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Abstract. Conventionally, irrigation development planning has been based on cropping pattern

selection aiming at maximizing the revenue from irrigation activities. In the real world however,

several complexities make the cropping pattern selection a more complicated mathematical

problem. Of great interest is the case of water supply from multiple sources (e.g. surface and

groundwater) in which a multi-criteria approach is most appropriate. Goal programming has

been used in the past to solve cropping pattern selection problems, with criteria of a similar

nature, the net benefit being included as a constraint. This paper presents a methodology, based

on the fuzzy set theory, for enhancing the goal programming approach to solve similar problems

under various sets of criteria of a different nature. In the proposed methodology the net benefit

maximization is considered together with all other criteria. The methodology is illustrated

using data from the Thessaly Plain in Greece.
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Introduction

Irrigation development planning was traditionally based on cropping pattern
selection aiming at maximizing the revenue from irrigation activities. Due
to a number of constraints and the desire to secure crop diversification, op-
erational research techniques have been employed for finding optimal crop-
ping patterns. Even before the 1970s, linear programming had been used
as a powerful method of this selection. Soon after, due to complications in
water availability pattern and the need to incorporate various criteria, multi-
objective methods were proposed. Of particular interest is the approach of
goal programming which incorporates a number of objectives and a number
of constraints in a comprehensive manner (e.g. Tsakiris & Kiountouzis 1984;
Vedula & Kummar 1996; Mohammadi 1998; Carvallo et al. 1998).

However, in most multi-criteria approaches such as in goal programming
formulations there are two major shortcomings, which might result in an



58

inability to apply these approaches. Namely the weights of the criteria should
be known and agreed by all parties involved before the optimization procedure.
Also, the criteria should be of the same or similar nature in order to decide
upon the corresponding weights in a meaningful way.

This paper aims at overcoming these disadvantages by employing a goal
programming formulation, extended by incorporating elements of the fuzzy
sets theory.

The goal programming model

During recent decades, most of the single-objective problems of the past
have been conceived as multi-objective problems. In accordance with this
tendency, cropping pattern selection with supply from multiple water sources
has been formulated as a typical goal programming problem. The aim of the
goal programming methodology is to minimize the deviation from expected
available water quantities, whereas the benefit from irrigation activities was
incorporated in an indirect way as a constraint (Tsakiris & Kiountouzis 1984).

The standard form of the goal programming model has been presented by
Charnes & Cooper (1977) and may be mathematically described as follows:
Find vector D+, D− such that:

minimize w+ D+ + w− D− (1)

Subject to the constraints:

Ax − I D− + I D+ = g

D+ · D− = 0 (2)

D+, D− ≥ 0

In this formulation w+ and w− are row vectors with non-negative constant
elements representing the relative weights to be assigned to positive D+ and
negative D− column vectors of over-achievement and under-achievement of
the goals, respectively. A is a matrix of coefficients, x is a column vector of
the decision variables, I the identity matrix and g a column vector of desired
“goals” to be met “as closely as possible”.

According to the goal programming formulation for cropping pattern se-
lection, the optimization problem can be expressed as follows:

minimize

p∑
i=1

wi

∣∣∣∣∣Vi −
n∑

j=1

Ri j x j

∣∣∣∣∣ (3)
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For simplification reason

D+
i =

⎧⎪⎨⎪⎩
∣∣∣∣∣Vi −

n∑
j=1

Ri j x j

∣∣∣∣∣ , when Vi −
n∑

j=1

Ri j x j > 0

0, otherwise

D−
i =

⎧⎪⎨⎪⎩
∣∣∣∣∣Vi −

n∑
j=1

Ri j x j

∣∣∣∣∣ , when Vi −
n∑

j=1

Ri j x j < 0

0, otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

where n is the number of the crops to be irrigated, p the number of months
covered by the model, x j the land parcel allocated to the jth crop, Ri j the
irrigation water requirements of the jth crop during the ith month, Vi the avail-
able volume of water from the main source (e.g. surface water) during the ith
month, and wi the relative weight to be assigned to positive and negative de-
viations of the irrigation water requirements from the water availability levels
(Vi -goal). In physical terms the weight wi can be interpreted as a penalty cost.

Taking into account that the negative penalty cost w−
i is different from the

positive penalty cost w+
i , one can replace the aforementioned minimization

problem with the following:
Find x j such that

minimise

p∑
i=1

(w+
i D+

i + w−
i D−

i ) (5)

Subject to the constraints:

D+
i , D−

i ≥ 0
n∑

j=1

(Ri j x j + D+
i − D−

i ) = Vi

x j = 0, j = 1(1)n and i = 1(1)p (6)

According to the goal programming methodology other crisp constraints (con-
straints with no uncertainty) should be added such as the land constraints.

From the above formulation it can be concluded that the economic aspect
of the problem, may be expressed by incorporating another crisp constraint.
However it does not seem wise to add another goal, which arises from the net
benefit concept due to the following reasons.

(1) The two sets of goals are of an entirely different nature.
(2) The weights to be assigned to the two sets of goals are unknown, or

cannot be rationally decided.
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Apart from that, the economic aspect of the irrigation planning should be one
of the main criteria on which the decision will be based, and therefore it is not
sufficient to be included as an additional constraint. For the above reasons the
goal programming approach will be enhanced by using elements of the fuzzy
set theory.

Fuzzy set theory to enhance multi-objective analysis

In general, a multi-objective programming model is formulated for maxi-
mizing (or minimizing) several objectives simultaneously, subject to a set of
constraints.

According to fuzzy set theory various types of membership functions can
be used to support the fuzzy analytical framework, the most popular of which
are those of linear type. Here, two types of fuzzy objectives may be sep-
arately formulated. For these objectives non-decreasing and non-increasing
linear membership functions are assumed, respectively (Chang et al., 1997)
(Figure 1).

The membership function for the maximization of the objective function
Zk should be achieved as follows:

μk(x) =

⎧⎪⎨⎪⎩
1 if Zk(x) ≥ Uk

0 if Zk(x) ≤ Lk
Zk (x)−Lk

Uk−Lk
if Lk ≤ Zk(x) ≤ Uk

(7)

where Lk is the lowest acceptable level and Uk the aspired level for the objective
function Zk , which should be maximized (Zimmermman 1984; Tsakiris &
Spiliotis 2002; & Jairaj & Vedula 2000). The membership function for the
minimization of the objective function is expressed in a similar way.

Figure 1. Diagrammatic representation of fuzzy linear membership function. The maximiza-

tion (a) and minimization (b) linear membership functions.
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In most practical applications, the lowest acceptable level and the aspired
level can be determined from the ideal solutions of the multi-objective pro-
gramming problem. At first, the multi-objective problem is solved for each
objective separately. Let (x (1)∗, x (2)∗, . . . , x (K )∗) be the matrix of the optimal
values achieved for each solution.

Then the values of all the K-objective functions can be calculated at all
these K optimal solutions. Thus a pay-off matrix P is expressed as follows:

P =

⎡⎢⎢⎢⎢⎢⎣
Z1

(
x (1)∗), Z1

(
x (2)∗), . . . , Z1

(
x (K )∗)

Z2

(
x (1)∗), Z2

(
x (2)∗), . . . , Z2

(
x (K )∗)

...

Z K
(
x (1)∗), Z K

(
x (2)∗), . . . , Z K

(
x (K )∗)

⎤⎥⎥⎥⎥⎥⎦ (8)

The lowest acceptable and the aspired levels are selected from the above
matrix (Li & Lai 2000). The elements of the diagonal of the matrix represent
the K aspired levels for each objective.

Having all the individual membership functions, the problem is to deter-
mine a global evaluation of x, through a fuzzy operator Mw with respect to
all objectives (Li & Lai 2000). Thus the global membership function μ(x)
becomes:

μ(x) = Mw(μ1(x), μ2(x), . . . , μK (x)) (9)

which shows to what degree each decision x ∈ X satisfies all the objectives.
For this purpose, various operators Mw can be used. In this study the min
intersection is implemented.

In fuzzy set theory, the fuzzy mathematical programming aims at satisfying
the fuzzy objectives and constraints, and a decision in a fuzzy environment is
thus defined as the intersection of those membership functions corresponding
to the fuzzy objectives and constraints.

With the use of membership functions and the min fuzzy intersection it
holds:

μ(x) = min(μ
1
(x), . . . , μK (x)) (10)

Since the decision maker should conclude in a crisp decision proposal, it
seems appropriate that he should suggest the dividend with the highest degree
of membership function in the fuzzy set decision. Therefore,

max μ = max{min(μ
1
(x), . . . , μK (x))} (11)
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Mathematically, using an auxiliary variable λ, the problem can be expressed
as follows (Zimmermann 1984):

max λ (12)

subject to μk(x) ≥ λ

k = 1(1)K
λ ∈ [0, 1]

x ∈ X
(13)

where λ expresses the common degree of satisfaction for all objectives. It is
noted that the crisp constraints remain in the above formulation.

It can be concluded that by using the above procedure a compromise
solution between several objectives can be found.

Two objective functions are incorporated in this study. Namely the maxi-
mization of net benefit and the minimization of deviations from the available
water quantities (Equation (3)). Solving each problem separately for each
objective, the pay-off matrix can be determined.

Application

Data from Thessaly Plain in Greece were used to demonstrate the proposed
methodology. An area of 1000 ha is cultivated with the main crops being
cotton, corn and sugar beet. Irrigation water is provided from two sources, that
is, surface water without storage, and groundwater. Surface water availability
is limited and is calculated after the subtraction of the minimum allowable
discharge devoted to sustain the downstream ecosystem (Figure 2).

Figure 2. Monthly volume of surface water (main source) available (main source) (m3/month).
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Figure 3. Monthly irrigation water requirements of the crops (m3/ha).

Irrigation water requirements of the irrigated crops R j are presented in
Figure 3.

It should be mentioned that the cropping pattern will be selected, aim-
ing at maximization of benefit from the irrigation activities, as well as the
maximization of exploitation of available surface water quantities.

The problem is formulated following the methodology previously
presented.

The decision variables x j are the parcels of land allocated to each crop:
cotton, corn and sugar beet respectively.

For every month the water quantity balance is calculated. If the main source
does not meet the monthly irrigation water requirement, then pumping from
the groundwater reservoir will cover the shortage. In this case, the monthly
groundwater quantity which is used is equal to D−

i . If the monthly require-
ments are less than the available surface quantity then a surplus quantity will
appear, as D+

i .
The goal constraints for the ith month for the three crops become:

3∑
j=1

Ri j x j + D+
i − D−

i = Vi (14)

In general case the net benefit which should be maximized is the net benefit
from the irrigated crops minus the extra cost which is related to pumping from
the groundwater reservoir.

max

(
3∑

j=1

(B j x j ) −
6∑

i=1

(D−
i · w−

i )

)
(15)
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Table 1. The net average revenue

from irrigated crops in the area.

Crop Revenue ( /ha)

Cotton 2824.7

Corn 1534.0

Sugar beet 989.0

where B j is the net benefit from the jth crop ( /ha) under irrigation from the
surface water (Table 1), and w−

i the cost for pumping each unit volume of
groundwater.

The cost per cubic metre of water pumped from the groundwater reservoir
was calculated from local data as the average from a battery of boreholes in
the area and was found to be

wpump = 0.16 /m3. (16)

The maximum exploitation of available surface water, which may be
also considered as an environmental goal, may be achieved by minimiz-
ing the deviation of used water from the surface water available each
month.

The penalty cost w− is chosen to be the cost of pumping of the unit volume
of groundwater and is associated with the negative deviation. It is interesting
to note that, the weight assigned to the weight of positive deviation is chosen to
be equal to the opportunity cost. This is turn can be estimated as the weighted
average of the net benefit from irrigation activities from the land equally
allocated to three crops.

w+
i = ri =

∑3
j=1 x jri j

x0

(17)

It should be mentioned that ri j is estimated by disaggregation of the crop yield
using a dated production function for each crop (Dooremdos & Kassam 1979;
Tsakiris 1985). The estimated cost w+

i is presented in Table 2.
Based on the above, the objective of minimizing water quantity deviations

becomes:

min
6∑

i=1

(ri D+
i + wpump D−

i ) (18)

Other crisp constraints may be also formulated as follows:
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Table 2. Estimated monthly

cost w+ of each m3 of water

from the main source.

Month /m3

April 1.84

May 1.09

June 0.25

July 0.14

August 0.16

September 0.16

Land availability constraint

The sum of the land parcels allocated to various crops should be equal to the
total available area for irrigation, namely

3∑
j=1

x j = x0 = 1000 (ha) (19)

Land allocation constraints

Management and crop diversity requirement considerations set a maximum
and a minimum irrigated acreage allocated to each crop:

δ j x0 ≤ x j ≤ μ j x0, j = 1, 2, 3 (20)

where δ j and μ j are fractions of irrigated area allocated to the jth crop.
For the purpose of this study δ j was taken as 0.1 and μ j = 0.7.
The problem formulated above, can now be solved according to the fol-

lowing steps.

I. Step 1: The problem is solved separately for each objective.
II. Step 2: The membership function for each goal is determined with the

use of a pay-off table produced in step 1 (Table 3).

Table 3. The pay-off table.

Goal Net benefit (NB) Environmental penalty (EP)

Max NB 1,459,102 (μ = 1) 1,919,817 (μ = 0)

Min EP 644,875 (μ = 0) 1,779,773 (μ = 1)
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Therefore, the membership function of net benefit takes the following
form:

μ1(NB) =

⎧⎪⎨⎪⎩
0 if NB ≤ 644, 875

1 if NB ≥ 1, 459, 102
NB−644,875

1,459,102−644,875
if 644, 875 ≤ NB ≤ 1, 459, 102

(21)

Also the membership function of the deviations from available surface
water (environmental penalty minimization) takes the following form:

μ2(EP) =

⎧⎪⎨⎪⎩
1 if EP ≤ 1, 779, 773

0 if EP ≥ 1, 919, 817

1 − EP−1,779,773
1,919,817−1,779,773

if 1, 779, 773 ≤ EP ≤ 1, 919, 817

(22)

III. Step 3: Having selected the min-section aggregator and using Equation
(12), the problem can now be formulated as:

max λ. (23)

Subject to the following constraints.

• Constraints based on the fuzzy multi-criteria analysis:

μ1(N B) ≥ λ, μ2(E P) ≥ λ. (24)

• Crisp constraints for the land parcels:

x1 + x2 + x3 = 1000, 0.1 x0 ≤ x j ≤ 0.7 x0, j = 1(1)3. (25)

• Goal constraints on water deviations (Equation (14)).

The solution achieved is:

λ = 0.592, x1 = 572.9 ha, x2 = 100 ha, x3 = 327.1 ha,

NB = 1, 127, 219 , EP = 1, 836, 849 .

Also the positive and the negative deviations realized are in m3:

D+
1 = 429, 204, D+

2 = 72, 597, D+
3 = D+

4 = D+
5 = D+

6 = 0,

D−
1 = D−

2 = 0, D−
3 = 1, 161, 522, D−

4 = 2, 223, 818,

D−
5 = 1, 882, 869, D−

6 = 781, 686.3
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Figure 4. Comparison of solutions.

It is interesting to see that the results obtained seem more balanced between
the two different approaches, which give emphasis to both the net benefit
maximization from irrigation activities and the rational use of the available
water from the two sources. This can be seen when the results are compared
with the pay-off table (Table 3).

Figure 4 illustrates the cropping pattern as calculated based on:

(a) max net benefit;
(b) min deviations from available surface water;
(c) fuzzy set integration.

Concluding remarks

Cropping pattern planning in irrigated agriculture has been traditionally based
on the concept of maximization of net benefit. However due to the involvement
of various other factors in the decision making, multi-objective methods as
the Goal Programming approach have been proposed in the past, mainly in
case with multiple water sources. In these attempts criteria of similar nature
were considered and the net benefit was included as a constraint rather than
as a part of the objective function.

In this paper the integration of the above two approaches was demonstrated
by using elements of the fuzzy set theory. The main advantage of the proposed
methodology is that it avoids the subjectivity of assigning weights to the
criteria of different nature. The methodology follows a well-defined procedure
and reaches meaningful results.
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A useful extension of the methodology can be devised by using other
multi-objective methods and by incorporating other fuzzy aggregators from
those used in this study.

References

Carvallo H., Holzapfel E., Lopez M. & Marino M. 1998. Irrigated cropping optimization.

Journal of Irrigation and Drainage Engineering 124: 67–72.

Charnes A. & Cooper W. 1977. Goal programming and multiple objective function. European
Journal of Operational Research 1: 39–54.

Dooremdos J. & Kassam A.S. 1979. Yield response to water. FAO Irrigation and Drainage

Paper, No. 33, Rome.

Kindler J. & Tyszewski S. 1995. On the value of fuzzy concepts in hydrology and water

resources management. In Z. Kundzewicz (Ed) New Uncertainty Concepts in Hydrology
and Water Resources, Cambridge University Press, pp. 126–132.

Klir G. & Yuan B.T. 1995. Fuzzy Sets and Fuzzy Logic Theory and its Applications. Prentice

Hall.

Li L. & Lai K.K. 2000. A fuzzy approach to the multiobjective transportation problem. Com-
puter and Operation Research 27: 43–57.

Chang N. B., Wen C.G. & Chen Y.L. 1997. A fuzzy multi-objective programming approach

for optimal management of the reservoir watershed. European Journal of Operational
Research 99: 289–302.

Mohammadi E.M. 1998. Irrigation planning integrated approach. Journal of Water Resources
Planning and Management 124: 272–279.

Papadopoulos B. & Sirpi M. 1999. Similarities in fuzzy regression models. Journal of Opti-
mization Theory and Applications 102(2): 373–383.

Tsakiris G. 1985. Evaluating the effect of non-uniform and deficient irrigation. Part 1. Advances
in Water Resources 8: 77–81.

Tsakiris G. & Kiountouzis E. 1984. Optimizing the interbasin water transfer for irrigation

development. In G. Tsakiris (Ed) Proceeding of the Fifth International Conference on
Water Resources Planning and Management Ẁater in the Year 2000’, pp. 4.13–4.24.
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