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Abstract Systematic integration of microarrays from dif-

ferent sources increases statistical power of detecting differ-

entially expressed genes and allows assessment of hetero-

geneity. The challenge, however, is in designing and imple-

menting efficient analytic methodologies for combining data

generated by different research groups and platforms. The

widely used strategy mainly focuses on integrating prepro-

cessed data without having access to the original raw data

that yielded the initial results. A main disadvantage of this

strategy is that the quality of different data sets may be highly

variable, but this information is neglected during the integra-

tion.

We have recently proposed a quality-weighting strategy to

integrate Affymetrix microarrays. The quality measure is a

function of the detection p-values, which indicate whether a

transcript is reliably detected or not on Affymetrix gene chip.

In this study, we compare the proposed quality-weighted
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strategy with the traditional quality-unweighted strategy, and

examine how the quality weights influence two commonly

used meta-analysis methods: combining p-values and com-

bining effect size estimates. The methods are compared on a

real data set for identifying biomarkers for lung cancer.

Our results show that the proposed quality-weighted

strategy can lead to larger statistical power for identifying

differentially expressed genes when integrating data from

Affymetrix microarrays.
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Introduction

Different research groups may perform gene expression mi-

croarray experiments designed to answer similar biological

questions. Intuitively, it seems straightforward to combine

results from these studies in order to obtain more power to

detect differences and improved ability to distinguish be-

tween true and false positive results. The challenge is how to

compare and integrate these data sets in order to make robust

conclusions. Meta-analysis is a classical statistical method-

ology for combining results from different studies addressing

the same scientific questions, and it is becoming particularly

popular in the area of medical and epidemiological research

(Olkin, 1992). Meta-analytic methods have recently been ap-

plied to analyze microarray data (Rhodes et al., 2002; Choi

et al., 2003; Moreau et al., 2003; Stevens and Doerge, 2005;

Hu, Greenwood, and Beyene, 2005). Prior applications of

the meta-analysis approaches to microarray data have either

sought to combine p-values (Rhodes et al., 2002) or combine

effect sizes (Choi et al., 2003; Stevens and Doerge, 2005; Hu,

Celia, and Beyene, 2005) from different studies.
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For example, Rhodes et al. (2002) combined results from

four prostate cancer microarray datasets analyzed on differ-

ent platforms. Differential expression was first assessed in-

dependently for each gene in each dataset based on a p-value.

Then the individual study p-values were combined using the

result that −2 log(p-value) has a chi-squared distribution un-

der the null hypothesis of no differential expression (Hedges

and Olkin, 1995). The analysis revealed that stronger signifi-

cance was obtained from the combined analysis than from the

individual studies. Combining p-values is useful in obtaining

more precise estimates of significance, but this method does

not indicate the direction of significance (e.g., up- or down-

regulation) nor does it provide the magnitude of the effect.

A small p-value may not necessarily correspond with a clin-

ically and biologically important effect size. Nevertheless,

integration of p-values does not require that different studies

use the same measurement scales; it is possible to combine

results from studies using completely different technologies.

Choi et al. (2003) focused on integrating effect size esti-

mates to obtain an overall estimate of the average effect size.

The effect size is normally used to measure the magnitude

of treatment effect in a given study. Using the same datasets

as those used by Rhodes et al. (2002), they demonstrated

that their method, taking into account inter-study variation,

can lead to the discovery of small but consistent expression

changes with increased sensitivity and reliability among the

datasets. In order to combine effect size estimates, it is better

for each study to measure gene expression in a similar way,

that is, on the same scale, although Choi et al. (2003) used

the method to integrate cDNA spotted data with Affymetrix

GeneChip data; these two platforms measure gene expression

on different scales.

It may be possible to use transformations so that gene ex-

pression estimates from different technologies can be com-

pared using the same scale. Previous studies (Rhodes et al.,

2002; Choi et al., 2003) have demonstrated the utility of in-

tegrating cDNA and Affymetrix microarray data; however,

many studies (Kuo et al., 2002; Jarvinen et al., 2004) have

argued that combining results from cDNA and Affymetrix

microarrays is problematic from a biological viewpoint since

the measurements represent different physical quantities.

For example, Jarvinen et al. (2004) determined the level

of concordance between microarray platforms by analyz-

ing breast cancer cell lines with in situ synthesized oligonu-

cleotide arrays, commercial cDNA microarrays and custom-

made cDNA microarrays. Their results demonstrated that

data from different microarray platforms are variable to the

extent that direct integration of data from different platforms

may be complicated and unreliable. Therefore, we focus here

solely on the Affymetrix technology platform, which has

been shown to outperform both the two-colour cDNA mi-

croarrays and two-colour Oligos, and to be less sensitive to

systematic lab effects (Irizarry et al., 2005).

In classical meta-analysis, quality measures have been

used when combining results across studies. It has been ar-

gued that studies of a higher quality will give more accu-

rate estimates of the true parameter of interest, and therefore

studies of high quality should receive a higher weight in

the analysis summarizing across studies (Tritchler, 1999). In

gene expression microarrays, many genes may be “off” or

not detectable in a particular adult tissue, and in addition,

some genes may be poorly measured due to probes that are

not sufficiently sensitive or specific. Therefore, the signal

strength and clarity will vary across the genes, suggesting

that a quality measurement could highlight strong clear sig-

nals. It is still an open question how to best measure the

quality of a gene expression measurement, and how best to

use such a quality measure. In a recent study (Hu, Celia,

and Beyene, 2005), we proposed a quality measure based on

the detection p-values estimated from Affymetrix microar-

ray raw data (Affymetrix, 2001). Using an effect-size model,

we demonstrated that the incorporation of quality weights

into the study-specific test statistics, within a meta-analysis

of two Affymetrix microarray studies, produced more bio-

logical meaningful results than the unweighted analysis.

Our ability to develop powerful statistical methods for ef-

ficiently integrating related genomic experiments is critical

to the success of the massive investment made on genomic

studies. Therefore, it is very important to evaluate the advan-

tages and disadvantages of different integrating strategies and

methods. Here, we compare two data-integration techniques,

the effect-size model and Fisher’s method of combining p-

values, and we evaluate the performance of quality-weighted

and unweighted versions of these two approaches when inte-

grating results from Affymetrix gene expression microarray

experiments.

Methods

Data source and preprocessing

We selected two Affymetrix microarray data sets (Beer et al.,

2002; Bhattacharjee et al., 2001), which were collected using

different versions of the Affymetrix oligonucleotide microar-

rays and were conducted by two research groups, one from

Harvard and the other from Michigan. The Michigan study

used the HuGeneFL Affymetrix chip, containing 7,129 probe

sets, each with 20 probe pairs. This study included 86 lung

adenocarcinoma patient samples and 10 normal samples. The

Harvard study used the HG U95Av2 chip with 12,625 probe

sets, each with 16 probe pairs. This study included 17 nor-

mal and 127 lung adenocarcinoma patient samples. Our main

objective is to identify differentially expressed genes related

to lung adenocarcinoma. We normalized and summarized

probe level data using the robust multi-array average (RMA)
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algorithm (Irizarry et al., 2003). There are 6124 common

probe sets in these two studies considered for integration

across studies. These 6124 probe sets were selected by using

a sequence-based probe matching method, which has been

shown to identify consistent signals when comparing datasets

produced by different microarray platforms (Brigham et al.,

2004). Details on the probe selection method are found in the

Data processing Section of (Jiang et al., 2004).

Quality measures for Affymetrix GeneChip data

Recently, we have developed a quality measure based on the

detection algorithm proposed by Affymetrix (2001) to de-

fine the quality of measurement of a particular transcript in

a study (Hu, Celia, and Beyene, 2005). The detection algo-

rithm compares the Perfect Match (PM) and Mismatch (MM)

intensities to evaluate whether PM is primarily greater than

MM, and whether both numbers are greater than a detection

limit, and this algorithm generates a detection p-value. A

low detection p-value is an indicator that the perfect match

expression signals are consistently larger than the mismatch

signals, and hence that the mRNA level is consistently mea-

sured. Using these detection p-values, we defined a measure

of quality qg that applies to gene g in each study (for all arrays

in that study), built on the assumption that the detection p-

values follow an exponential distribution with one-parameter

λw within experimental group w(w = 1, 2, . . . , W ) in each

study. The parameters λw for each gene, study and group w

can be estimated by maximum likelihood estimation (MLE).

It is well-known that MLEs have several asymptotically op-

timal properties (Knight, 2000). Therefore, we can define the

quality measure across the groups, for gene g in each study

as:

qg = max
w∈{1,2,...,W }

[exp(λ̂w log s)],

The quantity s is a sensitivity parameter that can be varied to

alter the tolerance of the quality weight to the detection p-

value significance levels (see Hu, Celia, and Beyene (2005)

and Supplemental Materials for details). Alternatively, we

can also treat the detection p-value pa
gj as a quality measure-

ment for gene g and array j (unpublished manuscript).

Meta-analysis of Affymetrix microarrays in a

quality-weighted framework

Traditionally, meta-analysis approaches, such as combining

p-values (Rhodes et al., 2002) or combining effect sizes

(Choi et al., 2003) to integrate microarrays, are carried out

within a quality-unweighted framework (Rhodes et al., 2002;

Choi et al., 2003; Moreau et al., 2003; Kuo et al., 2002;

Stevens and Doerge, 2005). Different strategies can be con-

sidered for incorporating quality weights into meta-analysis.

For example, we can define a quality threshold and only in-

clude genes that are above this threshold in the meta-analysis.

However, the choice of threshold will be arbitrary. A more

interesting strategy that we consider here is to use quality

scores as weights in the same way as the statistical weights

are currently used in modelling.

We have previously used our quality weights in a meta-

analysis of two datasets using an effect size model based

on the mean difference in expression levels (Hu, Celia, and

Beyene, 2005). Here, we compare this approach to a data-

integration method based on the p-value. Quality-weighted

results are compared to unweighted results. The methods

described here could also be applied to combine data from

other microarray technologies, such as cDNA microarrays,

if suitable quality measures for those types of microarrays

can be defined. In the following, we describe how weights

are used when combining p-values as well as effect sizes

from different studies. The two quality-unweighted methods

are special cases of the quality-weighted approaches corre-

sponding to assigning a quality-weight of 1 for each gene

in each study. Therefore, the methods described in the fol-

lowing sections are presented within the quality-weighted

framework.

Suppose we are interested in comparing two groups of

microarrays, such as treatment (t) and control (c) groups, in

study i = 1, 2, . . . , I , which means that W = 2. For each

study, let nt and nc denote the number of arrays (samples) in

the treatment group and control group, respectively.

A. Fisher’s method for combining p-values with

quality-adjusted weights

In an individual microarray study, one of the commonly

asked questions is: which genes are differentially expressed

between two groups? A number of statistical tests, such as

the standard t-statistics (Radmacher, McShane, and Simon,

2002), SAM (Tusher, Tibshirani, and Chu, 2001), regular-

ized t-statistics (Jain et al., 2003) and penalized t-statistics

(Smyth, 2004), have been proposed and applied to detect

differentially expressed genes between the two groups. Each

method reports a p-value expressing the probability that the

observed level of differential expression could have occurred

by chance. Since the focus of this paper is not to evalu-

ate which test statistic is the best, we follow previous stud-

ies on meta-analysis of microarrays (Rhodes et al., 2002;

Moreau et al., 2003), which tested for differentially expressed

genes using the standard t-statistics. We use the standard t-
statistic formula for quality weighting the expression inten-

sities within the test statistic, assuming unequal variances.
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For gene g and study i , we calculate a weighted t-statistic

twe
gi = x̄qgt − x̄qgc√

s2
qgt

/
nt + s2

qgc

/
nc

where

x̄qgw =
∑
j∈w

q∗
g j ∗ xgj

/ ∑
j∈w

q∗
g j

is the quality weighted mean in group w = t, c and the qual-

ity weighted variance S2
qgw are defined similarly (see Supple-

mental Materials and SAS, 2003). xgj is the gene expression

value for gene g and array j , q∗
g j is the quality for gene g and

array j and equal to 1 − pa
gj . We then convert this statistic

to a p-value,pwe
gi , by reference to the t-distribution with the

degree of freedom determined by the Satterthwaite’s approx-

imation (Satterthwaite, 1946). Further details are provided in

the Supplemental Materials. For an unweighted analysis, the

weights are set to 1.0.

After computing the gene specific weighted p-values

(pwe
gi ) for all the studies separately, we then combine these

p-values, by using the Fisher statistic (Hedges and Olkin,

1995). The Fisher statistic for gene g is given by

Swe
g = −2 log(pg1) − · · · − 2 log(pgI )

where pgi is the gene-specific p-value (pwe
gi ) for the ith study.

To evaluate the significance of the Fisher statistics Swe
g for

gene g, we compute a meta-analysis p-value (pS
g ) for the

summary statistic. The theoretical distribution of the sum-

mary statistic Swe
g under the null-hypothesis is pS

g ∼ χ2
2I .

B. The effect size method for meta-analysis with

weights

In a microarray experiment with two groups, the effect size

refers to the magnitude of difference between the two groups’

means. In meta-analysis, the basic principle is to calculate

the effect sizes for each gene in individual studies, convert

them to a common metric, and then combine them to obtain

an average effect size. Once the mean effect size has been

calculated it can be expressed in terms of standard normal

deviates (Z score) by dividing the mean difference by its

standard error. A significance p-value of obtaining the Z
score of such magnitude by chance can them be computed.

B1. Measuring effect size

There are many ways to measure effect size yg for gene

g in any individual study (Cooper and Hedges, 1994). A

commonly used method is the standardized mean difference,

which is given by

yg = (x̄gt − x̄gc)

Spool
g

,

where x̄gt and x̄gc are the sample means of gene expression

values for gene g in treatment group (t) and control group

(c) of a given study, respectively. Spool
g is the pooled standard

deviation. The estimated variance s2
g of the unbiased effect

size yg is given by

s2
g = (1/nt + 1/nc) + y2

g(2(nt + nc))−1

For a study with n = nt + nc samples, an approximately un-

biased estimate of yg is given by y∗
g = yg − 3yg/(4n − 9)

(Hedges and Olkin, 1995). Hu, Celia, and Beyene (2005)

and the Supplemental Materials give details of how this ef-

fect size model can be modelled.

B2. Fixed versus random effects models with

quality-adjusted weights

We follow Hu, Celia, and Beyene (2005) to place the esti-

mated effect yg into a hierarchical model:

{
yg = θg + εg, εg ∼ N

(
0, σ 2

g

)
θg = μg + δg, δg ∼ N

(
0, τ 2

g

)
,

where σ 2
g and τ 2

g are the within-study and between-study

variability of gene g, respectively. When τg = 0, we use

fixed-effects model (FEM) to combine the effect sizes from

individual studies. Otherwise, we use random-effects model

(REM). Here, τ 2
g and μg are gene-specific while σ 2

g and yg are

gene and study-specific. μg measures the average expression

across the studies for gene g.

To assess whether FEM or REM is most appropriate, we

tested the hypothesis τg = 0 to examine the adjusted and

unadjusted quantile–quantile (Q–Q) plots of the observed

versus expected inter-study heterogeneity, as measured by

the statistic Q (see Supplemental Materials). If the null hy-

pothesis of τg = 0 is rejected, we estimate τg based on the

method developed by DerSimonian and Laird (1986).

We then defined the meta-analysis p-value (pZ
g ) as the

measure of significance combined across studies using the

effect size models. The theoretical distribution of the sum-

mary statistic Z2
g under the null-hypothesis is Z2

g ∼ χ2
1 (see

Supplemental Materials).
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Fig. 1 Quantile-quantile plots
of the observed versus the
expected Q statistics

Results

As we can see in Fig. 1, the quantiles of the observed Q values

are far from the expected quantiles of a χ2
1 distribution in both

the quality-adjusted as well as unadjusted cases, suggesting

that these two data sets generated heterogeneous results be-

yond random sampling errors. Therefore, the random effect

model was applied to these data sets. The quality-adjusted

quantiles (squares) of the observed Q statistic were closer to

the quantiles of the expected chi-square distribution than the

unadjusted quantiles (diamonds). This result suggests that

incorporation of the adjusted quality measure into effect size

estimation can decrease apparent evidence for heterogeneity

between these two datasets.

We then explored the relationship between the z statis-

tics (based on the effect size model with random effects) and

the Fisher statistics, under quality-weighted and unweighted

frameworks. The Pearson correlations between the weighted

and unweighted z statistics, and the weighted and unweighted

Fisher statistics are very similar, at 0.96 and 0.94, respec-

tively. Figure 2 shows the weighted and unweighted statistics.

As we can see from Fig. 2(a), for strongly down-regulated

genes (genes with negative z statistic values), especially the

genes with z statistic smaller than −5 (p-value = 5.73 ∗
10−7), the weighted z statistic values are often even smaller

than the unweighted z statistic values, implying larger treat-

ment differences. The converse is seen for the Fisher statistics

(Fig. 2(b)). For example, for genes with Fisher statistic larger

than 60 (p-value = 2.9 ∗ 10−12), the weighted Fisher statis-

tic values are usually smaller than their unweighted counter-

part. Therefore, the weighting strategy may boost the effect

sizes for some genes in the random effect size model, yet

may increase the p-values for some extremely differentially

expressed genes in the Fisher test method. We will further

discuss this issue later in this section.

Before performing integrative analysis of the two data sets,

we examined the results of the Harvard and Michigan studies

individually using standard t statistics, with either weighted

or unweighted strategies. The raw p-values were adjusted

for multiple testing using the Bonferroni method. Figure 3

depicts plots of Bonferroni adjusted p-values for the two

studies using weighted and unweighted methods. As we see

in this figure, the quality-weighted t-statistics (dotted-dashed

line for Michigan study and dashed line for Harvard study)

detect more significant genes than the quality-unweighted t-
statistics (dotted for Michigan study and solid for Harvard

study) for most fixed type I error levels. For an adjusted

p-value cutoff of 0.05, we identified 637 and 614 differen-

tially expressed genes in the Harvard study using weighted

and unweighted t-statistics, respectively, and 260 (weighted)

and 240 (unweighted) differentially expressed genes in the

Michigan study. There are many more genes showing differ-

ential expression in the Harvard study than in the Michigan

study, possibly because the Michigan study used an older

Affymetrix chip type , than the one used in the Harvard

study.
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Fig. 2 Quality-weighted versus unweighted statistics: (a) the effect size
model and (b) Fisher statistics

We then calculated our meta-analysis statistics for these

two data sets using weighted and unweighted Fisher statis-

tics and the random effect size models, respectively. Figure

4 depicts Bonferroni adjusted p-value plots of the two meta-

analysis methods with and without quality weighting. Simi-

lar to Fig. 3, we observed that the quality-weighted strategy

(dashed for random effect size model and dotted dash for

Fisher test) leads to the identification of many more differen-

tially expressed genes than the quality-unweighted strategy

(solid for random effect model and dotted for Fisher test) at

any fixed level of adjusted p-values. With again an adjusted

type I error of 0.05, we identified 910 and 850 differentially

expressed genes using the weighted and unweighted Fisher

tests, and 671 and 645 differentially expressed genes using

weighted and unweighted random effect size models, respec-

tively. It is also obvious that the meta-analysis of the two data

sets identifies many more differentially expressed genes than

individual analysis of either of the two data sets.

Figure 4 shows that the Fisher test identifies more differen-

tially expressed genes than the random effect size models in

both the weighted and unweighted frameworks. Therefore,

we further investigated the relationship between these two

methods for meta-analysis in the scatter plots shown in Fig. 5.

The –log(Bonferroni-adjusted p-values) for the weighted and

unweighted Fisher method are shown in Figs. 5(a) and 5(b)

respectively, and are plotted against the weighted z-statistic

values from the random effect size models (For comparison,

we also put the −log(Bonferroni-adjusted p-values) (inverse

triangle) for the weighted z-statistic in the plot). It can be seen

that for many genes, the estimated effect size is closer to zero

than might be anticipated from the Fisher-method p-value.

Such cases may correspond to genes that were up-regulated

in one study and down-regulated in the other, or to genes

where the treatment difference was much smaller in one study

than the other. For each of the four meta-analysis methods

(weighted and unweighted random effect size models and

Fisher tests), we selected the top 30 and 100 genes, respec-

tively, by ranking the absolute value of the appropriate statis-

tics. We then counted the common differentially expressed

genes identified in each pair of meta-analysis methods. As we

can see in Table 1, there are almost no genes that were iden-

tified by both methods among the top 30 genes, although the

overlap improves when the top 100 genes are examined. Note

also that the agreement between weighted and unweighted

analyses is greater for the effect size method than the Fisher

method.

Our previous work (Hu, Celia, and Beyene, 2005) and

also other studies (Beer et al., 2002; Bhattacharjee et al.,

2001; Jiang et al., 2004) showed that most of the top 30

genes identified by the random effect size methods are bi-

ologically relevant to lung adenocarcinoma and were iden-

tified by other studies (Beer et al., 2002; Bhattacharjee et

al., 2001; Jiang et al., 2004), but the Fisher test method

did not detect these genes. However, only few of the top

30 genes detected by the Fisher test were also identified

in the above studies. Therefore, it may be that although

the Fisher tests can identify many more differentially ex-

pressed genes than the random effect size models, the top

genes identified by the Fisher test may be less biologi-

cally relevant than those detected by the random effect size

models.
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Fig. 3 Bonferroni-adjusted
p-values from the t-tests (twe

gi )
with and without quality in
individual study
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Fig. 4 Bonferroni-adjusted
p-values from the two
meta-analysis methods,
quality-weighted and
unweighted

Discussion

In this study we proposed a quality-weighted strategy for

meta-analysis of microarray data and compared it to a

traditional quality-unweighted strategy in two widely used

meta-analysis methods: combining p-values and combining

effect size methods. We illustrated the advantages of our pro-

posed strategy using two publicly available microarray data

Springer



16 Inf Syst Front (2006) 8: 9–20

Fig. 5 Weighted and
unweighted Fisher p-values,
[−log(Bonferroni-adjustedpS

g )],
versus the weighted effect size z
statistic

sets generated by two different research groups in Harvard

(Bhattacharjee et al., 2001) and Michigan (Beer et al., 2002).

Combining only p-values, while useful in obtaining more

precise estimates of significance, may not indicate the direc-

tion of significance (e.g., up- or down-regulation.) as shown

in Fig. 1(b). Moreover, a significant result from a large com-

bined sample based on the Fisher test does not necessarily

correspond to a biologically important effect size. Our results

show that many differentially expressed genes identified by

the Fisher tests have smaller average effect size values.

As we pointed out in the Introduction, the effect size

method requires that the different studies to be combined are

measured on similar scales, while the combining p-values

method does not require similar “scales of measurement”.

Therefore, it would be possible to combine data sets from

cDNA and Affymetrix platforms directly, using the Fisher

method. Although we could transform data from different

technologies to have similar distributions in order to use the

effect size method, the transformed measures may still not be

comparable since the underlying technologies may be mea-

suring very different signals.

We used a new method to select similar probes for inte-

gration (Brigham et al., 2004; Jiang et al., 2004), ensuring

that the data from the two datasets was as comparable as pos-

sible. This approach is only possible when combining data

from extremely similar technologies that use the same kind

of probe design. This also ensures that the gene expression

signals from the two methods are much more similar than

they would have appeared if we had used all probes available

for a given gene. The impact of the weighting factors would

probably be larger if we had not used this preliminary filter

on the probes. It is interesting in this context to note that

Table 1 The number of
differentially expressed genes
identified by each pair of two
meta-analysis methods, after
selecting a given number of
“top” genes by each method

Top 30 Genes Top 100 Genes

WES UWES WFS UWFS WES UWES WFS UWFS

WES 30 29 1 0 100 97 50 60

UWES 30 1 0 100 51 58

WFS 30 24 100 84

UWFS 30 100

Note: WES: Weighted effect size; UWES: Unweighted effect size; WFS: Weighted Fisher
statistic; UWFS: Unweighted Fisher statistic.
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the weighting has a larger effect on the Fisher model than

the effect size model. The random effect model is likely to

reduce the influence on the z-statistic of a probeset where

the estimated variance was very small, whereas the Fisher

method has no equivalent adjustment of study-specific p-

values. This implies that the random effects model is act-

ing as a surrogate for quality weighting when variances are

small.

Currently, our research and also others (Rhodes et al.,

2002; Choi et al., 2003; Moreau et al., 2003), has mainly fo-

cussed on meta-analysis of studies that compare two groups,

(e.g., treatment and control). It would be of great interest to

also develop and evaluate appropriate meta-analytic strate-

gies for more complex study designs with multiple groups

and covariate or phenotypic information.

Supplemental Materials

See: http://fisher.utstat.toronto.edu/∼joseph/Hu

Supplemental Information.pdf

Appendix: Statistical methods for meta-analysis of
high throughput microarray data: a comparative
study

Quality measures for Affymetrix GeneChip data

There are two aspects to define a quality measure for a par-

ticular transcript. Firstly, the quality of the measurement on a

particular array can be defined; secondly, the quality of mea-

surements across a set of arrays, which is arguably greater

importance, can also be defined. For the first aspect, we mea-

sure the quality of the measure of expression for one tran-

script based on the detection p-value, which can be denoted

as pa
gj for gene g = 1, 2, . . . , G and array j = 1, 2, . . . , J .

For the second aspect, we use the detection p-values to

define quality measures for probesets, summarizing across

the arrays and experiments in a group. For any gene and

study, let p-value denote its detection p-value and r jw denote

−log(p-value) for sample (array) j = 1, 2, . . . , nw in group

w = 1, 2, . . . , W . We assume that each study compares W
groups, where there are nw samples in group w. Therefore,

we can argue that if a gene is not expressed or can not be

measured, then the detection p-values are expected to follow

a uniform distribution. Equivalently, we expect r jwto follow

an exponential distribution with λ = 1. In order to develop

a single quality measure for each gene across all samples

in one study, we use this relationship with the exponential

distribution to motivate a quality measure. We assumed that

the detection p-values of sample j in group w follow the

distribution

r jw = − log(p − value jw) ∼ Exponential (λw),

where different distributions of expression can be expected

in each group w. The parameter λwfor each gene, study and

group w can be estimated by:

λ̂w = nw∑nw

j=1 r jw
,

This is maximum likelihood estimation (MLE) with well-

known asymptotic optimality properties (Knight, 2000).

To combine across the groups, we assumed a sensitiv-

ity parameter s, which is a chosen cutoff, so genes that

are “off” or poorly measured will have p − value ≥ s, in

other words, P(− log(p − value) ≤ − log s) = 1 − eλ̂w log s .

Therefore, we can define a quality measure across the groups,

for gene g in each study as:

qg = max
w∈{1,2,...,W }

[exp(λ̂w log s)] ,

The choice of the maximum gives more weight to genes

measured with high quality in at least one group, thereby

allowing a gene to be “off” in one condition and “on” under

another condition.

Without loss of generality, we can assume that we are

comparing two groups of microarrays, such as treatment (t)
and control (c) groups, in study i = 1, 2, . . . , I , which means

that W = 2. For each study, let nt and nc denote the number

of arrays (samples) in treatment group and control group,

respectively.

Meta-analysis of Affymetrix microarray data in a
quality-weighted framework

A. Fisher’s method for combining p-values with weights

A1. Weighted t-test statistic

For gene g and study i , we first use the standard t-test statistic

formula for weighting the expression intensities within the

test statistic based on quality, assuming unequal variances,

and construct

twe
gi = x̄qgt − x̄qgc√

s2
qgt/nt + s2

qgc/nc
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where

x̄qgw =
∑
j∈w

q∗
g j ∗ xgj

/ ∑
j∈w

q∗
g j ,

S2
qgw =

∑
j∈w

q∗
g j∗ (xgj − x̄qgw)2

/(
(1 − 1/N ′

w) ∗
∑
j∈w

q∗
g j

)
,

w = t, c, xgj is the gene expression value for gene g
and array j and N ′

w is the number of non-zero qualities

in group w (SAS, 2003), q∗
g j is the quality for gene g

and array j and equal to 1 − pa
gj . q∗

g j = 1.0 for an un-

weighted analysis. Therefore, we can convert the test statistic

with weighting the expression intensities (twe
gi ) to p-value

(pwe
gi ) by reference to a standard t-distribution with N =

(s2
qgt/nt + s2

qgc/nc)2

1/(nt − 1)∗(s2
qgt /nt )2+1

/(nc − 1)∗(s2
qgc/nc)2

degree of freedom

as

pwe
gi = 2 ∗ (

1 − pt
(∣∣twe

gi

∣∣, d f = N
))

A2. Combining study-specific p-values pwe
gi

The study-specific p-values (pwe
gi ) can be combined based on

the Fisher statistic (Hedges and Olkin, 1995) as follow

Swe
g = −2 log(pg1) − · · · − 2 log(pgI )

where pgi is the study and gene-specific p-values (pwe
gi ).

The significance of the Fisher statistics Swe
g can be evalu-

ated by computing a meta-analysis p-value (pS
g ). The the-

oretical distribution of the summary statistic Swe
g under the

null-hypothesis ispS
g ∼ χ2

2I .

B. The effect size method for meta-analysis with

weights

B1. Measuring effect size

The standardized mean difference of gene g in each study is

given by

yg = (x̄gt − x̄gc)/S pool
g

.

The estimated variance s2
g of the unbiased effect size yg is

given by

s2
g = (1/nt + 1/nc) + y2

g(2(nt + nc))−1

For a study with n samples, an approximately unbiased esti-

mate of yg is given by y∗
g = yg − 3yg/(4n − 9) (Hedges and

Olkin, 1995).

B2. Fixed versus random effects models with

quality-adjusted weights

For gene g, let μgdenote its overall mean effect size in all

studies, a measure of the average differential expression for

that gene. We then redefine the observed effect size yg for

gene g in each study as a hierarchical model:

{
yg = θg + εg, εg ∼ N

(
0, s2

g

)
θg = μg + δg, δg ∼ N

(
0, τ 2

g

)
,

where τ 2
g is the between-study variability of gene g. Here,

τ 2
g and μg are gene-specific while s2

g and yg are gene and

study-specific.

There are two ways to combine the effect sizes from in-

dividual studies: fixed effects and random effects models.

In essence, in the fixed effects model, the effect size in

the population are fixed but unknown constants. As such,

the effect size in the population is assumed to be the same

for all studies included in a meta-analysis. The alterna-

tive possibility is that the population effect sizes vary ran-

domly from study to study. In this case each study in a

meta-analysis comes from a population that is likely to

have a different effect size to any other study in the meta-

analysis.

In statistical terms the main difference between these two

models is in the calculation of standard errors associated with

the combined effect size. In a fixed-effects model (FEM), the

within-study variability s2
g in their error term on the observed

effect sizes is fully assigned to sampling error only, ignoring

the between study variance, so τ 2
g = 0 and yg ∼ N (μg, s2

g).

On the other hand, a random-effects model (REM) consid-

ers that each study estimates a different treatment effect

θg . These parameters are drawn from a normal distribution

θg ∼ N (μg, τ
2
g ).

To assess whether FEM or REM is most appropriate, we

tested the hypothesis τg = 0 using the following test statistic,

which is a modification of Cochran’s test statistic (1954) by

incorporating our quality measure qig for study iand gene

g

Qg = 	 I
i qigwig(yig − μ̂g)2,

where wig = s−2
ig and

μ̂F
g =

∑I

i=1
qigwig yig∑I

i=1
qigwig

,
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μ̂F
g is the weighted least squares estimator that ignores be-

tween study variation. Under the null hypothesis of τg = 0,

this statistic follows a χ2
I−1distribution. We follow Choi et

al’s method (2003) to draw quantile-quantile plots of Qg

to assess whether a FEM or REM model is appropriate.

If the null hypothesis of τg = 0 is rejected, we estimate

τg based on the method developed by DerSimonian and

Laird (1986)

τ 2
g = max

{
0, (Qg − (I − 1))

/( ∑
wig −

( ∑
w2

ig

/ ∑
wig

))}
,

Therefore, we can estimate μg

μ̂R
g =

∑I

i=1
qigw

R
ig yig∑I

i=1
qigw

R
ig

,

where wR
ig = (s2

ig + τ 2
g )−1. Under the REM,

Var (μ̂R
g ) =

∑I

i=1
q2

igw
R
ig( ∑I

i=1
qigw

R
ig

)2
,

The z statistic to test for treatment effect under REM is

Zg = μ̂R
g

/√
var

(
μ̂R

g

)
,

The z statistic for FEM is the same as that for REM except

that τ 2
g = 0.

To evaluate the significance of the z statistics Zg , we com-

pute a meta-analysis p-value (pZ
g ) for this statistic itself as

the theoretical distribution of the summary statistic Z2
g under

the null-hypothesis is pZ
g ∼ χ2

1
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