
Inf Syst Front (2006) 8:195–209

DOI 10.1007/s10796-006-8779-8

Splitting methods for decision tree induction: An exploration
of the relative performance of two entropy-based families
Kweku-Muata Osei-Bryson · Kendall Giles

Received: 4 June 2004 / Revised: 18 May 2005 / Accepted: 17 August 2005
C© Springer Science + Business Media, LLC 2006

Abstract Decision tree (DT) induction is among the more

popular of the data mining techniques. An important compo-

nent of DT induction algorithms is the splitting method, with

the most commonly used method being based on the Condi-

tional Entropy (CE) family. However, it is well known that

there is no single splitting method that will give the best per-

formance for all problem instances. In this paper we explore

the relative performance of the Conditional Entropy family

and another family that is based on the Class-Attribute Mu-

tual Information (CAMI) measure. Our results suggest that

while some datasets are insensitive to the choice of splitting

methods, other datasets are very sensitive to the choice of

splitting methods. For example, some of the CAMI family

methods may be more appropriate than the popular Gain Ra-

tio (GR) method for datasets which have nominal predictor

attributes, and are competitive with the GR method for those

datasets where all predictor attributes are numeric. Given that

it is never known beforehand which splitting method will lead

to the best DT for a given dataset, and given the relatively

good performance of the CAMI methods, it seems appropri-

ate to suggest that splitting methods from the CAMI family

should be included in data mining toolsets.
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1. Introduction

Over the past two decades there has been an increased inter-

est in the use of data mining techniques to address problems

in various fields. Among the more popular of these tasks is

classification, and for this task various classification algo-

rithms have been proposed, such as decision trees, neural

networks, linear discriminant analysis, nonparametric meth-

ods, and statistical methods (e.g. Bradley et al., 1999; Wu

and Urpani, 1999; Cheesean and Stutz, 1996; Ching et al.,

1995; Safavian and Landgrebe, 1991; Quinlan, 1986). In this

study we concentrate on decision tree (DT) induction algo-

rithms, and in particular those that use entropy-based splitting

methods.

A splitting method is the component of the DT induction

algorithm that determines both the attribute that is selected

for a given node of the DT and also the partitioning of the

values of the selected attribute into mutually exclusive sub-

sets such that each subset uniquely applies to one of the

branches that emanate from the given node. Various splitting

methods have been proposed (e.g. Breiman, 1984; Lopez

de Mantaras, 1991; Martin, 1997; Quinlan, 1986; Quinlan,

1993; Shih, 1999; Taylor, 1993). While the most commonly

used splitting methods are based on the Conditional En-

tropy (CE) family (e.g. Quinlan’s C4.5 family of decision

tree induction algorithms), it is well known that there is no

single splitting method that will give the best performance

for all datasets. A question of interest is how well would

other families of entropy-based splitting methods measures

perform compared to the CE family of entropy-based split-

ting methods. With this in mind we chose to compare the

performance of the Conditional Entropy family and another

entropy-based family that is based on a measure called Class-

Attribute Mutual Information (CAMI) that was proposed by

Ching et al. (1995). While the CE family is well known, the
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CAMI family is not as well known. Bryson (2000) identi-

fied some of the conceptual links between both families, and

developed a new CAMI family splitting method, EffCAMI.

In this work we also propose a new hybrid method, adjGR,

that involves approaches from both families. Our computa-

tional exploration has the objective of testing these splitting

methods using a wide variety of datasets from different prob-

lem domains and with different data characteristics, and of

directly comparing the classification accuracies from both

families. Our findings suggest strategies for the data miner

to employ when investigating different types of datasets with

different splitting measures.

This paper is organized as follows: in Section 2 we present

an overview on the entropy-based splitting methods as fam-

ilies. In Section 3 we present the results of our experiments

that compare six entropy measures using thirty-five (35)

datasets and provide an analysis of these results. Section 4

presents our conclusions.

2. Overview on the two entropy-based families

2.1. Notations

Let S be the set of classes, n be the total number of exam-

ples in the dataset; n j• be the total number of examples in

interval j of a given attribute; n•s be the total number of ex-

amples in class s; n j∩s be the total number of examples in

interval j and class s. Also let p j• = (n j•/n) be the estimated

probability of being in interval j; p•s = (n•s/n) be the esti-

mated probability of being in class s; p j∩s = (n j∩s/n) be the

estimated probability of being in interval j and class s; and

ps| j = (n j∩s/n j•) = (p j∩s/p j•) be the conditional probabil-

ity of an example being in class s given that it is in interval

j.

2.2. Conditional entropy family

The Information Gain measure, (e.g. Quinlan, 1993) is

based on maximizing the “gain” in information that results

from selecting a particular attribute for branching when cre-

ating a decision tree. The Information Gain (IG) for a dis-

cretization �g of an attribute into g intervals is defined as:

I G(g) = −
∑
s∈S

p•s log2(p•s)

−
∑

j∈J (�g)

p j•

(
−

∑
s∈S

ps| j log2(ps| j )

)

where J(�g) is the index set of the intervals that are included

in a particular discretization �g that consists of g = |�g|
intervals. An examination of the IG formula shows a com-

ponent (i.e., the Unconditional or A Priori Entropy) that is

the same for all attributes and all values of g, and a second

major component that is dependent on the relevant attribute

and also on the value of g. This second component is called

the Conditional Entropy (CE) and is defined as:

CE(g) = −
∑

j∈J (�g)

p j•
∑
s∈S

ps| j log2(ps| j ).

An alternate approach to IG involves the maximization

of the Gain Ratio GR(g) = IG(g)/SI(g), where SI (g) =∑
j∈J (�g) −p j• log2(p j•), and is called the Split Informa-

tion for the partition �g with g intervals by Quinlan (1993).

Quinlan (1993) observed that for some datasets the GR mea-

sure overcompensates for the bias of IG for higher cardinality

attributes and so must be moderated by choosing the attribute

with the maximum GR and an above average IG.

2.3. Class-Attribute Mutual Information (CAMI)

entropy family

The Class-Attribute Mutual Information (CAMI) measure

proposed by Ching et al. (1995) is a non-decreasing func-

tion of the number of intervals g, where g > 1. The CAMI

equation is defined as follows:

CAMI(g) =
∑

j∈J (�g)

∑
s∈S

p j∩s log2(p j∩s/p j• p•s),

It can be shown that for g ≤ |S|, SupCAMI(g),

the maximum possible value of CAMI(g), is equal to∑
j∈J (�g) −p j• log2(p j•) and is the same as Quinlan’s Split

Information Measure (Quinlan, 1993) for a discretization of

the attribute into g intervals based on partition�g; for g ≥ |S|,
SupCAMI(g) is equal to

∑
s∈S −p•s log2(p•s).

Ching et al. (1995) defined a second measure,

the Class-Attribute Interdependence Redundancy (CAIR)

such that CAIR(g) = CAMI(g)/Max{log2(|S|), log2(g)},
and proposed that the attribute discretization problem

could be solved by finding the value of g that maxi-

mized CAIR(g). They based this approach on a claim

that Max{log2(|S|), log2(g)} was the maximum value of

CAMI(g), and so CAIR(g) = 1 if there is perfect at-

tribute/class interdependency, and CAIR(g) = 0 if there is

absolutely no attribute/class interdependency. Bryson (2000)

showed that Ching et al.’s assertion, that the maximum pos-

sible value of CAMI(g) is equal to Max{log2(|S|), log2(g)},
is not correct. A more plausible rationale for using CAIR(g)

is that it provides a trade-off between the improvement in the

class-attribute mutual information and the cost of the number

of intervals. Bryson (2000) proposed a new measure for this
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family:

EffCAMI = Max{CAMI(g)/SupCAMI(g), g =2, . . . , gprac}

where gprac is the maximum number of intervals that are

appropriate for the given decision tree induction algorithm.

Bryson (2000) suggested that EffCAMI could be considered

as a measure of the relative strength of the class-attribute

interdependence of the given attribute.

3. Experimental exploration

3.1. Software environment

As mentioned previously we wanted to explore the rela-

tive performance of splitting methods that are based on

the five entropy measures from both families. We devel-

oped software for these splitting methods (i.e., IG, CAMI,

CAIR, EffCAMI) based on the Weka library implemen-

tation of the well-known C4.5 algorithm. This library

(http://www.cs.waikato.ac.nz/∼ml/index.html) already con-

tained an implementation of GR, and also provides facilities

for pruning, 10-fold cross validation, and calculations. In

order to implement the CAMI, CAIR, and EffCAMI split-

ting methods, we wrote our own Java programs and classes

to use the C4.5 algorithm structure in the Weka Java library.

Table 1 contains a summary of the entropy measures we used

and the decision criteria for each measure. It should be noted

that we actually implemented two versions of the EffCAMI

measure, as described in Table 1, labeled as EffCAMI 0 and

EffCAMI 1. In addition, while the splitting methods should

involve the best discretization of each attribute, similar to

C4.5 and other DT software, our implementation of these al-

gorithms only involves binarization for continuous attributes,

which might not result in the best discretization.

3.2. Test problems

We applied our entropy-based splitting methods on 35 pub-

licly available benchmark data mining datasets that we ob-

tained from the UCI Irvine machine library (Murphy and

Aha, 1994). These datasets are from a variety of problem

domains and have different combinations of nominal and nu-

merical attribute values. Some have missing values and noisy

data. The dataset characteristics are summarized in Table 2.

3.3. Test results—Performance of two families

of entropy measures

While there are several criteria used to judge optimal tree de-

sign (e.g. Safavian and Landgrebe, 1991), we used the most

commonly used measure, classification accuracy rate, as the

Table 1 Induction algorithm decision rules for selecting the best
attribute

Entropy measure Decision rule

GR For those attributes whose IG > Average(IG),

select the attribute that provides Max(GR).

IG Select the attribute that provides Max(IG)

CAMI Select the attribute that provides Max(CAMI)

CAIR For those attributes whose CAMI >

Average(CAMI), select the attribute that

provides Max(CAIR)

EffCAMI 0 For those attributes whose CAMI >

Average(CAMI), select the attribute that

provides Max(EffCAMI)

EffCAMI 1 For those attributes whose CAMI >

Average(CAMI)—StandardDeviation

(CAMI), select the attribute that provides

Max(EffCAMI)

indicator of algorithm performance. It should be noted that

these classification accuracy rates are based on the applica-

tion of stratified ten-fold cross-validation.

The reader may observe (see Table 3) that while each en-

tropy measure has varying results over all the datasets, it is in-

teresting to note that no one particular entropy measure stands

out above all the others over the collection of datasets used in

the study. However, a closer examination of these results re-

veals that for the some datasets (e.g. Page Blocks, Mushroom,
Chess, Letter, Segment, Sick) there is only a marginal differ-

ence in the performance of the splitting methods, while for

other datasets the difference in the performance is more ob-

vious, and for a few of the problems the differences are large

(e.g. Audiology, Colic, Labor, Glass, Soybean, Heart). For ex-

ample, with the Audiology and Labor datasets the largest dif-

ference was over 10%, and with the Heart dataset the largest

difference was over 5%. In some cases, such as with the Soy-
bean dataset, the within-family differences were greater than

the differences in the best performances of both families. In

other cases, such as with the Heart dataset, one family out-

performed the other. This led us to investigate further the

differences in classification accuracies between the two fam-

ilies (see Tables 4(a) and (b)).

For each dataset, we compared the accuracy rate of the

best method from each family using two approaches. The first

approach involved a statistical difference of proportions test

at the α = 0.05 level of significance (see Statistical column

of Table 4(a)). The second approach involved the examina-

tion of the arithmetic difference between both accuracy rates,

where differences that were less than the tolerance τ = 0.5%

were considered to be a tie (see Arithmetic column of Table

4(a)).

We will first consider the results of the statistical difference

of proportions tests. The value “∗∗NONE∗∗” in the Statistical

column of Table 4(a) indicates that the difference between the
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Table 2 Dataset characteristics
Dataset Predictor attributes

ID Name # Instances # Attributes Domain group Data type(s)

1 IRIS 150 5 Ordered C

2 Breast Cancer 349 10 Ordered I

3 Credit Approval 690 16 Mixed N, C, I

4 Car 1728 7 Nominal N

5 Abalone 4177 9 Mixed N, C

6 Wave 5000 22 Ordered C

7 Glass 214 10 Ordered C

8 Soybean 683 36 Nominal N

9 Page Blocks 5473 11 Ordered C, I

10 Mushroom 8124 23 Nominal N

11 Wine 178 14 Ordered C

12 Yeast 1484 9 Ordered C

13 Zoo 101 17 Mixed N, I

14 Pima 768 9 Ordered C, I

15 Nursery 12960 9 Nominal N

16 Audiology 226 70 Nominal N

17 Heart 270 14 Ordered C, I

18 Hepatitis 155 20 Mixed N, C, I

19 Tumor 339 18 Nominal N

20 Chess 3196 37 Nominal N

21 Letter 20000 17 Ordered I

22 Segment 2310 20 Ordered C, I

23 Sick 3772 30 Ordered C, I

24 Sonar 208 61 Ordered C

25 Splice 3190 61 Nominal N

26 Anneal 898 39 Mixed N, C, I

27 Autos 205 26 Mixed N, C, I

28 Colic 368 23 Mixed N, C, I

29 Hypothyroid 3772 30 Mixed N, C, I

30 Ionosphere 351 35 Ordered C,I

31 Labor 57 17 Mixed N, C, I

32 Lymph 148 19 Mixed N, I

33 Vehicle 846 19 Ordered I

34 Vote 435 17 Nominal N

35 Vowel 990 14 Mixed N, CC: Continuous, I: Integer, N:
Norminal

relevant pair of accuracy rates is not considered to be statisti-

cally significant at the α = 0.05 level of significance. In the

“CI Width” column Table 4(a) displays the width of the con-

fidence interval associated with this statistical test, and the

“BestCE–BestCAMI” column Table 4(a) displays the differ-

ence between the relevant pair of accuracy rates. The reader

may observe that for the Glass, Heart and Labor datasets

the corresponding differences (i.e., 4.20%, 4.45%, 8.77%)

are not considered to be statistically significant, but for the

Nursery dataset the corresponding difference (i.e., 1.02%) is

considered to be statistically significant. Thus, using our sta-

tistical difference of proportions test, the difference between

the best accuracy rates of the two families is considered to

be statistically significant for only one of the datasets (i.e.,

Nursery). Thus using this test the performance of the best

splitting method of the CAMI family would be considered

to be no worse and marginally better than the corresponding

performance of the best splitting method of the CE family.

It should be noted that for several other datasets, apart

from Nursery, that there are pairs of splitting methods for

which the respective difference in the accuracy rates is sta-

tistically significant. For each such pair, at least one of the

splitting methods does give the best accuracy rate for the rel-

evant family. Table 4(b) displays some of these results. The

reader may observe that for the Vowel dataset, the difference

between GR and CAIR is statistically significant in favor of

CAIR. Similarly for the Colic dataset, the difference between

GR and CAIR is statistically significant in favor of CAIR,

and the difference between GR and IG is statistically signifi-

cant in favor of IG. The latter result is particularly interesting

since GR and IG are members of the same family, and GR is

normally considered to be superior to IG. Also for the Wave
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Table 3 Classification accuracy of CE and CAMI families

Dataset CE family CAMI family

ID Name GR IG CAMI CAIR EffCAMI 0 EffCAMI 1 Best-Worst

1 IRIS 95.33 94.67 94.67 94.67 94.67 94.67 0.66

2 Breast cancer 72.49 72.49 72.49 72.49 74.50 74.50 2.01

3 Credit approval 85.94 84.20 85.36 86.96 84.64 84.64 2.76

4 Car 92.48 93.52 93.52 93.52 92.48 92.48 1.04

5 Abalone 20.19 20.79 20.76 20.71 20.40 21.88 1.69

6 Wave 77.02 76.74 76.76 76.76 75.66 75.24 1.78

7 Glass 65.89 67.76 67.76 67.76 71.96 69.63 6.07

8 Soybean 92.09 87.56 89.02 89.02 92.09 92.68 5.12

9 Page blocks 96.95 96.99 96.99 96.99 96.97 96.78 0.21

10 Mushroom 100.00 100.00 100.00 100.00 100.00 100.00 0.00

11 Wine 94.94 95.51 95.51 95.51 94.94 94.94 0.57

12 Yeast 54.78 53.03 53.03 53.03 55.39 54.72 2.36

13 Zoo 92.08 94.06 94.06 94.06 92.08 92.08 1.98

14 Pima 74.09 72.14 72.14 72.14 71.48 71.61 2.61

15 Nursery 97.11 97.10 97.10 98.13 97.11 97.11 1.03

16 Audiology 77.88 67.26 77.43 77.43 77.88 79.65 12.39

17 Heart 77.78 72.59 72.59 72.59 73.33 73.33 5.19

18 Hepatitis 79.35 78.06 80.65 80.65 80.00 80.00 2.59

19 Tumor 40.71 43.01 40.41 40.41 42.18 44.25 3.84

20 Chess 99.53 99.44 99.44 99.44 99.47 99.47 0.09

21 Letter 87.76 87.96 87.96 87.96 87.68 87.67 0.29

22 Segment 97.14 97.10 97.10 97.10 96.93 96.97 0.21

23 Sick 98.65 98.52 98.97 98.91 98.67 98.67 0.45

24 Sonar 74.04 73.08 73.08 73.08 75.97 75.96 2.89

25 Splice 93.98 93.67 93.67 93.51 93.67 93.67 0.47

26 Anneal 98.44 98.89 98.89 98.55 98.55 98.55 0.45

27 Autos 82.44 73.17 77.56 77.56 80.00 79.02 9.27

28 Colic 85.87 76.09 85.60 85.87 85.87 85.87 9.78

29 Hypothyroid 99.58 98.99 99.50 99.50 99.55 99.55 0.59

30 Ionosphere 90.88 88.60 88.60 88.60 90.03 89.46 2.28

31 Labor 75.44 71.93 80.70 84.21 78.95 78.95 12.28

32 Lymph 77.03 77.03 77.03 76.35 75.00 75.68 2.03

33 Vehicle 73.40 73.17 73.17 73.17 73.52 73.40 0.35

34 Vote 96.78 95.86 96.55 96.55 96.55 96.55 0.92

35 Vowel 78.38 83.84 83.84 85.45 79.49 78.59 7.07

dataset the difference between GR and EffCAMI 1 is statisti-

cally significant in favor or GR, while for the Soybean dataset

the difference between IG and EffCAMI 1 is statistically sig-

nificant in favor or EffCAMI 1. This analysis demonstrates

that no splitting method is dominant for all datasets, and for

some datasets the differences in the performances of certain

pairs of splitting methods are statistically significant, thus

demonstrating that some datasets are sensitive to the choice

of splitting methods.

The second approach to comparing the performances of

the splitting methods involved the examination of the arith-

metic difference between the accuracy rates of each pair of

splitting methods, where differences that were less than the

tolerance τ = 0.5% were considered to be a tie (see Arith-

metic column of Table 4(a)). It should be noted that even

when the difference in the classification rates are not statis-

tically significant, a decision still has to be made as to which

DT should be used. Thus, many post-pruning methods (in-

cluding those used in commercial data mining software such

as SAS Enterprise Miner) also use the best accuracy rate

on the validation dataset to select the best sub-tree even if

the difference is not statistically significant. Some of these

commercial DM software round to the third decimal position

when classification accuracy is represented as a proportion,

which is equivalent to using a tolerance of τ = 0.5%. For the

remainder of this subsection all relative performance com-

parisons are based on the arithmetic difference.

An examination of the Arithmetic column of Table 4(a)

shows that the CE family outperforms the CAMI family five

(5) times, the CAMI family outperforms the CE family thir-

teen (13) times, and there are seventeen (17) ties. These re-

sults suggest that although the splitting methods from the CE
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Table 4(a) Difference in classification accuracy between best of CE and CAMI families

Winner

BestCE -

ID Name BestCE BestCAMI N CI Width BestCAMI Statistical Arithmetic

1 IRIS 95.33 94.67 150 4.93 0.66 ∗∗NONE∗∗ CE

2 Breast Cancer 72.49 74.5 349 6.55 −2.01 ∗∗NONE∗∗ CAMI

3 Credit Approval 85.94 86.96 690 3.61 −1.02 ∗∗NONE∗∗ CAMI

4 Car 93.52 93.52 1728 1.64 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

5 Abalone 20.79 21.88 4177 1.76 −1.09 ∗∗NONE∗∗ CAMI

6 Wave 77.02 76.76 5000 1.65 0.26 ∗∗NONE∗∗ ∗∗TIE∗∗

7 Glass 67.76 71.96 214 8.69 −4.20 ∗∗NONE∗∗ CAMI

8 Soybean 92.09 92.68 683 2.81 −0.59 ∗∗NONE∗∗ CAMI

9 Page Blocks 96.99 96.99 5473 0.64 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

10 Mushroom 100 100 8124 0.00 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

11 Wine 95.51 95.51 178 4.30 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

12 Yeast 54.78 55.39 1484 3.58 −0.61 ∗∗NONE∗∗ CAMI

13 Zoo 94.06 94.06 101 6.52 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

14 Pima 74.09 72.14 768 4.43 1.95 ∗∗NONE∗∗ CE

15 Nursery 97.11 98.13 12960 0.37 −1.02 CAMI CAMI

16 Audiology 77.88 79.65 226 7.54 −1.77 ∗∗NONE∗∗ CAMI

17 Heart 77.78 73.33 270 7.24 4.45 ∗∗NONE∗∗ CE

18 Hepatitis 79.35 80.65 155 8.90 −1.30 ∗∗NONE∗∗ CAMI

19 Tumor 43.01 44.25 339 7.47 −1.24 ∗∗NONE∗∗ CAMI

20 Chess 99.53 99.47 3196 0.35 0.06 ∗∗NONE∗∗ ∗∗TIE∗∗

21 Letter 87.96 87.96 20000 0.64 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

22 Segment 97.14 97.1 2310 0.96 0.04 ∗∗NONE∗∗ ∗∗TIE∗∗

23 Sick 98.65 98.97 3772 0.49 −0.32 ∗∗NONE∗∗ ∗∗TIE∗∗

24 Sonar 74.04 75.97 208 8.32 −1.93 ∗∗NONE∗∗ CAMI

25 Splice 93.98 93.67 3190 1.18 0.31 ∗∗NONE∗∗ ∗∗TIE∗∗

26 Anneal 98.89 98.89 898 0.97 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

27 Autos 82.44 80 205 7.56 2.44 ∗∗NONE∗∗ CE

28 Colic 85.87 85.87 368 5.03 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

29 Hypothyroid 99.58 99.55 3772 0.30 0.03 ∗∗NONE∗∗ ∗∗TIE∗∗

30 Ionosphere 90.88 90.03 351 4.35 0.85 ∗∗NONE∗∗ CE

31 Labor 75.44 84.21 57 14.65 −8.77 ∗∗NONE∗∗ CAMI

32 Lymph 77.03 77.03 148 9.58 0.00 ∗∗NONE∗∗ ∗∗TIE∗∗

33 Vehicle 73.4 73.52 846 4.21 −0.12 ∗∗NONE∗∗ ∗∗TIE∗∗

34 Vote 96.78 96.55 435 2.39 0.23 ∗∗NONE∗∗ ∗∗TIE∗∗

35 Vowel 83.84 85.45 990 3.18 −1.61 ∗∗NONE∗∗ CAMI

∗∗NONE∗∗ indicates difference is not statistically significant at significance level α = 0.05.
∗∗TIE∗∗ indicates that the Arithmetic difference in the Classification Accuracy is 0.50 or less.

Table 4(b) Some performance differences that are statistically sig-
nificant

Statistically

ID Name Test Difference significant

6 Wave GR > EffCAMI 1 1.78 YES

8 Soybean EffCAMI 1 > IG 5.12 YES

15 Nursery CAIR > GR 1.02 YES

16 Audiology EffCAMI 0 > IG 10.62 YES

28 Colic EffCAMI 0 > IG 9.78 YES

35 Vowel CAIR > GR 7.07 YES

IG > GR 5.46 YES

family are the more commonly used methods in DT induction

algorithms, it might be worthwhile to do further exploration

of various methods from the CAMI families. For example,

we then thought to explore the relative performance of Eff-

CAMI 0 and EffCAMI 1, our new methods from the CAMI

family, versus that of the commonly used GR method (see

Table 5).

The information in Table 5 suggests that based on the

arithmetic differences in the accuracy rates: (a) CAIR per-

forms better than GR for the Mixed domain group datasets;

(b) EffCAMI 1 and CAIR may perform better than GR for
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Table 5 Selected pairwise comparisons of splitting methods

Domain Data GR: GR: GR: CAIR: CAIR: CAMI:

ID group types GR: IG EffCAMI 0 EffCAMI 1 CAIR EffCAMI 0 EffCAMI 1 CAIR

5 Mixed N, C IG ∗∗TIE∗∗ EffCAMI 1 ∗∗TIE∗∗ ∗∗TIE∗∗ EffCAMI 1 ∗∗TIE∗∗

35 Mixed N, C IG EffCAMI 0 ∗∗TIE∗∗ CAIR CAIR CAIR CAIR

3 Mixed N, C, I GR GR GR CAIR CAIR CAIR CAIR

18 Mixed N, C, I GR EffCAMI 0 EffCAMI 1 CAIR CAIR CAIR ∗∗TIE∗∗

26 Mixed N, C, I ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

27 Mixed N, C, I GR GR GR GR EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

28 Mixed N, C, I GR ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

29 Mixed N, C, I GR ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

31 Mixed N, C, I GR EffCAMI 0 EffCAMI 1 CAIR CAIR CAIR CAIR

13 Mixed N, I IG ∗∗TIE∗∗ ∗∗TIE∗∗ CAIR CAIR CAIR ∗∗TIE∗∗

32 Mixed N, I ∗∗TIE∗∗ GR GR GR CAIR CAIR CAMI

4 Nominal N IG ∗∗TIE∗∗ ∗∗TIE∗∗ CAIR CAIR CAIR ∗∗TIE∗∗

8 Nominal N GR ∗∗TIE∗∗ EffCAMI 1 GR EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

10 Nominal N ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

15 Nominal N ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ CAIR CAIR CAIR CAIR

16 Nominal N GR ∗∗TIE∗∗ EffCAMI 1 ∗∗TIE∗∗ ∗∗TIE∗∗ EffCAMI 1 ∗∗TIE∗∗

19 Nominal N IG EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗ EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

20 Nominal N ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

25 Nominal N ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

34 Nominal N GR ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

1 Ordered C GR GR GR GR ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

6 Ordered C ∗∗TIE∗∗ GR GR CAIR CAIR CAIR ∗∗TIE∗∗

7 Ordered C IG EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗ EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

11 Ordered C IG ∗∗TIE∗∗ ∗∗TIE∗∗ CAIR CAIR CAIR ∗∗TIE∗∗

12 Ordered C GR EffCAMI 0 ∗∗TIE∗∗ GR EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

24 Ordered C GR EffCAMI 0 EffCAMI 1 GR EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

9 Ordered C, I ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

14 Ordered C, I GR GR GR GR CAIR CAIR ∗∗TIE∗∗

17 Ordered C, I GR GR GR GR EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

22 Ordered C, I ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

23 Ordered C, I ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

30 Ordered C, I GR GR GR GR EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

2 Ordered I ∗∗TIE∗∗ EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗ EffCAMI 0 EffCAMI 1 ∗∗TIE∗∗

21 Ordered I ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

33 Ordered I ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗ ∗∗TIE∗∗

C: Continious I: Integer N: Nominal

Nominal domain group datasets; and (c) GR and EffCAMI 1

performances are approximately the same for the Ordered

domain group datasets (i.e., all predictor attributes are ei-

ther continuous or integer). It appears that overall the CAMI

family does better than the CE family if the domain group

is Nominal or Mixed, while the performances of both fami-

lies are approximately the same whenever the domain group

is Ordered. In fact, CAIR appears to be a better choice

than GR for the Mixed domain group datasets while Ef-

fCAMI 1 appears to be a better choice than GR for the

Nominal domain group datasets.

This led us to consider whether a new CE family mea-

sure would perform better than GR when the domains are

Nominal or Mixed. The reader may recall that GR(g) =
IG(g)/

∑
j∈J�g −p j• log2(p j•), if the predictor attribute

takes it values from Nominal or Ordered domain. The sit-

uation with EffCAMI varies with the domain of the pre-

dictor attribute. If the number of intervals is not greater

than the number of Classes (i.e., g ≤ |S|), which is al-

ways the case for the variables from the Ordered domain

since we are only doing binary cuts, then EffCAMI =
CAMI(g)/

∑
j∈J�g −p j• log2(p j•). On the other hand if the

number of intervals is greater than the number of Classes (i.e.,

g > |S|) then EffCAMI = CAMI(g)/
∑

s∈S −p•s log2(p•s).

CAIR is similar to EffCAMI in this regard.

We, therefore, developed a new measure adjGR that is the

same as GR for integer and continuous data variables when

binarization is used, but different for Nominal variables:

• adjGR(g) = IG(g)/
∑

j∈J�g −p j• log2(p j•) if g ≤ |S|
• adjGR(g) = IG(g)/

∑
s∈S −p•s log2(p•s) if g > |S|.
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Table 6 Comparison of
GainRatio(GR) and adjGR
methods

ID Dataset Domain group Data types GR adjGR |GR-adjGR|
31 Labor Mixed N, C, I 75.44 80.70 5.26

35 Vowel Mixed N, C 78.38 83.03 4.65

27 Autos Mixed N, C, I 82.44 78.05 4.39

3 Credit Approval Mixed N, C, I 85.94 85.07 0.87

32 Lymph Mixed N, I 77.03 77.70 0.67

26 Anneal Mixed N, C, I 98.44 98.55 0.11

5 Abalone Mixed N, C 20.19 20.18 0.01

13 Zoo Mixed N, I 92.08 92.08 0.00

18 Hepatitis Mixed N, C, I 79.35 79.35 0.00

28 Colic Mixed N, C, I 85.87 85.87 0.00

29 Hypothyroid Mixed N, C, I 99.58 99.58 0.00

25 Splice Nominal N 93.98 93.67 0.31

4 Car Nominal N 92.48 92.48 0.00

8 Soybean Nominal N 92.09 92.09 0.00

10 Mushroom Nominal N 100.00 100.00 0.00

15 Nursery Nominal N 97.11 97.11 0.00

16 Audiology Nominal N 77.88 77.88 0.00

19 Tumor Nominal N 40.71 40.71 0.00

20 Chess Nominal N 99.53 99.53 0.00

34 Vote Nominal N 96.78 96.78 0.00

23 Sick Ordered C, I 98.65 98.70 0.05

1 IRIS Ordered C 95.33 95.33 0.00

2 Breast Cancer Ordered I 72.49 72.49 0.00

6 Wave Ordered C 77.02 77.02 0.00

7 Glass Ordered C 65.89 65.89 0.00

9 Page Blocks Ordered C, I 96.95 96.95 0.00

11 Wine Ordered C 94.94 94.94 0.00

12 Yeast Ordered C 54.78 54.78 0.00

14 Pima Ordered C, I 74.09 74.09 0.00

17 Heart Ordered C, I 77.78 77.78 0.00

21 Letter Ordered I 87.76 87.76 0.00

22 Segment Ordered C, I 97.14 97.14 0.00

24 Sonar Ordered C 74.04 74.04 0.00

30 Ionosphere Ordered C, I 90.88 90.88 0.00

33 Vehicle Ordered I 73.40 73.40 0.00

Since for Ordered domain group attributes, adjGR is the

same as GR, then for this domain group the performance

of adjGR should be the same as that of GR. For Nominal

group attributes, given the relatively poor performance of

the IG method, we decided to use the CAMI method for se-

lecting the ‘best’ split for each appropriate nominal attribute

and then to calculate the corresponding adjGR value for the

given attribute using the formula above.

Our results obtained from applying this method (see

Table 6) show that the adjGR method mirrored GR, except

for a few of the Mixed domain group datasets where it beat

GR and a few of the Mixed domain group datasets where it

was beaten by GR. As expected, adjGR gave the same perfor-

mance as GR on the Ordered domain datasets. While we had

hoped that the relative performance of adjGR to GR would

be clearer for Nominal domain group datasets, the results

still suggest that: (1) some datasets are sensitive to choice of

splitting methods, while others are not; and (2) although GR

is currently the popular choice in most data mining software,

adjGR is just as good.

3.4. Analysis based on tree sizes

We will now compare the tree sizes, in terms of the average

number of leaves (based on 10-fold cross validation), pro-

duced by the splitting methods for each dataset. For several of

the datasets (e.g. Iris, Wine) there is no arithmetic or statisti-

cally significant difference in the performance of the different

splitting methods (see Table A1 in Appendix A). For other

datasets the differences are significant, both arithmetically

and statistically. Table 7 below provides some examples when

the differences are statistically significant. In this table we

also explore the relative performance in terms of tree size

with the corresponding relative performance in terms of ac-

curacy rates.
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Table 7 Some tree size differences that are statistically significant

Number of leaves Accuracy Rates

Statistically Statistically

ID Dataset Hypothesis Difference Significant Hypothesis Difference Significant

6 Wave GR < EffCAMI 1 −77.80 YES GR > EffCAMI 1 1.78% YES

18 Hepatitis CAIR < GR −2.70 YES CAIR > GR 1.30% NO

25 Splice EffCAMI 1 < GR −14.40 YES EffCAMI 1 ∼= GR −0.31% NO

32 Lymph EffCAMI 0 < GR −6.90 YES EffCAMI 0 > GR 3.51% NO

• For the Wave dataset, GR outperforms EffCAMI 1 with

regard to both the Number of Leaves (i.e., the hypothesis,

tree size based on GR is better than the tree size based

on EffCAMI 1, would be accepted) and Accuracy Rate

measures (i.e., the hypothesis, accuracy rate based on GR

is better than the accuracy rate based on EffCAMI 1, would

be accepted). In the language of bi-objective programming,

GR would be said to dominate EffCAMI 1 for the Wave
dataset. Thus for this dataset GR can be considered to have

better overall performance than EffCAMI 1 in terms of

these two measures.

• For the Hepatitis dataset, CAIR outperforms GR with re-

gard to the Number of Leaves (i.e., the hypothesis tree

size based on CAIR is better than the tree size based on

GR would be accepted). With regard to the Accuracy Rate

measure, the hypothesis that accuracy rate based on CAIR

is better than the accuracy rate based on GR would not be

accepted even though the arithmetic difference is in favor

of CAIR. In the language of bi-objective programming, GR

would still be said to dominate EffCAMI 1 for the Wave
dataset since it outperforms it on one measure (i.e., Num-

ber of Leaves) and is not inferior to it in terms of the other

measure. Thus for this dataset CAIR would be considered

to have better overall performance than GR in terms of

these two measures.

• Similarly for the Splice dataset, EffCAMI 1 would be con-

sidered to have better overall performance than GR in terms

of these two measures.

• Similarly for the Lymph dataset, EffCAMI 0 would be con-

sidered to have better overall performance than GR in terms

of these two measures.

These results suggest that neither family dominates the

other in terms of these two performance measures, and pro-

vides further evidence that the CAMI family is competitive

to the CE family, and that certain datasets are sensitive to the

choice of splitting methods.

3.5. Analysis based on unequal misclassification costs

The results in the previous subsections assumed that for

each dataset the misclassification costs for the relevant target

events (i.e., classes) were the same. In this subsection, we

focus on the case when these costs are unequal. Our experi-

mental work involved those of our datasets that have binary

target events, and examined the impact of different cost ra-

tios for the relevant target events. Table A2 in Appendix 2

provides a detailed description of the results which implies

that no single method is dominant for all datasets, and that

for a given dataset the relative performance of a splitting

method could vary with the cost ratio. Figure 1 displays this

phenomenon graphically. These results also demonstrate that

the performances of splitting methods from the CAMI family

and the new splitting method adjGR are competitive to that

of splitting methods from the CE family.

3.6. Discussion

A few observations can be made from the evidence presented

in Tables 3 through 7:

1. Some datasets are insensitive to the choice of splitting

methods (e.g. Page Blocks, Mushroom, Chess, Letter, Seg-
ment, Sick) while other datasets are sensitive to the choice

of splitting methods, with some being extremely sensi-

tive (e.g. Audiology, Colic, Glass, Labor, Soybean, Heart).
However, for the most part the data miner is never clear at

the start of the data mining project as to whether a given

dataset is sensitive or insensitive to the choice of splitting

method.

2. As has been established previously, no single splitting

method is likely to perform best on all datasets.

3. If the dataset only consists of continuous predictor at-

tributes and the splitting method only does binary dis-

cretization, then there is no difference between CAMI and

CAIR because for each attribute CAIR = CAMI/log2(2),

and so for each node of the DT the choice of attribute based

on CAIR would be the same as that based on CAMI.

4. The CAMI family of splitting methods and the new split-

ting method adjGR performed impressively compared to

the more popular CE family.

Given these observations it seems appropriate to suggest

that splitting methods from the CAMI family and the adjGR

splitting method should be included in data mining toolsets.

Although the question might be raised as to which splitting
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method should be selected by the data miner, the fact is that

it is never known beforehand which splitting method will

lead to the best DT for the given dataset. Many modern data

mining tools provide multiple options for splitting methods.

For example SAS Enterprise Miner offers the data miner the

option of selecting either Chi Squared, Entropy (i.e., Gain

Ratio), or Gini splitting methods. Also modern data mining

tools typically provide the data miner with multiple param-

eters (e.g. depth of DT, pre-pruning and post-pruning rules,

splitting method) with multiple options for each. Gersten

et al. (2000) notes that with regard to setting parameter val-

ues, there is “no practicable approach to select . . . the most

promising combinations early in the process” and as such “it

is necessary to experiment with different combinations” in or-

der to be able to reliably pick the best DT. The process of DT

induction in an industrial setting thus involves experimenta-

tion with different combinations of parameter settings and in

some cases with different training and validation datasets in

order to be able to select the most appropriate decision tree.

Therefore, given that data miners already experiment with

different splitting methods it would be worthwhile to include

methods from a family that performs impressively against

the currently most popular method.

If the given dataset is relatively small it might be possi-

ble to apply several methods and then use the one that gives

the best performance with regard to measures such as accu-

racy, stability, and simplicity. If the given dataset is relatively

large, it might be very costly to explore the performance of

several splitting methods on the entire dataset. One approach

is to take a sample from the given dataset, apply the different

splitting methods to this sample, and then apply the splitting

method that gave the best performance to the entire dataset.

It should be noted that such an approach is also used in indus-

trial applications, and as such some commercial data mining

tools provide convenient facilities for sampling of the dataset.

4. Conclusions

In this paper we conducted a computational exploration of the

performance of the two families of entropy-based splitting

methods, Conditional Entropy and Class-Attribute Mutual

Information (CAMI). Our results suggest that while some

datasets are insensitive to the choice of splitting methods,

others are very sensitive to the choice of splitting method.

In summary, our results suggest that: (1) some of the CAMI

family methods may be more appropriate than the commonly

used GR method for datasets where all predictor attributes

are nominal; (2) that if the only type of discretization on

continuous attributes is binarization then some of the CAMI

methods perform as well as GR for datasets where all the

predictor attributes are either integer or continuous; and (3)

that the new EffCAMI 1 method and the older CAIR method

performed very well, particularly when compared to the pop-

ular GR method. Given these results it seems appropriate to

suggest that splitting methods from the CAMI family should

be included in data mining toolsets.
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Appendix 1: Detailed results of tree size analysis

Table A1 Average number of leaves of pruned DTs

Dataset CE family CAMI family

ID Name GR IG CAMI CAIR EffCAMI 0 EffCAMI 1 Hybrid adjGR

1 Iris 4.7 4.8 4.8 4.8 4.8 4.8 4.7

2 Breast Cancer 13.2 11.3 11.3 11.3 11.0 11.1 13.2

3 Credit Approval 22.2 28.5 32.0 21.5 33.4 33.4 30.6

4 Car 122.2 125.6 125.6 125.6 122.2 122.2 122.2
5 Abalone 1051.4 1079.2 1079.2 1079.8 1107.3 1097.1 1051.4
6 Wave 276.1 321.8 321.8 321.8 347.9 353.9 276.1
7 Glass 23.0 26.3 26.3 26.3 26.2 25.6 23.0
8 Soybean 62.5 56.8 74.3 74.3 60.1 61.7 62.5

9 Page Blocks 41.8 45.6 45.6 45.6 45.4 46.1 41.8
10 Mushroom 25.0 33.0 33.0 23.0 33.0 33.0 22.0
11 Wine 5.4 5.3 5.3 5.3 5.4 5.4 5.4

12 Yeast 165.9 198.9 198.9 198.9 185.2 187.4 165.9
13 Zoo 10.7 12.7 12.7 12.7 10.7 10.7 10.7
14 Pima 20.0 59.8 59.8 59.8 64.1 63.9 20.0
15 Nursery 353.1 353.2 353.2 353.2 353.1 353.1 353.1
16 Audiology 30.6 11.6 34.4 34.4 30.6 31.1 30.6

17 Heart 17.4 19.5 19.5 19.5 19.2 19.2 17.4
18 Hepatitis 9.5 3.4 6.8 6.8 8.7 8.7 9.5

19 Tumor 44.9 17.1 23.4 23.4 36.6 38.1 44.9

20 Chess 30.8 31.5 31.5 31.5 31.7 31.7 30.8
21 Letter 1169.1 1200.8 1200.8 1200.9 1171.1 1171.5 1169.1
22 Segment 41.6 42.0 42.0 42.0 41.7 42.4 41.6
23 Sick 27.8 20.4 26.6 25.4 24.0 24.0 26.7

24 Sonar 14.4 14.5 14.5 14.5 13.8 13.8 14.4

25 Splice 175.8 161.4 161.4 161.9 161.4 161.4 161.4
26 Anneal 37.2 45.5 45.5 32.8 47.5 41.5 46.7

27 Autos 45.5 41.0 42.5 42.5 49.4 49.0 45.5

28 Colic 5.8 4.7 5.3 9.2 5.6 5.6 5.0

29 Hypothyroid 14.6 6.5 14.7 14.8 14.8 14.8 14.6

30 Ionosphere 14.0 14.3 14.3 14.3 14.5 14.7 14.0
31 Labor 4.0 2.7 3.9 4.8 3.6 3.6 4.3

32 Lymph 17.5 13.2 13.2 14.2 10.6 10.7 12.4

33 Vehicle 66.4 82.6 82.6 82.6 89.9 91.3 66.4
34 Vote 5.8 5.1 5.8 5.8 5.9 5.9 5.8

35 Vowel 130.0 187.1 187.1 186.5 186.8 183.3 186.1

Appendix 2: Detailed results of analysis based on
unequal misclassification costs

In Table A2 below, the ratio “1:5” implies that the

misclassification cost of the first target event is 1/5 of

the cost of the second target event, while the ratio

“5:1” implies that the misclassification cost of the first target

event is 5 times the cost of the second target event. For each

dataset & ratio, the splitting method that has the best cost has

the relevant value displayed in bold.
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Table A2 Performance based
on unequal misclassification
costs

Dataset Ratio of misclassification costs of target events

Vote 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 4.9 4.5 3.4 2.5 1.7 2.0 3.0 3.3 3.7

EffCAMI 1 4.9 4.5 3.5 2.5 1.5 1.8 3.0 3.3 3.7

IG 4.4 4.9 3.6 2.7 1.8 2.3 3.4 3.4 3.7

CAMI 4.9 4.5 3.4 2.5 1.7 2.0 3.0 3.3 3.7

GR 5.1 4.5 3.1 2.0 1.4 1.7 3.0 3.3 3.7

EffCAMI 0 4.9 4.5 3.5 2.5 1.5 1.8 3.0 3.3 3.7

adjGR 5.1 4.5 3.1 2.0 1.4 1.7 3.0 3.3 3.7
∗∗ Worst–Best ∗∗ 0.7 0.4 0.5 0.7 0.4 0.6 0.4 0.1 0.0

Breast Cancer 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 11.3 10.8 11.4 13.1 8.7 14.9 18.7 20.4 21.1
EffCAMI 1 11.3 10.8 11.4 13.1 8.4 15.1 18.6 20.5 21.2

IG 11.3 10.8 11.4 13.1 8.7 14.9 18.7 20.4 21.1
CAMI 11.3 10.8 11.4 13.1 8.7 14.9 18.7 20.4 21.1

GR 11.1 10.8 11.4 12.8 8.9 14.9 18.5 22.4 22.7

EffCAMI 0 11.3 10.8 11.4 13.1 8.4 15.1 18.6 20.5 21.2

adjGR 11.1 10.8 11.4 12.8 8.9 14.9 18.5 22.4 22.7
∗∗ Worst–Best ∗∗ 0.2 0.0 0.0 0.3 0.5 0.2 0.2 2.0 1.6

Chess 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 7.7 7.1 5.5 4.5 1.9 4.1 5.5 7.0 8.5

EffCAMI 1 7.7 7.1 5.5 4.5 1.7 3.9 4.9 6.1 8.1

CE 7.7 7.1 5.5 4.5 1.9 4.1 5.5 7.0 8.5

CAMI 7.7 7.1 5.5 4.5 1.9 4.1 5.5 7.0 8.5

IG 7.5 6.3 4.9 3.7 1.7 3.8 4.8 5.8 8.0
EffCAMI 0 7.7 7.1 5.5 4.5 1.7 3.9 4.9 6.1 8.1

adjGR 7.5 6.3 4.7 3.7 1.7 3.8 4.8 5.8 8.0
∗∗ Worst–Best ∗∗ 0.2 0.8 0.6 0.8 0.2 0.3 0.7 1.2 0.5

Colic 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 10.8 9.3 8.1 6.4 4.7 8.6 11.2 15.4 17.0
EffCAMI 1 13.4 10.1 8.4 6.6 5.2 10.3 15.1 16.4 17.4

IG 13.6 13.6 13.6 13.6 8.8 9.6 11.9 19.2 22.8

CAMI 12.4 10.8 8.7 6.9 5.7 11.0 15.5 15.9 17.5

GR 11.1 9.1 7.8 6.5 5.2 10.7 15.8 16.9 17.6

EffCAMI 0 13.4 10.1 8.4 6.6 5.2 10.3 15.1 16.4 17.4

adjGR 12.4 10.5 8.7 7.1 5.8 11.1 14.7 15.8 17.3
∗∗ Worst–Best ∗∗ 2.8 4.5 5.8 7.2 4.1 2.4 4.6 3.8 5.8

Credit 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 20.0 19.1 17.0 14.6 10.4 15.3 19.2 19.8 24.1

EffCAMI 1 18.0 15.9 14.1 13.4 11.0 15.3 19.6 21.5 22.6

IG 20.4 17.2 14.2 12.3 10.6 16.0 20.5 21.9 22.7

CAMI 16.9 15.9 14.1 13.2 11.2 15.3 19.1 21.6 22.2

GR 18.8 17.0 14.4 15.5 10.1 12.9 16.2 17.9 19.6
EffCAMI 0 18.0 15.9 14.1 13.4 11.0 15.3 19.6 21.5 22.6

adjGR 17.6 16.1 14.9 13.2 11.0 14.1 17.4 18.4 20.1
∗∗ Worst–Best ∗∗ 3.5 3.2 2.9 3.2 1.1 3.1 4.3 4.0 4.5

Heart 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 11.4 11.5 10.3 8.0 6.9 10.9 11.6 14.5 14.4

EffCAMI 1 11.0 11.3 10.7 7.9 6.3 10.3 11.2 14.3 15.7

IG 11.4 11.5 10.3 8.0 6.9 10.9 11.6 14.5 14.4
(Continued on next page.)
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Table A2 (Continued.)
Dataset Ratio of misclassification costs of target events

CAMI 11.4 11.5 10.3 8.0 6.9 10.9 11.6 14.5 14.4

GR 9.9 9.6 8.5 6.8 5.8 9.7 11.2 13.6 13.1
EffCAMI 0 11.0 11.3 10.7 7.9 6.3 10.3 11.2 14.3 15.7

adjGR 9.9 9.6 8.5 6.8 5.8 9.7 11.2 13.6 13.1
∗∗ Worst–Best ∗∗ 1.5 1.9 2.2 1.2 1.1 1.2 0.4 0.9 2.6

Hepatitis 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 8.9 7.6 6.2 4.4 2.6 3.2 3.2 3.0 3.2

EffCAMI 1 6.6 7.5 6.2 5.3 2.9 3.3 2.6 2.5 3.2

IG 8.7 7.8 7.0 5.5 3.2 3.2 3.2 3.2 3.2

CAMI 8.9 7.6 6.2 4.4 2.6 3.2 3.2 3.0 3.2

GR 7.4 7.4 7.0 4.7 3.2 2.9 2.6 2.7 3.2

EffCAMI 0 6.6 7.5 6.2 5.3 2.9 3.3 2.6 2.5 3.2

adjGR 7.4 7.4 7.0 4.7 3.2 2.9 2.6 2.7 3.2
∗∗ Worst–Best ∗∗ 2.3 0.4 0.8 1.1 0.6 0.4 0.6 0.7 0.0

Pima 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 31.0 29.8 30.0 28.2 20.4 30.0 36.4 42.4 46.1

EffCAMI 1 31.2 30.8 29.4 28.0 20.8 28.8 35.3 37.9 46.1

IG 31.0 29.8 30.0 28.2 20.4 30.0 36.4 42.4 46.1

CAMI 31.0 29.8 30.0 28.2 20.4 30.0 36.4 42.4 46.1

GR 27.5 28.6 25.3 22.2 17.9 28.5 32.3 37.1 41.2
EffCAMI 0 31.2 30.8 29.4 28.0 20.8 29.2 35.3 37.9 46.1

adjGR 27.5 28.6 25.3 22.2 17.9 28.5 32.3 37.1 41.2
∗∗ Worst–Best ∗∗ 3.7 2.2 4.7 6.0 2.9 1.5 4.1 5.3 4.9

Ionosphere 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 10.6 9.9 9.4 6.7 3.5 6.0 6.4 6.2 6.9
EffCAMI 1 10.6 8.9 9.1 6.8 3.5 5.4 6.4 6.2 6.9
IG 10.6 9.9 9.4 6.7 3.5 6.0 6.4 6.2 6.9
CAMI 10.6 9.9 9.4 6.7 3.5 6.0 6.4 6.2 6.9
GR 9.5 10.0 8.9 6.0 4.0 6.4 7.1 6.8 7.1
EffCAMI 0 10.6 8.9 9.1 6.8 3.5 5.4 6.4 6.2 6.9
adjGR 9.5 10.0 8.9 6.0 4.0 6.4 7.1 6.8 7.1
∗∗ Worst–Best ∗∗ 1.1 1.1 0.5 0.8 0.5 1.0 0.7 0.6 0.2

Labor 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 3.5 3.6 2.4 1.9 1.0 1.5 1.8 2.3 3.3
EffCAMI 1 3.2 2.7 2.3 2.3 1.2 1.7 1.6 2.1 3.3
IG 3.4 3.2 3.0 2.6 1.6 2.0 2.0 2.0 2.0
CAMI 3.4 3.6 2.7 2.2 1.3 1.6 1.9 2.3 3.3
GR 3.3 2.8 2.2 1.9 1.2 1.3 1.8 2.4 3.3
EffCAMI 0 3.2 2.7 2.3 2.3 1.2 1.7 1.6 2.1 3.3
adjGR 2.6 2.5 2.6 2.5 1.6 1.7 2.1 3.0 3.3
∗∗ Worst–Best ∗∗ 0.3 0.9 0.8 0.7 0.6 0.7 0.4 0.4 1.3

Sick 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 7.8 6.9 6.1 6.1 3.7 6.1 7.9 9.4 11.3

EffCAMI 1 8.1 7.6 7.6 5.4 4.3 5.0 6.4 8.8 10.5

IG 7.0 6.8 6.8 5.9 5.8 10.4 11.9 13.9 16.7

CAMI 6.9 6.7 7.6 5.6 3.4 6.1 7.4 8.8 11.6

GR 6.9 6.6 6.6 6.0 4.9 5.1 5.0 8.7 10.3

EffCAMI 0 8.1 7.6 7.6 5.4 4.3 5.0 6.4 8.8 10.5

adjGR 6.9 6.6 6.6 5.6 4.8 4.8 5.0 7.9 9.7
∗∗Worst–Best ∗∗ 1.2 1.0 1.5 0.7 2.4 5.4 6.9 5.2 6.4

(Continued on next page.)
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Table A2 (Continued.)
Dataset Ratio of misclassification costs of target events

Sonar 1/5 1/4 1/4 1/2 1/1 2/1 3/1 4/1 5/1

CAIR 11.7 10.1 7.3 7.3 5.7 9.8 12.7 12.2 14.3

EffCAMI 1 13.9 13.8 9.3 6.8 5.6 7.3 8.8 9.0 12.4

IG 11.7 10.1 7.3 7.3 5.7 9.8 12.7 12.2 14.3

CAMI 11.7 10.1 7.3 7.3 5.7 9.8 12.7 12.2 14.3

GR 12.1 11.0 8.5 6.3 5.7 8.7 11.6 11.1 9.3
EffCAMI 0 13.9 13.8 9.3 6.8 5.6 7.3 8.8 9.0 12.4

adjGR 12.1 11.0 8.5 6.3 5.7 8.7 11.6 11.1 9.3
∗∗ Worst–Best ∗∗ 2.2 3.7 2.0 1.0 0.1 2.5 3.9 3.2 5.0
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