

Dates

«OWL-S»
ServiceProfile

«OWL-S»
hasInput

«OWL-S»
InputParameter

«OWL-S»
OutputParameter

«OWL-S»
hasOutput

«OWL-S»
hasInput

getGPClinics

RegionCode

RefDate

GPClinics

«typed by»

«typed by»

Legend:

instance of:

typed by:
«typed by»

Fig. 5 Harmonized model

80 Inf Syst Front (2007) 9:69–84

Discovery of semantic web services requires mecha-
nisms that go beyond the syntactic search of UDDI or
WSDL documents. The use of the OWL-S profile to
bind together service and domain ontologies allows
standard semantic searching by traveling throughout

concept branches of particular domain ontological mod-
els. The semantic search over several models grounded in
real-world “things” provides a greater scope for matching
to a requestor’s concept. Service discovery is fundamen-
tally linked to service composition.

getGPClinics Service
WSDL Description
<wsdl:operation

name="getGPClinicsService">

Inputs:

<wsdl:input name="RegionCode">
 </wsdl:input>
<wsdl:input name="RefDate">
 </wsdl:input>

Outputs:

<wsdl:output name="GPs">
</wsdl:output>

getGPClinics Service
Ontology (OWL-S-Profile)
<profile:serviceName>
getGPClinicsService<
/profile:serviceName>

Inputs:
<profile:hasInput
rdf:resource="<RegionCode>" />

<profile:hasInput
rdf:resource="<RefDate>" />

Outputs:
<profile:hasOutput
rdf:resource="<GPs>" />

Country Region Domain Ontology

Regions Domain Ontology

<owl:Class rdf:ID="Region"/>
<owl:Class rdf:ID="RegionalCode"/>
<owl:ObjectProperty rdf:ID="codedby">
 <rdfs:range rdf:resource="#Region"/>
 <rdfs:domain rdf:resource="#RegionalCode"/>
</owl:ObjectProperty>

Date Time Domain Ontology

GPs Domain Ontology
<owl:Class rdf:ID="OpenDates">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Dates"/>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="GPClinics"/>
<owl:Class rdf:ID="GPs"/>

<owl:ObjectProperty rdf:ID="residein">
 <rdfs:range rdf:resource="#GPClinics"/>
 <rdfs:domain rdf:resource="#GPs"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="openon">
 <rdfs:range rdf:resource="#OpenDates"/>
 <rdfs:domain rdf:resource="#GPClinics"/>
</owl:ObjectProperty>

Fig. 6 Service-domain ontology topology

Table 6 Framework applica-
tion issues Framework

activity
Issues

Interpretation Ambiguous or misleading concepts may arise
Over generalization of concepts
WSDL type mismatches across the same concept
The strategy used to create each web service will dictate the use of this validation. A
service façade using base data types will yield less that a web service exposing richer
business objects.
Heterogeneous service inventories may require some concept normalization before
decomposition
Concepts often infer more that they make explicit, e.g., getGP may return a GP and his
address.
Without a knowledge of domain ontology the later normalization may become greater

Content
scoping

Laziness motivates the creation of new, often duplicate, ontology when tooling is readily
available
The lack of a managed dictionary of available domain ontology hampers service
selection and substitution.

Harmonization Without applying appropriate scenario analysis, the harmonization may result in an over
rich, under used ontology.

Inf Syst Front (2007) 9:69–84 81

Due to its contribution in improving service knowledge,
the framework supports the web service composition process
in two areas. Firstly, assuming a workflow-based approach, a
composition design tool would acquire and build on the
discovery benefits already mentioned. It can be assumed
that the greater semantic expressiveness of the ontological
models would provide benefits by enabling access either
to a larger or more appropriate group of available
services (determined by the span of the concept tree or
lattice traversal). Secondly, the same discovery benefits
allow the workflow tool to describe a conceptual service
that is then discovered dynamically at execution time.
The latter approach is adopted by the grid community
(Blythe et al., 2003).

To conclude this section, it is useful to discuss the
implications to both the semantic web service community
and its service transformation tooling groups. The semantic
web service community has started to move on from a
focus on pure knowledge to include rule and logic
languages (e.g., Semantic Web Rule Language SWRL).
This paper posits that this transition is premature without a
clearer understanding of service knowledge through real
world grounding. Ambiguity around the coarseness of web
services is a symptom, implying a need for prescriptive
approaches to service-orientation. The framework presented
in this paper recognizes and addresses the need to apply
rigor and repeatability to the ontology engineering process.
Support of greenfield development through models derived
from legacy systems is realized within the harmonization
phase where linkages to existing domain ontologies are
achieved. In a greenfield environment, the framework
supports (a) the use of community ontological models, (b)
the specialization of community models with additional
concepts or (c) the creation of new domain ontologies. Only
with such focus on service knowledge will semantic web
tools deliver benefits to the enterprise. Implied in the
adoption of such an approach is the access to domain
knowledge and experience that are able to unravel higher
level business objects.

One area of tool support is the transformation of physical
service descriptions, such as WSDL, into a semantically
richer form. This process has tended toward simplistic,
automated methods. The consequence, when coupled with
code to WSDL transformation of earlier engineering
phases, has been an inclination towards purely technical
service models. For example, transforming WSDL to
OWL-S has provided the practitioner with only a skeletal
service description. Ad hoc additional description, without
consideration of what is being described or why it is being
described, increases the risk of inadequate or unusable
ontologies. Success is then only achieved through the tacit
knowledge of the practitioner being applied during post
transformation descriptions. The implication of the frame-

work to this automated transformation activity is that: (1)
Tool support will be required to use and manage a catalogue
of ontologies when engineering WSDL or OWL-S descrip-
tions; (2) Algorithms are required to dynamically scope and
select such catalogues and; (3) Guidelines mapping tools to
the ontology engineering framework should be in place prior
to development. The proposed framework provides a basis
for tool selection and strategy.

8 Conclusion

The research presented in this paper was aimed at resolving a
problem related to the semantic expressiveness of web
services developed primarily for the realization of software
systems that respect good design principles and meeting both
functional and non-functional requirements. Web services
however are web resources and play (or will play) a key role
in offering distributed functionality in the Semantic Web.
Notwithstanding the engineering and quality strengths that
web service-based systems can possess, there is an area of
concern related to the semantic expressiveness of the web
services developed and their role in the future SemanticWeb.
The majority of web service-based projects today are
conducted from a purely technical perspective. Current
languages for implementing and describing services lack in
providing the necessary level of semantic representation of
the services themselves and of the domain objects that are
subjected to the services’ behavior. The case study presented
provided evidence of these claims.

The problem just described was analyzed in order to
design a solution in the form of a framework. The
framework, based on a philosophy and concepts that place
semantics at the heart of web services, was presented. At
the heart of the framework is a process and related artifacts
for interpreting, scoping and harmonizing the content of
syntactically defined web services. The framework was
developed through a design research approach and validated
through its application to a scenario derived from a
previous industrial large-scale project. The application of
the framework demonstrated the framework’s ability to
develop ontological models which represent simultaneously
both domain and service concepts. The implications of such
a framework were discussed along with possible improve-
ments and future work.

References

Akkiraju, R., Farell, J., Nagarajan, M., Sheth, A., & Verma, K. (2005).
Web service semantics—WSDL-S, W3C (Ed.), In Frameworks
for semantics in web services, 05/6 2005.

Bell, D., de Cesare, S., & Lycett, M. (2005). Semantic transformation
of web services. In OTM 2005—SWWS 2005, vol. 3662 (pp.
856–865).

82 Inf Syst Front (2007) 9:69–84

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web.
Scientific American, 284(5), 34–43 (Springer, Berlin Heidelbeg
New York).

Blythe, J., Deelman, E., Gil, Y., Kesselman, C.,Mehta, G., Vahi, K., et al.
(2003). Mapping abstract complex workflows onto grid environ-
ments. Journal of Grid Computing, 1(1), 9–23.

Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M. N.,
Paolucci, M., et al. (2004). A semantic web services architecture.
IEEE Internet Computing, 9(5), 72–81.

Cardoso, J., & Sheth, A. (2003). Semantic e-workflow composition.
Journal of Intelligent Information Systems, 21(3), 191–225.

Chen, L. M., Shadbolt, N. R., Goble, C., Tao, F., Cox, S. J.,
Puleston, C., et al. (2003). Towards a knowledge-based
approach to semantic service composition. In Semantic Web—
Iswc 2003, vol. 2870 (pp. 319–334). Berlin Heidelberg New
York: Springer.

Collins Concise English Dictionary (2001). Harper Collins. Glasgow,
Scotland.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., &
Weerawarana, S. (2002). Unraveling the web services web—An
introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2), 86–93.

Daga, A., de Cesare, S., Lycett, M., & Partridge, C. (2005). An
ontological approach for recovering legacy business content. In
Proccedings of the 38th Hawaii International Conference on
System Sciences. Los Alamitos, CA: IEEE Computer Society.

Fensel, D., & Lassila, O. (2000). The semantic web and its languages.
Intelligent Systems and their Applications, IEEE, 15(6), 67–73
[see also IEEE Intelligent Systems].

Frege, G. (1884). The foundation of Arithmetic: A logico-mathemat-
ical enquiry into the concept of number.

Fremantle, P., Weerawarana, S., & Khalaf, R. (2002). Enterprise
services. Communications of the ACM, 45(10), 77–82.

Gibbins, N., Harris, S., & Shadbolt, N. (2003). Agent-based semantic
web services. In Proceedings of the 12th international conference
on world wide web (pp. 710–717). Budapest, Hungary: ACM.

Gronmo, R., Skogan, D., Solheim, I., & Oldevik, J. (2004). Model-
driven web services development. Paper presented at the IEEE
International Conference on e-Technology, e-Commerce and
e-Service, 2004.

Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2), 199–220.

Guarino, N. (1998). Formal ontology in Information Systems.
(Frontiers in Artificial Intelligence & Applications Vol. 46) IOS
Press. Amsterdam, The Netherlands.

Hendler, J. (2001). Agents and the semantic web. Intelligent Systems,
IEEE, 16(2), 30–37 [see also IEEE Intelligent Systems and Their
Applications].

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design
science in information systems research. MIS Quarterly, 28(1),
75–105.

Honderich, T. (1995). Oxford companion to philosophy. Oxford:
Oxford University Press.

Khalaf, R., & Leymann, F. (2003). On web services aggregation. In
Technologies for E-services, proceedings, vol. 2819 (pp. 1–13).
Berlin Heidelberg New York: Springer.

Kleijnen, S., & Raju, S. (2003). An open web services architecture.
Queue, 1(1), 38–46.

Lara, R., Roman, D., Polleres, A., & Fensel, D. (2004). A conceptual
comparison of WSMO and OWL-S, Web services: European
conference, ECOWS 2004 (pp. 254–269), September.

March, S., & Smith, G. (1995). Design and natural science research on
information technology. Decision Support Systems, 15, 251–266.

Martin, D., Cheyer, A. J., & Moran, D. B. (1999). The open agent
architecture: A framework for building distributed software
systems. Applied Artificial Intelligence, 13(1–2), 91–128.

McIlraith, S. A., Son, T. C., & Zeng, H. L. (2001). Semantic web
services. IEEE Intelligent Systems & their Applications, 16(2),
46–53.

Medjahed, B., & Bouguettaya, A. (2005). A dynamic foundational
architecture for semantic web services. Distributed and Parallel
Databases, 17(2), 179–206.

Nunamaker, J., Chen, M., & Purdin, T. (1991). System development
in information systems research. Journal of Management
Information Systems, 7(3), 89–106.

Paar, A. (2003). Semantic software engineering tools. In Companion
of the 18th annual ACM SIGPLAN conference on object-oriented
programming, systems, languages, and applications (pp. 90–91).
Anaheim, CA, USA: ACM.

Paolucci, M., Srinivasan, N., Sycara, K., & Nishimura, T. (2003).
Towards a semantic choreography of web services: From WSDL
to DAML-S. Paper presented at the ICWS03, Las Vegas, USA.

Paolucci, M., & Sycara, K. (2003). Autonomous semantic web
services. IEEE Internet Computing, 7(5), 34–41.

Partridge, C. (1996). Business objects: Re-engineering for reuse.
Oxford: Butterworth-Heinemann.

Sheth, A., & Miller, J. A. (2003). Web services: Technical evolution
yet practical revolution? IEEE Intelligent Systems, 18(1), 78–80.

Staab, S., van der Aalst, W., Benjamins, V. R., Sheth, A., Miller, J. A.,
Bussler, C., et al. (2003). Web services: Been there, done that?
IEEE Intelligent Systems, 18(1), 72–85 [see also IEEE Intelligent
Systems and Their Applications].

Sycara, K., Paolucci, M., Soudry, J., & Srinivasan, N. (2004).
Dynamic discovery and coordination of agent-based semantic
Web services. IEEE Internet Computing, 8(3), 66–73.

Tosic, V., Esfandiari, B., Pagurek, B., & Patel, K. (2002). On
requirements for ontologies in management of Web Services. In
Web services, E-business, and the semantic web, vol. 2512 (pp.
237–247). Berlin Heidelberg New York: Springer.

Vinoski, S. (2003). It’s just a mapping problem [computer application
adaptation]. IEEE Internet Computing, 7(3), 88–90.

Wang, F. J., Zhao, Z. F., & Han, Y. B. (2002). A dynamic matching
and binding mechanism for business service integration. In
Engineering and deployment of cooperative information systems,
proceedings, vol. 2480 (pp. 168–179). Berlin Heidelberg New
York: Springer.

David Bell is a researcher at Brunel University, undertaking a Ph.D.
He holds a Masters in Business Administration (M.B.A.) from Warwick
University (UK) and a BSc(Hons) degree in Computer Science and
Electronics. Prior to that, David has worked extensively in industry, with
over 10 years experience in Global Investment Banking organizations.
His research interests include Grid Computing, Distributed Systems,
Semantic Technology and Service Orientation.

Sergio de Cesare holds a Ph.D. in Information Systems from LUISS
Guido Carli in Rome (Italy). He is currently a Lecturer at Brunel
University where he teaches object-oriented modeling and Semantic
Web technologies. Sergio’s broad research interests lay in the areas
of business and software modeling, model driven information
systems development and the Semantic Web. His current research
focuses on the development of ontological models for systems
development/re-engineering and the subsequent transformation of

Inf Syst Front (2007) 9:69–84 83

such models into platform-independent and platform specific
application models. Sergio has (co-)authored several papers pub-
lished in international journals and conference/workshop proceedings
related to object-oriented, component-based and ontological model-
ing. Sergio has collaborated with several national and multinational
companies as well as provided consultancy and training in various
areas of software engineering. He has served on numerous program
committees and organized various international events including the
6th International Conference on Object-Oriented Information Sys-
tems (OOIS), and a series of workshops on “Semantics of Enterprise
Integration” and “Legacy Transformation” at the ACM Conference
on Object-Oriented Programming, Systems, Languages, and Appli-
cations from 2001 to 2004. Sergio is co-editor of a book titled
“Development of Component-Based Information Systems” recently
published by M.E. Sharpe (New York).

Nicola Iacovelli holds a degree (with honors) in Computer Science
from the University of Bari (Italy). From 1995 he works at
Svimservice, a company of 250 employees located in Bari, which
produces software solutions in the areas of Healthcare and the Public
Administration. Nicola is Quality Manager at Svimservice where he
manages the study and adaptation of software development method-
ologies, with particular reference to development/maintenance,
project management, quality control, testing, estimation and mea-
surement of software. Nicola is a member of the IEEE Computer
Society, ACM and Gufpi-Isma (Gruppo Utenti Function Point
Italia—Italian Software Metrics Association) with which he
collaborates as a member of the SBC (Software Benchmarking
Committee). He is affiliated with the UNINFO (Standards for the

Information Technology and related applications, Associated body
of UNI) acting as an expert reviewer of technical standards.

Mark Lycett holds a BSc in Computing and Business Management
(Oxford Brookes), a MSc in Information Systems (Brunel University)
and a Ph.D. in Information Systems (Brunel University). Prior to
returning to education, Mark spent a number of years in industry and
he has both worked on and managed a number of national and
international feasibility/development projects. His research concen-
trates on all aspects of component-based software engineering and he
is currently engaged in ongoing research with a number of
organizations. Mark has published work in the area of Component-
Based Software Engineering (CBSE) in a number of leading journals
and international conferences.

Antonio Merico holds a degree in Computer Science from the
University of Bari (Italy). He has previously conducted research in the
area of statistical models for query optimization in database systems.
His current research interests include methodologies for the develop-
ment of web services based applications, function point analysis and
architectures. Antonio is currently Software Factory Manager in the
Health Information Systems Department of Svimservice, a software
solutions company located in Bari. He plans and coordinates activities
of analysis, design and implementation of health information systems
with different methodologies, architectures and technologies.

84 Inf Syst Front (2007) 9:69–84

	A framework for deriving semantic web services
	Abstract
	Introduction
	Background
	Rationale and research design
	Industrial grounding
	Framework for deriving ontological models from web service descriptions
	Underlying philosophy and concepts
	Scope of the framework
	Framework process and artifacts
	Interpretation
	Concept Scoping
	Harmonization

	Framework application
	Interpretation
	Content scoping
	Harmonization

	Discussion and evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

