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Abstract 
Purpose  This study investigated the protective 
effect of probucol on Müller cells exposed to high 
glucose conditions and examined potential mecha-
nisms of action.
Methods  Primary human retinal Müller cells were 
incubated with high glucose (HG, 35 mM) in the pre-
sent or absence of different concentrations of probu-
col for 24 h. Cell viability was determined using the 

CCK-8 method. Mitochondrial membrane potential 
(MMP) was measured using JC-1 staining and cell 
cycle by flow cytometry. The expression of nuclear 
factor E2-related factor 2 (Nrf2), glutamate–cysteine 
ligase catalytic subunit, and p62 was quantified using 
quantitative polymerase chain reaction and western 
blot.
Results  We found that HG inhibited cell prolif-
eration, arrested cell cycle, and increased MMP in 
human Müller cells. Probucol activated the Nrf2/p62 
pathway and upregulated the anti-apoptotic protein, 
Bcl2, and attenuated HG-mediated damage in Müller 
cells.
Conclusions  Our results suggest that probucol 
may protect Müller cells from HG-induced damage 
through enhancing the Nrf2/p62 signaling pathway.

Keywords  Probucol · Diabetic retinopathy · Human 
Müller cells · Nrf2/p62 signaling pathway · Cell 
cycle · Cell damage
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ROS	� Reactive oxygen species
ARE	� Antioxidant components
GS	� Glutamine synthase
PBS	� Phosphate-buffered saline
WB	� Western blot
SDS-PAGE	� Sodium dodecyl sulfate-polyacryla-

mide gel electrophoresis
PVDF	� Polyvinylidene fluoride

Introduction

Diabetic retinopathy (DR) is one of the most common 
and serious complications of diabetes mellitus. Cur-
rently, there are limited treatments for DR, and none 
of them can prevent its progression [1]; the outcome 
of DR depends on early recognition and early inter-
vention. The pathogenesis of DR remains to be fully 
elucidated although oxidative stress is known to play 
a critical role [2]. Chronic hyperglycemia leads to the 
production of reactive oxygen species (ROS) through 
various pathways [3]. The retina is rich in mitochon-
dria and has a high respiration rate to meet its meta-
bolic needs; thus, the retina is prone to ROS produc-
tion and is susceptible to oxidative damage. In DR, an 
imbalance between ROS production and antioxidant 
defense systems causes retinal oxidative damage and 
retinal cell death, which contributes to the pathogen-
esis of DR [4–6].

Müller cell malfunction critically contributes to the 
development of DR. These cells can release a vari-
ety of cytokines and growth factors, some of which 
are injurious to the retina and are related to vascular 
dysfunction and generation of new blood vessels, 
whereas others are beneficial in protecting retinal 
neurons from various damages; for instance, Nrf2 is 
mainly expressed in Müller cells in the retina [7–9]. 
Studies have shown that chronic hyperglycemia can 
first induce apoptosis in Müller cells and then cause 
changes in the retinal microenvironment and acceler-
ate neuronal apoptosis, finally leading to the occur-
rence and development of DR [8, 10]. Normalizing 
Müller cell function is considered a good therapeutic 
strategy to prevent or treat DR.

Nuclear factor E2-related factor 2 (Nrf2) is one of 
the most important endogenous antioxidant pathways. 
Nrf2 can adjust the expression of antioxidant genes 
and detoxifying enzymes by reacting with antioxidant 
components (ARE) (including glutamate cysteine 

ligase catalytic subunit [GCLC], p62, etc.). GCLC 
can regulate the synthesis of glutathione and exert 
antioxidant effects [11]. Autophagy is another path-
way that maintains cell homeostasis in  vivo under 
oxidative stress; excessive ROS production can acti-
vate both autophagy and the Nrf2 pathway [12, 13]. 
p62 is a substrate for autophagy and may play a role 
in maintaining protein homeostasis and clearing dam-
aged proteins through autophagy [14]. Further, p62 
can activate the Nrf2 signaling pathway by interacting 
with Keap1. Nrf2 regulates p62 expression, resulting 
in positive feedback regulation between the two pro-
teins [15, 16]. Autophagy and the Nrf2 pathway are 
closely connected via the Nrf2/p62 pathway, which 
plays a crucial role in maintaining homeostasis [17, 
18]. Dysregulation of the Nrf2/p62 pathway has been 
shown to play an important role in the occurrence 
and development of various diseases, such as diabetic 
heart disease [19]. Thus, therapeutic approaches tar-
geting the Nrf2/p62 pathway are expected to be ben-
eficial in DR.

Probucol (PB), an anti-hyperlipidemic, anti-oxi-
dative, and anti-inflammatory drug, has two phenolic 
hydroxyl groups in its molecular structure that are 
easily oxidized, exerting its strong antioxidant effect 
[20]. PB can improve cognitive dysfunction caused by 
oxidative stress in diabetic rats through Nrf2 pathway 
activation [21]. Further, PB can induce autophagy, 
reduce nerve cell apoptosis, and promote neurologi-
cal function recovery after spinal cord injury, also 
promote neuroregeneration and ameliorate functional 
deficits in traumatic brain injury [22, 23]. PB has also 
been demonstrated to inhibit penile cell apoptosis and 
autophagy in diabetic rats [24]. Previously, we have 
shown that PB can inhibit intracellular ROS genera-
tion, promote proliferation and decrease Müller cell 
apoptosis under high glucose (HG) conditions [25]. 
In this study, we further investigated the mechanism 
of PB in protecting primary human Müller cells from 
HG-mediated damage, including the Nrf2/p62 signal-
ing pathway.

Materials and methods

Cell culture and identification

The study protocol was approved by the Ethics 
Committee of AIER Eye Group. All donated human 
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eyeballs were provided by the AIER Eye Bank of 
Changsha (Changsha, China). Consent forms were 
obtained by the Eye Bank. 10 eyes were used in 
this study. Human primary Müller cells were iso-
lated and cultured as described previously [25]. The 
phenotype of cultured Müller cells was verified by 
immunolabeling for glutamine synthase (GS).

Cell proliferation assay

Cell proliferation was assed using the CCK-8 kit 
(Solarbio, Beijing, China) according to the manu-
facturer’s instructions. Briefly, cells were cultured 
in triplicate in 96-well plates (5 × 103 cells/well) in 
low glucose (LG, 5.5 mM, mimic normal state) or 
high glucose (HG, 35  mM, mimic diabetic state). 
Some cells under HG conditions were treated with 
different concentrations of PB (10  μM, 30  μM, 
50  μM, 100  μM, and 150  μM) for 24  h after HG 
treatment for 24  h. Subsequently, cells were incu-
bated with 10  μl CCK-8 solution at 37 ℃ for 4  h. 
Optical density values were measured using a multi-
functional microplate reader (BioTek, VT, USA) at 
490 nm.

Mitochondrial membrane potential (MMP) analysis

The fluorescent, lipophilic, and cationic probe 
JC-1 (Beyotime, China) was used to measure 
MMP according to the manufacturer’s directions. 
Briefly, Müller cells were seeded in a 12-well plate 
(1 × 105 cells/cell), which were routinely maintained 
in LG (low glucose—5.5  mM) media, which was 
the control. When we started the experiment, we 
first used HG (high glucose—35  mM) treatment 
for 24-h to mimic diabetic state (hyperglycemia) 
in  vitro, then we added PB into HG cultured cells 
for additional 24-h as drug intervention (HG + PB 
group). Subsequently, the medium was removed, 
the cells were washed twice with cold phosphate-
buffered saline (PBS), and then treated with JC-1 
(10 mg/mL, 0.5 mL/well) at 37 °C for 30 min. After 
washing twice with 1 × incubation buffer, fluores-
cence intensity was immediately measured by fluo-
rescence microscopy. For JC-1 green, Ex = 485 nm 
and Em = 525  nm; for JC-1 red, Ex = 535  nm and 
Em = 590 nm.

Cell cycle assay

Cell cycle was analyzed using the Cell Cycle and 
Apoptosis Analysis Kit (Beyotime, China) accord-
ing to the manufacturer’s instructions. Briefly, Mül-
ler cells were seeded in 6-well plates (2 × 105 cells/
well). After treatment with LG, HG and HG + PB (as 
detailed above), the cells were collected and fixed in 
ice-cold 70% ethanol at 4 °C overnight. On the next 
day, the cells were washed with PBS and stained with 
PI in the dark for 30 min at 37 °C. Samples were ana-
lyzed using flow cytometry (BD FACSCelesta, USA), 
and 30,000–80,000 cells were collected per sample. 
Data were analyzed using FlowJo 10.6 software.

RNA extraction and quantitative polymerase chain 
reaction (qPCR)

Total cellular RNA was extracted from different 
groups of Müller cells using TRIzol Reagent (Thermo 
Scientific, USA). The cDNA was synthesized using 
Revert Aid First Strand cDNA Synthesis Kit (Vazyme 
Biotech, Nanjing, China) according to the manufac-
turer’s instructions. Gene-specific primers were syn-
thesized by TsingKe Biotech (Wuhan, China). The 
primer sequences used were as follows: Nrf2 (sense: 
TCA​GCC​AGC​CCA​GCA​CAT​CC; antisense: TCT​
GCG​CCA​AAA​GCT​GCA​TGC), p62 (sense: TCC​
AGG​ATC​AGG​GGT​TAG​GG; antisense: TAG​GCA​
AGC​TAT​GTG​CTG​GG), GCLC (sense: ACG​GAG​
GAA​CAA​TGT​CCG​AG; antisense: TAC​TGA​AGC​
GAG​GGT​GCT​TG), β-actin (sense: CAT​GTA​CGT​
TGC​TAT​CCA​GGC, antisense: CTC​CTT​AAT​GTC​
ACG​CAC​GAT). Gene expression was then analyzed 
by real-time PCR (Roche, Switzerland) with 40 cycles 
of 95 °C for 15 s and 60 °C for 30 s. The β-actin gene 
was used as an internal control. The mRNA expres-
sion levels were calculated using the 2−△△Ct method.

Western blot (WB) analysis

Müller cells were washed with cold PBS, and total 
proteins were extracted with RIPA buffer (Beyo-
time, China) supplemented with a Protease Inhibi-
tor Cocktail (Amyjet Scientific Co., Ltd, Wuhan, 
China). A BCA protein assay kit (Vazyme Bio-
tech) was used to analyze the protein concentra-
tions of the cell lysates. The protein samples (15 μg 
every sample) were subjected to sodium dodecyl 
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sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) followed by transfer to polyvinylidene flu-
oride (PVDF) films. After blocking for 2  h in 5% 
BSA (w/v), the PVDF membranes were incubated 
overnight at 4  °C with the following primary anti-
bodies: rabbit anti-Bcl2 (1:1000, Arigo, China); 
rabbit anti-GCLC (1:1000, Abcam, UK); rabbit 
anti-p62(1:1000, Abcam, UK); and mouse anti-
GAPDH (1:1000, Abcam, UK). The membranes 
were then rinsed three times and incubated with 
anti-rabbit/mouse IgG (1:5000, Molecular Probe, 
USA) for 2  h. An electrochemiluminescence ECL 
kit (Thermo, USA) was then used to observe the 
immunoreactive bands on the Odyssey Fc Imaging 
System (LI-COR Biosciences, USA) followed by 
quantification using ImageJ software.

Statistical analysis

SPSS 25.0 and GraphPad Prism 8.0 software were 
used to analyze the data and plot graphs. Pear-
son’s Chi-square test was used to compare cell 
cycles between the three groups, other compari-
sons among the three groups were performed using 
one-way ANOVA followed by Dunnett’s or Dun-
nett’s T3 post hoc tests. The results were expressed 
as the mean ± standard error. All experiments were 
repeated at least three times. P < 0.05 was used to 
indicate statistical significance.

Results

Morphological observation and identification of 
primary Müller cells

The cultured Müller cells at passage 3 were presented 
as cobblestone-like and some were elongated under 
phase-contrast light microscope (Fig.  1A). Immuno-
fluorescent investigation showed that > 90% of cells 
were positive for GS (Fig. 1B–D), indicative of high 
purity primary human Müller cells. Cells at passages 
3–5 were used for this study.

Protective effect of PB against HG‑induced 
cytotoxicity in Müller cells

When Müller cells were cultured with 35  mM glu-
cose (HG) for 48  h, the viability was significantly 
reduced compared to 5.5 mM glucose (LG) treatment 
(Fig. 2). PB at the concentrations of 100 and 150 μM 
significantly protected Müller cell from HG-induced 
cell death. PB at the concentrations of 10–50 μM did 
not show any protective effect (Fig. 2).

PB inhibited HG‑induced reduction in mitochondrial 
potential and Bcl2 expression in Müller cells

To further explore the mechanism of protective effect 
of PB on HG-induced Müller cell death, we exam-
ined the mitochondrial membrane potential (MMP) in 

Fig. 1   Morphology and 
identification of human 
Müller cells. A Morphology 
of primary Müller cells. 
Scale bar = 30 μm. B–D 
Identification of Müller 
cells by GS immunofluo-
rescence staining. B The 
nuclei of Müller cells were 
stained with DAPI. C GS 
expression in Müller cells. 
D The merged image of B, 
C. Scale bar = 15 μm. GS 
glutamine synthase
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Müller cells using JC-1 staining along with the analy-
sis of anti-apoptosis protein, Bcl2, using WB analy-
sis. GH treatment significantly reduced MMP in Mül-
ler cells (Fig. 3A, B), but the reduction was prevented 
by PB treatment (100  μM of PB, Fig.  3A–D). The 
expression level of Bcl2, as shown in Fig. 3E, F, was 
significantly reduced under the HG condition com-
pared with that in the control under LG conditions. 
PB treatment prevented HG-induced Bcl2 reduction.

PB inhibited the HG‑mediated S phase arrest in 
Müller cells

We next investigated the effect of PB on HG-induced 
on the cell cycle arrest. In cells treated with HG, the 
percentage of cells in G1 phase was reduced and 
the percentage of cells in the S phase was increased 
(Fig.  4). PB treatment (100  μM) prevented HG-
induced S phase arrest (P < 0.05, Fig. 4A, B).

PB activated the Nrf2/p62 pathway in HG‑treated 
Müller cells

To explore the effect of PB on the Nrf2/p62 pathway, 
the mRNA expression levels of Nrf2, GCLC, and p62 
were determined by qPCR, and the protein expression 
of GCLC and p62 was analyzed by WB. HG treat-
ment significantly reduced the mRNA expression of 
Nrf2, GCLC and p62 genes (Fig. 5A–C), and this was 
prevented by PB treatment (Fig.  5A–C). This effect 

was further confirmed at the protein levels by WB 
(Fig. 5D–F).

Discussion

Diabetic retinopathy shows increasing prevalence and 
incidence rates worldwide, and the risk of vision loss 
is very high. Currently, various therapeutic methods, 
including laser therapy, antibody injection, and vit-
rectomy, have been developed for treatment, which 
play an important role in preventing vision loss [3]. 
However, since treatments to restore retinas to pre-
diabetic retinopathy states have not yet been devel-
oped, inhibiting progression from non-proliferative 
diabetic retinopathy diabetic retinopathy to prolifera-
tive diabetic retinopathy is more important in prevent-
ing vision loss and is the subject of intensive research 
[1]. We discovered a lipid-lowering drug that could 
prevent the occurrence of diabetic retinopathy in pre-
vious studies [19, 25], and we conducted the current 
study to further evaluate the efficacy of the natural 
product extracts and their underlying mechanisms.

Müller cells, which are pivotal for maintaining ret-
inal homeostasis, exposure to high glucose levels can 
lead to retinal damage and dysfunction. Müller cell 
dysfunction is considered to being a major cause of 
DR, including diabetic retinal vasculopathy and neu-
ropathy [10, 26], although the underlying mechanism 
remains poorly defined. In the present study, we found 
that HG could reduce Müller cell viability through 
multiple mechanisms, including affecting mitochon-
drial membrane potential, inducing cell cycle arrest, 
and powering the expression of anti-apoptotic mol-
ecule Bcl2.

PB, a lipid-lowering drug, has strong antioxidant 
effects due to its unique molecular structure of the 
phenolic hydroxyl group. The beneficial effects of 
PB on various chronic diseases have been described 
previously [21, 22]. Recent evidence indicated that 
PB has a great therapeutic potential in diabetes and 
its complications, such as diabetic nephropathy [25]. 
We found that PB at the concentration of 100 μM and 
above could protect Müller cells from HG-mediated 
toxicity. PB treatment increased MMP and Bcl2 
expression, normalized cell cycle in Müller cells cul-
tured under HG conditions.

The Nrf2 pathway is the most important endog-
enous antioxidant pathway and significantly 

Fig. 2   PB improved Müller cell viability under HG con-
ditions. Primary human Müller cells were incubated with 
5.5  mM (LG) or 35  mM (HG) glucose for 48  h. The HG 
treated cells were also treated with or without different con-
centrations of PB. Cell viability was measured by CCK8 assay. 
Mean ± SEM, n = 3. *P < 0.05 versus the LG group. &P > 0.05 
versus the LG group. One-way ANOVA followed by Dunnett’s 
post hoc tests. HG high glucose, LG low glucose, PB probucol
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contributes to the regulation of oxidative stress and 
apoptosis in various cells [27]. Malfunction of the 
Nrf2 pathway is known to contribute to many neu-
rological diseases, such as Parkinson’s disease and 
Alzheimer’s disease [28–31]. Notably, this path-
way has been reported to be associated with diabetic 
complications, including diabetic nephropathy [32] 
and DR [29]. Autophagy has been shown to result in 

prolonged Nrf2 activation in a p62-dependent man-
ner. p62, an autophagy adaptor and acceptor, has a 
Keap1-interacting region domain, which allows p62 
to sequester Keap1 into autophagosomes and impairs 
Nrf2 ubiquitylation [33], thus leading to further acti-
vation of the Nrf2 signaling pathway [34]. Under 
normal conditions, the Nrf2-Keap1-p62 loop is in 
a dynamic steady state to maintain cellular redox 

Fig. 3   PB reduced HG-induced apoptosis in Müller cells. 
A–C Representative images of JC-1 staining of Müller cells 
in the LG, HG, and HG + PB groups, Green: JC-1 monomer 
(green), Red: JC-1 polymer. Scale bar = 15  μm. D Analysis 
of fluorescence intensity in Müller cells. Mean ± SEM, n = 3. 
***P < 0.001 versus the LG group. #P < 0.05 versus the HG 
group. One-way ANOVA followed by Dunnett’s post hoc tests. 

E Representative WB showing the expression of Bcl2 and 
housekeeping protein GAPDH. F Bar graph showing the rela-
tive expression of Bcl2. Mean ± SEM, n = 3. **P < 0.01 versus 
the LG group. One-way ANOVA followed by Dunnett’s post 
hoc tests. #P < 0.05 versus the HG group. One-way ANOVA 
followed by Dunnett’s T3 post hoc tests. HG high glucose, LG 
low glucose, PB probucol
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homeostasis [15]. In diabetes, the increased ROS pro-
duction leads to autophagy activation, which prompts 
p62 to bind with Keap1 and subsequently inactivates 
Nrf2 [35]. In this study, we found that PB could acti-
vate the Nrf2/p62 signaling pathway in Müller cells 

under HG conditions. The expression of its down-
stream antioxidant reaction elements GCLC was also 
normalized by PB treatment. These data suggest that 
PB might protect Müller cells from HG by activating 
the Nrf2/p62 pathway.

Fig. 4   PB prevented 
HG-induced S phase arrest 
in Müller cells. A Repre-
sentative plots of cell cycle 
distribution in the LG, HG, 
and HG + PB groups. B 
Statistical chart of the pro-
portion of cell cycle phases 
in each intervention group. 
Mean ± SEM, n = 420,463. 
*P < 0.05 versus the LG 
group. #P < 0.05 versus 
the HG group. Pearson’s 
Chi-square test was used. 
HG high glucose, LG low 
glucose, PB probucol

Fig. 5   PB activated the Nrf2/p62 antioxidant signaling 
pathway in Müller cells. A–C Nrf2, GCLC, and p62 mRNA 
expression levels. Mean ± SEM, n = 12. *P < 0.05 versus the 
LG group. ***P < 0.0001 versus the LG group. #P < 0.05 ver-
sus the HG group. One-way ANOVA followed by Dunnett’s T3 
post hoc tests. D–F GCLC and p62 protein expression levels. 

Mean ± SEM, n = 3. *P < 0.05 versus the LG group. **P < 0.01 
versus the LG group. ####P < 0.00001 versus the HG group. 
One-way ANOVA followed by Dunnett’s post hoc tests. HG 
high glucose, LG low glucose, PB probucol, Nrf2 Nuclear fac-
tor E2-related factor 2, GCLC glutamate cysteine ligase cata-
lytic subunit
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Given the detrimental impact of high glucose lev-
els on Müller cell function and retinal health, identi-
fying therapeutic agents that can mitigate this damage 
is essential. Probucol, with its antioxidant and poten-
tial autophagy-inducing properties, offers promise as 
a potential therapeutic option for managing retinal 
complications associated with high glucose levels. 
However, at present, it is challenging to foresee the 
potential clinical application of the findings due to the 
absence of animal or human data in this study. Nev-
ertheless, ongoing tests are in progress to investigate 
the in vivo effects of PB treatment.

Conclusions

In conclusion, this study highlights the beneficial 
effects of probucol in attenuating high glucose-
induced damage to Müller cells, potentially through 
enhancing the Nrf2/p62 signaling pathway. The find-
ings provide valuable insights into the molecular 
mechanisms underlying these protective effects and 
suggest probucol as a potential therapeutic candi-
date for managing retinal complications associated 
with high glucose levels. Further research is needed 
to uncover the precise mechanisms and determine the 
clinical viability of probucol as a treatment option.
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