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Abstract Age-related macular degeneration (AMD) 
is a retinal degenerative disorder prevalent in the 
elderly population, which leads to the loss of central 
vision. The disease progression can be managed, if 
not prevented, either by blocking neovascularization 
(“wet” form of AMD) or by preserving retinal pig-
ment epithelium and photoreceptor cells (“dry” form 
of AMD). Although current therapeutic modalities are 
moderately successful in delaying the progression and 
management of the disease, advances over the past 
years in regenerative medicine using iPSC, embry-
onic stem cells, advanced materials (including nano-
materials) and organ bio-printing show great pros-
pects in restoring vision and efficient management 

of either forms of AMD. This review focuses on the 
molecular mechanism of the disease, model systems 
(both cellular and animal) used in studying AMD, the 
list of various regenerative therapies and the current 
treatments available. The article also highlights on 
the recent clinical trials using regenerative therapies 
and management of the disease.
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Introduction

Age-related macular degeneration (AMD), an impor-
tant cause of permanent visual impairment, contrib-
utes to 5% of global blindness. AMD is marked by 
the accretion of lipid/protein depositions known as 
drusen in the macula of retina, leading to progressive 
damage in central vision and withering of retinal pig-
ment epithelial (RPE) layer, gradually causing com-
plete loss of sight in advanced stage (Fig. 1) [1]. As 
conferred through several studies on the physiological 
and functional changes in RPE during AMD includ-
ing, mitochondrial DNA damage [2], accumulation 
of lipofuscin [3] and altered expression of RPE struc-
tural proteins [4]; it has been observed that mainly the 
epithelial monolayer cells are affected with advanced 
age. The RPE cells show marked significance in sus-
taining retinal homeostasis majorly through its role as 
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a retinal blood barrier, transporter of metabolic prod-
ucts and ions from subretinal space into the blood, as 
well as a source of angiogenic growth factors release 
[5, 6] [e.g., transforming growth factor beta (TGF-β) 
and vascular endothelial growth factor (VEGF)]. It 
also delivers nutrients derived from the blood to the 
photoreceptor cells, conducts the phagocytosis of 
photoreceptor outer segment [7] and absorbs light. 
However, RPE’s constant exposure to light makes it 
highly vulnerable to oxidative stress that may over-
time damage the cellular tight junctions eventually 
disrupting the retinal blood barrier [8].

Being an age-related progressive disease, mul-
tiple risk factors contribute for the development of 
AMD, which involves both genetic and environmen-
tal factors. Complement pathway genes including 
complement factor H (CFH), complement C2, C3, 
CFB, toll-like receptor 3 (TLR3), toll-like recep-
tor 4 (TLR4) and ARMS2/HTRA1 are correlated 
with AMD [9, 10]. Any dysfunction among the 
immune components such as CFH and TLR3, that 
are detected in the drusen can lead to apoptosis of 
RPE and photoreceptor cells resulting in retinal 

degeneration [11–13]. Environmental and lifestyle 
susceptible factors including alcohol consumption, 
smoking, antioxidant intake, hypertension and body 
mass index (BMI) are also known to induce signifi-
cant risk on the onset of the disease [14].

An estimated risk of AMD is suspected to reach 
288 million by 2040 [15–18] and the disease prev-
alence increases from 2% for those aged 50–59 
years, to nearly 30% for those over the age of 75 
years [19]. Asia Pacific alone accounts for more 
than one-third of the macular degeneration cases 
[20]. However, Europeans have a higher prevalence 
of advanced version of AMD, geographic atrophy, 
(1.11%) than Africans (0·14%) and Asians (0.21%) 
[18]. “Dry” AMD (also known as geographic atro-
phy) is a chronic disorder and is characterized by 
conflux regions of degenerated RPE cells. In con-
trast, “Wet” AMD affects only 10–15% of AMD 
patients, however can rapidly progress into blind-
ness if untreated [21, 22]. Gender is another impor-
tant factor in AMD prognosis; as in high  blood 
pressure, overweight and obesity are associated 
with late AMD in women only [23]. Women are 

Fig. 1  Diseased versus healthy eye: AMD versus normal eye, featuring the undergoing changes in the neural and retinal layers
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potentially at higher risk in developing wet AMD 
compared to men [24].

Distinctive stages of AMD

AMD is classified into three stages: early, intermedi-
ate and late stage. Early stages of the disease show 
slow progressive painless thinning of the retina (atro-
phy) caused by an overall loss of neuronal cells due 
to advanced age and consequently goes unnoticed 
until later appearing at a severe stage. As the delicate 
tissue of the retina starts breaking down, the photo-
receptor cells (rods and cones) needed for perceiv-
ing image also wearies, as a result vision is blurred. 
Early and intermediate stages of the disease, com-
monly referred as Dry AMD are distinguished mainly 
by drusen size (found both internal and external of 
RPE) [25, 26], changes in the RPE pigments (lipo-
fuscin and melanin) and the degree of loss in vision 
[27]. Dry AMD shows inflammation and have mac-
rophages and active microglia cells abundant in the 
atrophic region [28, 29]. It also manifests characteris-
tic degeneration of RPE cells such as loss of melanin 
and accumulation of lipofuscin pigment, withering of 
RPE microvilli and disorientation of basal infoldings 
[30]. Dry AMD is as well associated with photore-
ceptor cell death, damage of the Bruch’s membrane 
along with manifestation of few small extracellu-
lar “hard” drusen aggregates which are otherwise 
degraded in healthy adults, is normal with advanced 
age. Nevertheless, an increase in size and number of 
such aggregates in the macula, characterized as “soft” 
drusen with large cluster of undefined edges is the 
prognosis of an early dry AMD, which can be readily 
detected by funduscopy. This technique relies on the 
variations in pigmentation caused due to lipofuscin 
and lipid–protein accumulations in the retinal fundus 
as a consequence of drusen inflation [31–33]. Late-
stage dry atrophic AMD displays blind spot in the 
visual field, conferring to vision loss. About 65% of 
the patients with late-stage dry AMD can develop wet 
AMD, characterized with the appearance of new unu-
sual leaky blood vessels that causes retinal edema, 
subretinal hemorrhage around the macula, resulting 
in blurry vision, and consequently interfering with 
retina’s function leading to vision impairment or 
blindness [34]. However, early and intermediate stage 
AMD with leaky chorio-capillaries is not uncommon 
[35, 36]. Another late-stage form of AMD associated 

with chronic deficiencies in neuronal photoreceptor, 
RPE, vascular cells and Bruch’s membrane is called 
geographic atrophy (GA), which appears in at least 
50% of patients with late AMD [37]. GA is character-
ized by patches of degenerated RPE regions that are 
even observed to develop in patients with wet AMD; 
however, they are not mutually exclusive [38]. The 
recent Age-Related Eye Disease Study (AREDS) on 
AMD elucidate negligible possibility of the disease 
manifestation when few small-sized drusen appear 
in patients. However, if many small drusen to few 
or many medium-sized drusen appear in one or both 
the eyes with occasionally one or more large-sized 
drusen, they can be indicative of early stage to inter-
mediate stage AMD. In the advanced stage of AMD, 
the central vision is impaired such as blurry or wavy 
areas due to damaged blood vessels and photorecep-
tors cells [39, 40] (Fig. 2).

Mechanisms of AMD: initiation and pathogenesis

The advancement of AMD is marked by the degen-
eration of monolayer RPE, which is incompetent to 
regeneration, alongside subsequent loss of adhesion 
junctions and physical separation with neural retina. 
RPE acting as a blood–retinal barrier tightly regulate 
the exchange of metabolites between the neural retina 
and the chorio-capillaries, and its secretion of growth 
factors including pigment epithelium-derived fac-
tor (PEDF) and VEGF is crucial for the protection of 
photoreceptor cells and angiogenic response, respec-
tively. However, with age, compromised functions 
in autophagy can lead to increased amyloid deposits 
in RPE cells resulting in their death and permanent 
physical separation of photoreceptor cells, conse-
quently interrupting the photo transduction pathways 
leading to visual impairment [41]. The physical 
detachment of the photoreceptor cells from RPE layer 
also causes their subsequent death, inflammation and 
vascularization further aggravating the disease con-
dition. Detailed molecular mechanisms leading to 
AMD disease initiation and progression are discussed 
below.

Drusen formation in AMD

Drusen and constituents In its earliest stages, AMD 
is perceived as drusen [42] and their formation may be 
linked to inflammation (Fig. 3) [43, 44]. This hypoth-
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Fig. 2  Distinct stages of 
age-related macular degen-
eration (AMD)

Fig. 3  Schematic representation of the steps involved during 
drusen formation and inflammation in AMD RPE cell. The 
figure depicts the process of lipid–protein aggregates deposi-
tion, which can lead to drusen and inflammation. In the pro-
cess of POS phagocytosis by RPE, the endocytosed material 
is digested within lysosomes. However, with age, dysregulated 
lysosomal function and decline in lysosome enzyme activ-
ity compromise the digestion process resulting in lipofuscin 

formation. This event subsequently increases oxidative stress 
within the cell which consequently induces stress conditions in 
mitochondria and endoplasmic reticulum, leading to misfolded 
protein aggregates and dysfunctional autophagy linked to 
impaired protein clearance in RPE. The disturbed clearance of 
toxic accumulates in aged RPE cells trigger inflammation and 
the AMD-associated extracellular drusen formation
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esis stems from the observation that drusen hub sev-
eral mediators of inflammation (e.g., C-reactive pro-
tein, adducts of the carboxyethylpyrrole protein and 
immunoglobulins) [43, 45–47], complement factors 
(complement factor H) and proteins (C3, C5, C6, C7, 
C8, C9) [44, 48] in addition to membrane-bound com-
plement inhibitors (complement receptor 1—CR1, 
i.e., CD35) and (membrane cofactor protein—MCP, 
i.e., CD46) [49, 50]. Based on immunohistochemical 
analysis of both hard and soft drusen, a wide range 
of molecules have been detected that are locally syn-
thesized within the RPE, retina and choroidal cells. 
These include human leukocyte antigen—DR iso-
type, apolipoprotein E, amyloid A, vitronectin and 
complement factors 5 and 9. In addition to such vari-
ous components, the significant localization of both 
immunoglobulin and C5b-9 indicates the potential 
role of immune complex activation in the biogenesis 
of drusen [38].

Drusen as well accumulate lipofuscin (also known 
as “age pigment”), advanced glycation end‐products 
(AGEs), high level of oxidized low‐density lipopro-
teins and oxysterols which collectively can cause RPE 
disintegration [51–53]. In addition to lipid molecules 
(e.g., phospholipids and glycolipids), cholesterol and 
carbohydrates, drusen also harbor various proteins in 
significant amounts which include apolipoproteins, 
vitronectin, clusterin, ubiquitin, fibronectin, integ-
rins, to name among many others [52, 54]. Over time, 
drusen may push through the RPE cells and disrupt 
the photoreceptors, causing blind spots in the central 
vision. Although these blind/blank spots go unnoticed 
by naked eyes, can be clinically detected as the drusen 
enlarge eventually causing distorted image formation 
in the retina.

Reactive oxygen species (ROS) and  inflammation 
leading to drusen formation Wear and tear of day-
to-day functions including long constant periods of 
light exposure, normal visual cycle metabolism and 
phagocytosis of photoreceptor outer segment (POS) 
by RPE generates oxidative stress and excess reac-
tive oxygen species (ROS) production, leading to 
increased inflammatory cytokines release that account 
for the chronic inflammation and drusen development 
[55]. Augmented ROS production coupled with oxida-
tive stress plays a pivotal role in AMD pathogenesis. 
Given the fact that retina has the highest oxygen con-
sumption due to photoreceptors high metabolic activ-

ity [56], the polyunsaturated fatty acids (PUFA) (e.g., 
phosphatidylcholine)-rich photoreceptors cell mem-
brane are readily oxidized generating peroxides and 
organic radicals in addition to carboxyethylpyrrole 
and 4-hydroxy-2-nonenal, which form adducts with 
proteins and are accumulated in the outer retina and in 
drusen [57–59]. Subsequently, these newly modified 
lipoproteins are highly active in promoting nonreac-
tive molecules into epitope-like structures that inevi-
tably induce immune recognition and inflammation 
[60, 61]. In aged RPE, the digestion of oxidized PUFA 
is disparaged, and as a consequence, it gets deposited 
in the form of lipofuscin in drusen. Being a chromo-
phore, lipofuscin absorbs high energy photons, which 
evokes its photooxidation-generating highly reactive 
N-retinylidene-N-retinylethanolamine (A2E) [62–64]. 
Subsequently, A2E upon blue light excitation gener-
ates singlet oxygen and superoxide, which collectively 
with A2E escalates ROS generation and RPE damage 
in the retina [65].

Oxidative stress, on the other hand can jeopard-
ize natural function of RPE to transport nutrients 
and ions across choriocapillaris and photorecep-
tors, exposing the cells to ionic changes that can 
activate inflammasomes [7, 66]. Several other cel-
lular functions induce the production of inflamma-
tory factors, including activation of pathogen- and 
damage-associated molecular patterns via patho-
gen recognition receptors [e.g. toll-like receptors 
(TLRs), receptor for advanced glycation end prod-
ucts (RAGEs) and NOD-like receptors (NLRs)] 
by their corresponding ligands [e.g. TLRs recog-
nize elastin, hyaluronic acid and fibronectin and 
secreted heat shock proteins (HSPs), NLR’s sense 
oxygen radicals, ultraviolet B and potassium (K+) 
efflux and nuclear factor kappa B is activated 
with RAGE] [66–75]. Incomplete degradation of 
phagocytosed POS is linked to the formation of 
lipofuscin in RPE cells [76], and it is notable that 
advanced glycation reactions play an important 
part in the lipofuscin formation [77]. The oxidized 
lipoproteins bind to RPE cell via CD36 and lec-
tin-like oxidized lipoprotein receptor 1, activating 
monocytes and macrophages to secrete cytokines 
(IL-8) and growth factors (TNF-alpha) [78–80]. 
With growing age, the accumulation of lipofuscin 
on an account of poor lysosome clearance function 
in RPE reflects the formation of highly reactive 
adduct known as advanced glycation end products 
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(AGEs) to concentrate within drusen as a product 
of protein (e.g., apolipoprotein E, amyloid and vit-
ronectin)/lipid modification in the course of aging 
[81–83].  These adducts binds onto the extracel-
lular receptors on RPE [TLRs, RAGEs and AGE 
receptors (AGERs)], the course of which follows 
inflammatory signal activation within the RPE 
and promotes inflammation [84]. While AGEs are 
endocytosed and removed by macrophages [85], 
a failure in macrophage recruitment may conse-
quently lead to accelerated retinal tissue damage 
[84].

Lysosomal and autophagy dysfunction

Besides oxidative stress induced by lipofuscin sensi-
tization of RPE cells to visible light, environmental 
strain and POS phagocytosis can also promote aber-
rant increase in ROS production which may lead to 
mitochondrial dysfunction (Fig. 4). As a consequence 
of lipofuscin-containing vitamin A‐derived fluoro-
phores, it inhibits mitochondrial respiration leading to 
its dysfunction, hereby promoting protein misfolding 
[86–88] and generating metabolic deficiency within 
RPE [87, 89, 90]. Different cellular processes, includ-
ing HSPs/molecular chaperones, ubiquitination/

Fig. 4  Schematic representation of RPE senescence in AMD. 
Constant exposure of RPE to light induces increased oxidative 
stress and lipofuscin photooxidation. This renders detrimental 
effects on RPE such as A2E production which causes DNA 
damage. Mitochondrial damage increases due to decrease in 
autophagy. Impaired lysosome function results in protein mis-

folding and age compromised activity of chaperons (HSP) 
and proteasome damage the protein repairing process which 
in addition to dysfunctional autophagy forms protein aggre-
gates. Protein aggregates are exocytose as drusen, and NLRP3 
inflammasome is activated
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proteasomal degradation and autophagy, are involved 
in clearing the damaged protein overload [91], which 
ensures cell’s survival during oxidative stress condi-
tion [92].

In aged RPE cells, the capacity to neutralize ROS 
weakens due to reduced antioxidant production, poor 
ability to repair DNA or protein damage and disturbed 
proteolysis [93, 94]. As a consequence of detrimental 
concentration of ROS deposition, the cellular pro-
teins are damaged leading to harmful protein aggre-
gation. Lipofuscin is one consequence of this protein 
aggregates conjugated with lipids since oxidized 
PUFAs from the POS are not efficiently digested in 
lysosomes of aged RPE cells [95–98], which conse-
quently induce oxidative stress, ultimately evoking 
further protein misfolding. Although HSP are avail-
able to combat such stress response generated in the 
cell [92], eventually its capacity also wearies, wherein 
autophagy fortifies its role in protein degradation 
[99].

Autophagy, being a lysosome-mediated natu-
ral cellular process for clearing damaged cellular 
substrates, is in particular activated during cellu-
lar stress conditions (e.g., oxidative stress, unfolded 
protein response or inflammation) [100, 101]. The 
crucial step in autophagic clearance is the fusion of 
autophagosome with lysosome, a process which is 
regulated by proteins Rab7, LAMP-2A and soluble 
N-ethyl-maleimide-sensitive factor attachment pro-
tein receptors [102]. Such proteins increase the per-
meability of lysosome membrane and upregulate the 
membrane-pore openings, promoting the fusion of 
the two organelles content [103]; thereafter the lyso-
some proteases (e.g., cathepsins D, B and L) degrade 
the enclosed cargo proteins [104, 105]. However, dur-
ing oxidative stress, the enzyme activity of the pro-
teases is decelerated by oxidized lipoproteins [106]. 
Subsequently, the lysosome function is impaired, 
which eventually results in decreased autophagy flux 
and may lead to RPE cell degeneration and AMD 
development [107]. Degraded autophagy function can 
also ensue from lipofuscin accumulates that incline to 
suppress lysosomal functions resulting into impaired 
autophagy [92]. Lipofuscin deposits once formed 
are hard to degrade, and upon photooxidation pro-
duces A2E [92, 108]. A2E, a photosensitive genera-
tor of oxygen free radicals and superoxide can impose 
toxic effect on RPE cell functions causing increase 
in DNA damage and inhibiting proteolysis [64, 109]. 

Additionally, impaired lysosomal function can stem 
from the event when chronic A2E accumulates tend to 
inhibit (vacuolar) V-ATPase (a proton-pump), thereby 
elevating lysosomal pH. As lysosomal enzymes (e.g., 
acid hydrolases and proteases) are highly sensitive to 
pH change, thereby any aberration can lead to its dys-
function causing impaired digestion of phagocytosed 
POS [96, 97, 110, 111].

Studies conducted showed that normal RPE rap-
idly induced autophagy after starvation in the absence 
of insulin growth factor (IGF)-1, whereas AMD RPE 
failed to increase the autophagic flux, ratio of LC3-II/
LC3-I (microtubule-associated protein 1 light chain 
LC3-I, after lipidation becomes LC3-II), under the 
same conditions [112], [113], wherein the conversion 
of LC3-I to the autophagic vesicle-associated form 
LC3-II is the determinant factor of autophagy flux 
[114]. The addition of IGF-1, expected to suppress 
autophagy through activation of the AKT/mTOR 
signaling in normal cells, did not seem to decrease the 
ratio of LC3-II/LC3-I in AMD RPE [112]. In spite 
of accumulation of autophagosomes in AMD RPE, 
the ratio of LC3-II/LC3-I under starvation revealed 
reduced autophagy [112]. These observations collec-
tively fortify that autophagy is rendered dysfunctional 
during AMD.

Retinal and photoreceptor cell death

The inception of photoreceptor cell (PC) breakdown 
is marked by deposits of cellular debris in the form 
of lipofuscin/drusen underlying the retinal epithelial 
layer. This results in gradual and permanent retinal 
detachment cutting off PC’s nutrient supply from the 
RPE cells and the choroid vessels (choriocapillaris), 
as so compromising their renewal essential for main-
taining vision. The constant shedding of the POS, 
accompanied by their phagocytosis  in the RPE cells 
is crucial to PCs survival. This phenomenon occurs 
naturally due to retina’s long exposure to visual light 
stimulus which promotes POS phagocytosis, followed 
by its lysosomal digestion that consequently induce 
the formation of superoxide radicals (ROS produc-
tion) in RPE. Conversely, abnormalities can be seen 
in various diseases, ranging from early-onset retinal 
dystrophies, such as retinitis pigmentosa or Usher’s 
syndrome to age-related diseases affecting the cen-
tral retina, such as AMD [115]. Subsequently, POS 
phagocytosis generates oxidative stress and these 
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cellular phenomena are crucially interrelated to lipo-
fuscin formation. The toxic A2E component of lipo-
fuscin [116, 117] inhibits RPE’s phagocytic func-
tions, finally leading to RPE cell death [118–120]. 
Elevated oxidative stress in addition to advanced 
age is ultimate because that can compromise normal 
functioning of cellular proteins such as ubiquitin. 
Ergo, ubiquitinated proteins in RPE do not undergo 
degradation and resultantly accumulates as aggre-
gates in subretinal space which consequently leads to 
RPE degeneration [118, 120, 121]. The incompetency 
of RPE cells lysosomes to completely degrade the 
digested POS is a critical consequence of advanced 
age, which encourages the accumulation of nonde-
gradable lipofuscin (vitamin A metabolites) within 
the lysosomes that can potentially cause RPE dam-
age associated with inflammation [43]. Once dam-
aged, the RPE can secrete growth factors like VEGF, 
basic fibroblast growth factor (bFGF) and TGF-β that 
are crucial for neovascularization in AMD [122]. To 
combat the effect, an endogenous anti-angiogenic 
growth factor known as PEDF has been studied as a 
potential inhibitor of VEGF [123]. However, in AMD 
patients, the PEDF levels in the vitreous have been 
reported to decrease vividly [124].

Ultrastructural pathology studies have suggested 
cell death in AMD is predominantly through necrop-
tosis and pyroptosis, while apoptosis may have a 
minor contribution [125]. Necroptosis is report-
edly predominant in RPE cell death associated with 
dry AMD [126], whereas pyroptosis occurs after the 
NLRP3 (NLR-with pyrin domains) inflammasome 
priming by IL-1α or C5a that activates inflammasome 
and alters the death mode induced by photooxidation 
from apoptosis to pyroptosis [127], 128. Hanus et al. 
[129] have reported necrosis in ARPE-19 cells when 
treated with  H2O2/tert‐butyl hydroperoxide in order 
to induce oxidative stress; the cells subsequently fea-
tured characteristics of necrosis such as depletion in 
ATP and receptor-interacting protein (RIP3) aggrega-
tion. An interaction between apoptosis and pyropto-
sis was studied using ARPE-19 cell line and primary 
human RPE cells loaded with lipofuscin, irradiated 
with blue light [130]. The irradiated lipofuscin-medi-
ated oxidative stress resulted in damage to the lyso-
somal membrane leaking lysosomal enzymes into the 
cytosol and eventually causing cell death by apopto-
sis. Tso et al. in 1996, first demonstrated that apopto-
sis is active in dry AMD [131, 132]. Further Dunaief 

et al. [133] described an increase in apoptosis in the 
inner choroid, RPE, photoreceptors and inner nuclear 
layer with RPE atrophy.

Cellular and animal model systems to study cell 
death mechanism

Retinal detachment triggers apoptosis of photore-
ceptor cells was observed among rat models with an 
increase in caspase-3, 7, 8, 9 activities [134, 135]. 
Along with intrinsic mechanism of apoptosis, ele-
vated expression of TNF-α, Fas-L and Fas, that regu-
late apoptosis’s extrinsic pathway [136, 137] were 
also reported, indicating caspases might not be the 
sole mediators of cell death post-retinal detachment 
[138, 139]. The mitochondria–nuclear translocation 
of apoptosis-inducing factor (AIF) was observed after 
retinal detachment (RD) in experimental rats [138], 
mice as well as in human retina [140], providing 
strong evidence of AIF contribution to RD-associated 
photoreceptor apoptosis. Poly (ADP-ribose) polymer-
ase (PARP) is regarded as an important factor in the 
regulation of cellular death in AMD. High concen-
trations of hydrogen peroxide-induced necrotic cell 
death, mediated by the activation of PARP1 in human 
RPE cells in culture, while nicotinamide adenine 
dinucleotide (NAD+) protected the cells against this 
effect [141]. Injection of Fas receptor inhibitor, Fas 
receptor-neutralizing antibody, small inhibitory RNA 
against the Fas receptor, all have shown to decrease 
the rate of apoptosis of photoreceptors after retinal 
detachment [133, 135]. When caspases are inhibited 
by benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoro-
methylketone (Z-VAD-fmk), necrosis is induced by 
RIP kinases, which then regulates photoreceptor cell 
death post RD, where RIP1 and RIP3 act as media-
tors of necrosis [142]. To further confirm necrosis 
form of photoreceptor death, it was studied that in 
human eyes with RD; there was an increased level 
of box1 protein, a factor released only from necrotic 
cells but not apoptotic cells [143]. As both necrosis 
and apoptosis cause photoreceptor cell death after 
RD, so it could be an effective way to protect pho-
toreceptor degeneration by simultaneously inhibiting 
caspases and RIP kinase.

Endoplasmic reticulum (ER) stress-induced apop-
tosis in retinal cell death has been observed dur-
ing AMD in both cultured RPE cells and in animal 
model retinas. Expression of a mutant (R14W) of 
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carbonic anhydrase IV, a glycosylphosphatidylinosi-
tol-anchored protein, highly expressed in the chorio-
capillaris of human eye, upregulate Bip (ER chaper-
one that facilitates protein folding and reduces ER 
stress), protein kinase R  (PKR)-like endoplasmic 
reticulum kinase (PERK) and CCAAT/enhancer-
binding protein homologous protein, a central media-
tor of ER stress-induced apoptosis (CHOP), markers 
of ER stress and the unfolded protein response, is 
accompanied by apoptosis [144]. Overexpression of 
Bip attenuates CHOP expression, apoptotic cascade 
activation and restored the retinal photoreceptor func-
tion in P23H rats [145]. Similarly, enhanced ER stress 
was reported in retinitis pigmentosa induced by the 
rhodopsin mutation P23H in Xenopus laevis [146] 
and also in rats [147]. In degenerating rd1 mouse 
retina, translocation of caspase-12 from the inner seg-
ments to the nuclei of the photoreceptors was studied 
with a further study confirming caspase-12 involve-
ment in rd1 cell death and along with other ER stress-
related factors such as GRP78/BiP, EIF2a and PERK 
[148, 149].

Clinical management

In spite of the progressive loss of vision caused by 
AMD, currently the prospect of preventing or cur-
ing macular degeneration is highly limited. Until 
recently the only available treatment to seal leaking 
blood vessels associated with wet AMD was with a 
laser called laser photocoagulation. Currently, clinical 
interventions for AMD involve intravitreal injection 
of anti-VEGF drugs such as pegaptanib sodium injec-
tion, aflibercept and the United States Food and Drug 
Administration (FDA) approved ranibizumab. How-
ever, these treatments do not target the underlying 
degeneration inherent in wet AMD, and there is high 
rate of recurrence when such treatments are discon-
tinued [150]. In case of surgical removal of the cho-
roidal neovascular membrane, vision improvement 
is often limited due to the previous damage already 
caused within the RPE, and the procedure might as 
well risk the amputation of remaining RPE and pho-
toreceptor cells. So far treatment administered for dry 
AMD encompasses allogeneic transplantation of RPE 
cells derived from human fetuses, nevertheless this 
was usually observed to be risked with graft rejec-
tion [151, 152]. Transplantation of RPE cell sheet 
is an uprising technique to treat dry AMD, still it’s 

invasive and complex surgical procedure that is asso-
ciated with a high risk of massive hemorrhage and 
retinal detachment. One of the commonly used treat-
ments for wet AMD is photodynamic therapy (PDT), 
which is based on the delivery of a photosensitizer 
to the choroidal neovascularization (CNV) site via a 
liposomal formulation of verteporfin [153], which in 
combination with anti-VEGF is known to maintain 
visual function during CNV [154]. Besides, AREDS 
studies also assessed the use of vitamins in the pro-
gression of AMD treatment [155]. Current AREDS 
studies suggest that omega-3 fatty acids, antioxidants 
and zinc might reduce AMD or may even restrict 
the rate of its progression [156]. The researchers of 
AREDS investigated a formula of antioxidant vita-
mins C and E, beta-carotene and zinc (known as the 
AREDS formula) to be orally administered on AMD 
patients. However, it was observed to initiate the risk 
of lung cancer in patients addicted to smoking [157]. 
To counter the side effects, the formula was later 
modified in 2006 and renamed as AREDS2 design, 
that may test the effectiveness of the study by admin-
istering omega-3 fatty acids or lutein and/or zeaxan-
thin [156, 158].

Current treatments

Neuroprotective treatments and gene therapy as can 
be aided to prevent initial stages of degeneration are 
however found to be inefficient when comes to treat-
ing the later stage of the disease. In cases of severe 
vision loss, retinal prosthesis devices were approved 
by FDA although it provides resolution below the 
level of functional vision and use external sensors 
for light detection [159–162]. Contrariwise, targeted 
replacement of photoreceptors can overcome such 
challenges and similar to RPE replacement, uses both 
embryonic stem cells (ESC) and induced pluripo-
tent stem cell (iPSC)-derived in vitro cultures in cell 
replacement therapies [163–167]. The current gold 
standard in treatment of neovascular AMD has been 
through the advent of intravenous VEGF inhibitors 
(e.g., ranibizumab/bevacizumab, aflibercept approved 
by FDA) [168], though the recovery rate has been 
estimated to be only 30% in patients [169]. The limi-
tation of this treatment resides for the fact that sus-
tained blocking of VEGF, an essential factor for cell 
survival, can accentuate to chorio-retinal atrophy.
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Regenerative therapy

Photoreceptor replacement During cellular degen-
eration, it is much easier to replace RPE cells than 
photoreceptors as the latter clump rather than form-
ing a single layer. Photoreceptors, however, after 
being transplanted into the retina must connect with 
the retinal neurons and form synapses in order to con-
duct their signals. Though this normally occurs in the 
developing retina, it is much harder to accomplish 
in an adult retina. Inspired by the early trials of RPE 
replacement, photoreceptor replacement was initially 
attempted using full-thickness retinal sheets or patches 
[170–172]. Later on, direct subretinal transplantation 
was attempted using undifferentiated retinal progeni-
tor cells, photoreceptor precursors and forebrain-
derived neuronal progenitors, which were expected to 
differentiate into photoreceptors due to the subretinal 
space microenvironment [173–178]. Various methods 
are tested for rod photoreceptor cells generation from 
pluripotent stem cell sources, though it appears to be 
more challenging to consistently generate high num-
bers of cone photoreceptors from stem cells in vitro 
[179–184]. However, encouraging data are emerging 
on methods to increase the fraction of cone photore-
ceptor cells generated in culture and transplantation 
[185–189].

RPE transplantation as a therapeutic model Recently, 
gene therapy was proven efficient in restoring RPE 
function [190, 191], yet RPE replacement remains a 
viable strategy for retinal degenerative diseases. Stem 
cells are used to replace the damaged RPE cells spe-
cifically in atrophy AMD by transplanting ESCs- or 
iPSC-derived products into the macula, paracentral 
retina or vitreous cavity so as to restore vision. Sub-
retinal transplantation of human embryonic stem cell 
(hESC)-derived RPE cells has been reported [180, 
192–194].  Similarly, autologous iPSC-derived RPE 
cells were safely transplanted into an AMD patient 
without immunosuppression [195]. The advancement 
in stem cell research, has escalated the possibility of 
maintaining retinal neurons in  vitro [196], followed 
by the de novo differentiation of retinal neurons from 
either ESC or iPSC lines [197, 198]. Major strate-
gies for cell transplantation are injection of a suspen-
sion of cells (less invasive) and surgical implantation 
of an RPE monolayer, with or without a supporting 
membrane. Studies by Carr et al. [185] demonstrated 

that injection of RPE cells in rat models tend to form 
clusters and show limited phagocytosis of photorecep-
tor outer segments. An experiment comparing injec-
tion and implantation of hESC-RPE revealed that 
implanted monolayers survived longer (for at least 
12  months) without evidence of tumor formation in 
immunocompromised rats [199]. A scaffold-free layer 
of iPSC-RPE, designed for clinical use showed no 
immune rejection or tumor formation when implanted 
in a primate model [200]. Furthermore, human clini-
cal trials using suspension injections of hESC-RPE 
had no uncalled safety issues related to the injected 
cells [201]. Based on this research, first individual 
with AMD to ever receive a transplanted layer of 
autologous iPSC-RPE cells was reported [202].

Biomaterials The use of purified extracellular 
matrix proteins (such as collagen IV and laminin) dif-
ferentially influences hESC-RPE growth, pigmenta-
tion, barrier function and also improves the production 
of differentiated iPSC-RPE cells [203]. Bioengineered 
polymers used as matrices promote the formation of 
a single layer of polarized RPE cells with specialized 
apical and basal features, the disruption of the same 
that is implicated in retinal diseases [204]. Synthetic 
Bruch’s membranes were constructed from fibroin, 
supported the co-cultivation of RPE cells and micro-
vascular endothelial cells [205]. Biodegradable and 
biocompatible biomaterials working as curative matri-
ces either individually or along with the cell trans-
plants or drug-loaded matrices, are widely explored. 
The commonly used polymers are polylactide, pol-
ylactide-co-glycolide and acrylic polymers, which 
can be degraded in vivo to form natural metabolites. 
Porous poly(ε-caprolactone) (PCL) is biocompatible, 
helps metabolite transport and improve human fetal 
retinal pigment epithelium cell function compared 
with non-porous PCL or porous polyester [206]. Other 
polymers engineered for RPE transplantation, include 
parylene [207]. Parylene, a xylene-based hydrocarbon 
polymer approved for biomedical use and can be engi-
neered with ultrathin regions such that it has perme-
ability similar to Bruch’s membrane [208]. hESC-RPE 
cultured on these ultrathin parylene-C membranes are 
able to adhere, proliferate, develop polarized monolay-
ers and maintain RPE characteristics [208]. Advanced 
surgical techniques were developed to implant the par-
ylene substrates into a rat model of AMD, where more 
than 98% of the transplanted RPE cells survived the 
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procedure [209]. Future RPE implants might include 
biocompatible scaffolds that mimic a healthy Bruch’s 
membrane [210].

Nano‑therapeutics Nanoparticles (NPs) may be 
used to deliver drugs for easier (topical) and sustained 
delivery, reducing the frequency of intravitreal injec-
tions. NPs loaded with ganciclovir administered into 
the vitreous, showed prolonged presence of the drug 
in the eye with least toxicity manifestation [211]. Inor-
ganic NPs are observed to have anti-angiogenic prop-
erties as reported by Kim et al. [212] and Jo et al. [213] 
in their studies using gold and silicate nanoparticles, 
respectively, which could be considered as a viable 
treatment for neovascularization. The use of yttrium 
oxide nanoparticles  (Y2O3) as free radical scavengers 
has been reported to prevent photoreceptor cell death 
and an alternative treatment for oxidative stress asso-
ciated retinal degeneration [214, 215]. Therapeutic 
genes may also be delivered to RPE and photorecep-
tor cells by NPs. For example, studies reported using 
murine model of retinitis pigmentosa photoreceptor 
cells that were treated with CK30PEG10k-compacted 
DNA nanoparticles, which led to transgene expres-
sion in RPE [216]. Also, liposome–protamine–DNA 
complex was used as delivery system for RPE65 gene 
in knock-out mice, which efficiently expressed RPE65 
gene for a long time [217].

Indeed, NPs were shown to be taken up by RPE 
cells both in  vitro and in  vivo [218–221]. Recent 
studies using NPs as a delivery system for marker 
gene encoding green fluorescent protein (GFP) into 
the subretinal space or vitreous of adult mice showed 
significant levels of GFP expression in photorecep-
tors and RPE cells [222, 223]. Interestingly, nano-
particles, in advantage to their small size (< 100 nm), 
when injected in the vitreous can migrate through the 
retinal layers and tend to accumulate in the RPE cells 
[219, 220]. For instance, nanoparticles (1–1000 nm, 
generally 20–300  nm) of liposomes can be devel-
oped for sustained release of intraocular drug [224]. 
Sakurai et al. [225] reported that the size of nanopar-
ticles is correlated with the efficiency of drug delivery 
in vitreous humor through the study using intravitre-
ous injection of three sizes of nanoparticles (50 nm, 
200  nm and 2  µm) in rabbit eyes. VEGF antisense 
oligonucleotides impregnated with NPs were success-
fully delivered to ARPE-19 cells and inhibit VEGF 
secretion and mRNA expression [218]. Also, studies 

with bFGF-loaded NPs showed significant protection 
against photoreceptor degeneration in RCS rats due 
to sustained release of bFGF following intravitreal 
injection [226]. Nanotechnology-based PDT has been 
recently tested in laser-induced CNV animal models. 
The use of a dendritic photosensitizer (dendrimer 
porphyrin encapsulated by a polymeric micelle) led 
to a highly selective accumulation of photosensitizer 
in the CNV lesions, and significantly enhance the effi-
cacy of PDT [227]. These data provide a novel para-
digm for the treatment of AMD through dendrimer-
based nanomedicine. Hence, the intracellular delivery 
of molecules by NPs to RPE or photoreceptor cells 
may open a wide range of therapeutic avenues for 
AMD.

Conclusion

Regenerative therapies though have addressed the dif-
ferent forms of AMD pathogenesis, there is currently 
no treatment approved that may completely cure the 
disease. However, several ongoing trials are aiming 
to find way to at least cease the progression of early 
AMD into an even serious stage. Several challenges 
need to be tackled in order to restore the damaged 
epithelial cells, neural layers and avert atrophy mani-
festation. Nevertheless, the progress in clinical trans-
lational research in replacement of RPE using stem 
cells is currently in progress, but the overall advance-
ment in using in  vitro models for retina neural cell 
replacement is still not promising. Although positiv-
ity is seen with in vivo models in understanding the 
effectiveness and safety of new therapies for AMD, 
the next leap toward clinical translation must be care-
fully approached and with treatments made available 
to the patients at financially reasonable level.
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