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Abstract

Purpose To examine changes in retinal ganglion cell

complex (GCC) and peripapillary retinal nerve fiber

layer (RNFL) thicknesses by optical coherence

tomography (OCT) in contralateral and ipsilatateral

eyes of carotid artery stenosis (CAS) patients before

and after carotid endarterectomy (CEA).

Methods Forty-two consecutive patients diagnosed

with CAS (70–99% stenosis rate) who underwent

CEA were included in this prospective cross-sectional

study. The indication for CEA was based on the

Asymptomatic Carotid Atherosclerosis Study. Dop-

pler ultrasonography and computed tomography

angiography were performed to calculate CAS. All

the subjects underwent an ophthalmological exami-

nation, including best corrected visual acuity (BCVA),

intraocular pressure (IOP) measurements, biomi-

croscopy, fundoscopy, and OCT before and after the

surgery.

Results The mean preoperative intraocular pressure

was 15.2 ± 2.1 mmHg in the ipsilateral eye and

15.8 ± 2.7 in the contralateral eye. The mean post-

operative intraocular pressure in the ipsilateral and

contralateral eye was 18.6 ± 3.0 and 19.3 ± 3.8,

respectively. The intraocular pressure was signifi-

cantly higher in postoperative eyes (p = 0.0001).

There was a statistically significant decrease in

peripapillary RNFL thickness in superior quadrants

postoperatively in ipsilateral eyes. The retinal GCC

layer thickness was not significantly different before

and after CEA in ipsilateral and contralateral eyes.

Conclusions Carotid endarterectomy results in thin-

ning of the superior peripapillary RNFL thickness. To

the best of our knowledge, this is the first study to

examine peripapillary RNFL and GCC thicknesses

before and after CEA.
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Introduction

The ophthalmic artery is the first intradural branch of

the carotid artery. Thus, carotid artery blood flow

plays an important role in ocular microcirculation [1].

Internal carotid artery (ICA) stenosis leads to chronic

progressive hypoperfusion of the eye [2]. Previous

studies reported that various ophthalmic manifesta-

tions, including decreased visual function, amaurosis

fugax, rubeosis iridis, neovascular glaucoma,

ischemic ocular pain, and optic disk edema or atrophy,

were associated with reduced blood flow in the

ophthalmic artery in carotid artery stenosis (CAS)

patients [3, 4]. Ocular ischemia in CAS patients is

thought to be due to direction of reverse blood flow

from the ophthalmic artery to ipsilateral brain, known

as the steal phenomenon [3]. However, in some

patients with ICA disease, the eyes show no clinical

symptoms of ocular ischemia [3]. The underlying

reason for the lack of symptoms is unknown. Carotid

endarterectomy (CEA) is a widely accepted, effective

surgical treatment option for symptomatic and asymp-

tomatic patients with high-grade CAS [2, 5, 6].

Numerous studies demonstrated improved retinal

blood flow after CEA [7, 8]. However, information

is lacking on changes in peripapillary retinal nerve

fiber layer (RNFL) and ganglion cell complex (GCC)

thicknesses after CEA.

Spectral domain optical coherence tomography

(SD-OCT) is a noninvasive, reproducible imaging

method, which allows demonstration of macular and

peripapillary regions in a short time, with high axial

resolution [9, 10]. Thinning of peripapillary retinal

nerve fiber and ganglion cell thicknesses, resulting in

progressive injury of the optic nerve, is a well-known

phenomenon in various diseases, such as glaucoma,

optic neuritis, and non-arteritic ischemic optic neu-

ropathy (NAION) [11–15].

There is a major risk of cerebral and ocular

ischemic attacks in CAS patients, and CEA plays a

vital role in preventing further cerebral and ocular

ischemic events [5, 16]. Changes in RNFL and GCC

layer thicknesses before and after CAS could provide

valuable information to aid the management of CAS,

determine the requirement for CEA, and assess the

effect of CEA surgery. This study aimed to examine

changes in retinal GCC layer and peripapillary RNFL

thicknesses by OCT in contralateral and ipsilateral

eyes of CAS patients before and after CEA.

Methods

The present study was approved by the local ethics

committee and followed the tenets of the Declaration

of Helsinki. Written informed consent was obtained

from all subjects.

Forty-two patients who were diagnosed with CAS

(70–99% stenosis rate) and underwent CEA surgery

were included in this prospective cross-sectional

study. The exclusion criteria were as follows: a history

of any symptoms or signs of an ocular ischemic attack;

a history of any ocular disease (glaucoma, diabetic

retinopathy, maculopathy, age-related macular degen-

eration, ocular ischemic syndrome, epiretinal mem-

branes, NAION or arteritic ischemic optic neuropathy,

and optic neuritis) and any ocular surgery; a high

refractive error (C ± 6D spherical C ± 3D cylindri-

cal); disk abnormalities; a history of previous CEA or

carotid artery stenting; total CAS; and bilateral

CAS[ 50%.

All the subjects underwent an ophthalmological

examination, including best corrected visual acuity

(BCVA), intraocular pressure (IOP) measurements,

biomicroscopy, fundoscopy, and OCT. Only patients

with BCVA of 20/20 were included. Preoperative and

postoperative single measurement of IOP was per-

formed to the all patients in the daytime (at 14.00 pm)

in upright posture with Goldmann applanation tonom-

etry. In the study group, 21 patients had systemic

hypertension and atherosclerosis, 11 had diabetes

mellitus (without diabetic retinopathy), and 3 were

current smokers or ex-smokers. The indication for

CEA was based on the Asymptomatic Carotid

Atherosclerosis Study [17]. Doppler ultrasonography

and computed tomography angiography were per-

formed to calculate CAS. All the patients underwent

CEA under general anesthesia. The carotid artery was

exposed by making a longitudinal incision along the

anterior border of the sternocleidomastoid muscle.

The common carotid artery, ICA, and external carotid

artery were occluded with vascular clamps. The

common carotid artery and ICA were longitudinally

opened along the anterior vessel walls, and atheroma-

tous plaques and nearby intima were carefully

removed from the carotid bifurcation. The longitudi-

nal incision was closed using a polytetrafluoroethylene

patch. The vascular clamps were then removed, and

the skin incision was closed.
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An experienced investigator who was blinded to the

study monitored the patients using SD-OCT (RS-3000

Lite, Nidek, Japan), according to macula map and disk

map protocols. Macular thickness was examined in the

following areas: the central 1 mm of the macula

(fovea), 1–3 mm of the parafoveal macular area, and

3–6 mm of the perifoveal macular area. The GCC

thickness [consisting of the RNFL, GCL, and inner

plexiform layer (IPL)] was examined in the following

areas: 1–3 mm of the parafoveal macular area and

3–6 mm of the perifoveal macular area. The RNFL

thickness was examined in the following areas:

superior, inferior, nasal, and temporal quadrants.

Statistical analysis

The Shapiro–Wilk test was conducted to assess the

distribution of normality for continuous variables prior

to the data analysis. For independent groups, the

Student’s t test was used for continuous variables with

a normal distribution, whereas the Mann–Whitney

U test was performed for continuous variables with a

non-normal distribution. For dependent groups, a

paired samples t test was used for continuous variables

with a normal distribution, whereas Wilcoxon’s

signed-rank test was performed for continuous vari-

ables with a non-normal distribution. Descriptive

statistics were expressed as mean and standard devi-

ation for normally distributed variables and as median

and first-quartile and third-quartile values for non-

normally distributed variables. The significance level

was determined as 0.05 in all statistical analyses. All

statistical analyses were performed using IBM SPSS

20 (IBM Corp., Armonk, NY, USA).

Results

The study included 42 ipsilateral and 42 contralateral

eyes of 42 patients (30 males and 12 females), with a

mean age of 63.7 ± 5.58 years. The mean preopera-

tive IOP was 15.2 ± 2.1 mmHg in the ipsilateral eye

and 15.8 ± 2.7 in the contralateral eye. The mean

postoperative IOP in the ipsilateral and contralateral

eye was 18.6 ± 3.0 and 19.3 ± 3.8, respectively. The

IOP was significantly higher in postoperative eyes

(p = 0.0001) (Fig. 1). There was a statistically signif-

icant decrease in peripapillary RNFL thickness in

superior quadrants postoperatively in ipsilateral eyes

(Tables 1, 2, Fig. 2). There was no statistically

significant difference between preoperative and post-

operative eyes in terms of foveal thickness (all

p values[ 0.05, Tables 3, 4). Parafoveal and peri-

foveal thicknesses were not significantly different

before and after carotid surgery (all p values[ 0.05,

Tables 3, 4). The GCC thickness was not significantly

different before and after CEA in ipsilateral and

contralateral eyes (all p values[ 0.05, Tables 5, 6).

Discussion

In this study, there was a statistically significant

increase in IOP in both eyes 1 month after CAE.

Peripapillary RNFL thickness in the superior quadrant

was decreased in ipsilateral eyes postoperatively.

An autoregulation mechanism provides stable ocu-

lar blood flow to the retina, choroid, and optic disk

[18]. However, in patients with CAS, dysfunction of

this autoregulation mechanism leads to reduced blood

flow, resulting in ischemia and hypoxia of astrocytes

in the disk and mitochondria in retinal ganglion cell

axons [18, 19]. This leads to apoptosis and autophagia

of retinal ganglion cells [20]. Autoregulation of ocular

blood flow is determined by ocular perfusion pressure.

When the ocular perfusion pressure decreases below a

threshold value, symptoms of ocular ischemic syn-

drome begin to appear [18]. Arterial hypertension

reduces the ability of the eye to autoregulate blood

flow when ocular perfusion pressure changes and

exacerbates the ocular ischemic symptoms [21]

Fig. 1 Comparison of preoperative and postoperative IOP
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Fluctuations in ocular perfusion pressure associated

with atherosclerosis can have adverse effects on vessel

diameters, thereby increasing the risk of ischemic

injury [22]. Chronic hypertension adjusts the autoreg-

ulation mechanism to high levels and adapts the

mechanism to higher blood pressures. This

mechanism ensures that the patient is resistant to high

but not low blood pressure [20]. In this study, most of

the patients were hypertensive and accustomed to high

blood pressure. The sudden decrease in ocular blood

flow during surgery could contribute to ganglion cell

death.

CEA is a well-known procedure to decrease the risk

of strokes in CAS patients. However, the procedure is

associated with a connatural risk of perioperative

complications [23, 24]. For example, previous studies

demonstrated that CEA increased cerebral and ocular

blood flow [2, 25–28]. Research also reported that

ciliary body ischemia caused normal or low IOP in

CAS patients and that the blood supply of the ciliary

body increased after CEA, leading to an increase in

aqueous humor production and a subsequent rise in

IOP [27, 29–31]. Kozobolis et al. [18] found no

difference in IOP between eyes operated on and fellow

eyes before surgery and IOP in postoperative month 6.

In contrast, we found increased IOPs after CEA.

However, the increase was slight (i.e., no greater than

3–4 mmHg). Thus, none of the patients required

antiglaucomatous therapy and surgery. As the patients

Table 1 Descriptive statistics and comparison results for preoperative–postoperative peripapillary retinal nerve fiber layer thickness

Parameters Preoperative Postoperative

Ipsilateral Contralateral p value Ipsilateral Contralateral p value

pRNFL-S (lm) 121 (107–140) 114 (100–127) 0.26 110 (98–330) 122 (106–132) 0.19

pRNFL-N (lm) 86 (77–101) 81 (53–88) 0.11 80 (75–94) 75 (55–97) 0.62

pRNFL–I (lm) 119 (98–132) 130 (105–152) 0.14 121 (98–142) 125 (104–140) 0.74

pRNFL-T (lm) 70 (58–79) 67 (60–95) 0.64 64 (53–72) 63 (53–65) 0.61

Descriptive statistics are presented as median (25th–75th percentiles)

pRNLF peripapillary retinal nerve fiber layer, S superior, N nasal, I inferior, T temporal

Table 2 Descriptive statistics and comparison results for ipsilateral and contralateral peripapillary retinal nerve fiber layer thickness

Parameters Ipsilateral Contralateral

Preoperative Postoperative p value Preoperative Postoperative p value

pRNFL-S (lm) 121 (107–140) 110 (98–330) 0.04 114 (100–127) 122 (106–132) 0.82

pRNFL-N (lm) 86 (77–101) 80 (75–94) 0.07 81 (53–88) 75 (55–97) 0.93

pRNFL–I (lm) 119 (98–132) 121 (98–142) 0.98 130 (105–152) 125 (104–140) 0.41

pRNFL-T (lm) 70 (58–79) 64 (53–72) 0.13 67 (60–95) 63 (53–65) 0.06

Descriptive statistics are presented as median (25th–75th percentiles)

pRNLF peripapillary retinal nerve fiber layer, S superior, N nasal, I inferior, T temporal

Fig. 2 Comparison of preoperative and postoperative peripap-

illary retinal nerve fiber layer thickness
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in the present study were assessed just 1 month after

CEA, the increase in IOP could be attributed to the

carotid surgery.

Numerous previous studies demonstrated thinning

of the inner retina in chronic NAION patients [32–36].

Tesser et al. [37] reported the presence of infarcts in

the superior quadrant in NAION patients. The loss of

ganglion cells in NAION results in a reduction in

macular and central retinal thicknesses. Other

researchers showed that macular thinning in cases of

chronic NAION was a good clinical determinant of

visual dysfunction [33]. Kupersmith et al. [34]

demonstrated decreased GCL and IPL thickness at

month 1 in NAION patients but not RNFL thinning

1 month after NAION. In the present study, none of

the patients had NAION or decreased visual acuity.

Reperfusion was present in our patients.

During carotid surgery, hypoperfusion syndrome

can occur because of clamping of the ICA [38].

Regional cerebral ischemia may also develop, depend-

ing on the capacity of compensatory mechanisms,

such as collateral blood flow, oxygenation, and blood

pressure [31, 38]. After removal of the carotid clamp

and elimination of atherosclerotic plaques, ICA blood

flow returns, with variable degrees of reperfusion. In

Table 3 Descriptive statistics and comparison results for preoperative–postoperative foveal, parafoveal and perifoveal thickness

Parameters Preoperative Postoperative

Ipsilateral Contralateral p value Ipsilateral Contralateral p value

Fovea (lm) 265 (249–288) 270 (251–294) 0.51 256 (245–282) 263 (249–291) 0.28

Para-S (lm) 332 (316–341) 336 (323–351) 0.32 319 (284–332) 331 (317–348) 0.06

Para-N (lm) 332 (326–340) 334 (324–341) 0.82 333 (320–340) 334 (322–348) 0.62

Para-I (lm) 328 (314–334) 327 (312–335) 0.84 321 (310–340) 328 (308–344) 0.84

Para-T (lm) 315 (306–327) 316 (306–323) 0.7 310 (298–328) 318 (307–332) 0.2

Peri-S (lm) 299 (284–303) 299 (286–303) 0.74 293 (278–303) 295 (282–311) 0.91

Peri-N (lm) 308 (292–319) 312 (299–318) 0.37 308 (291–317) 307 (296–318) 0.37

Peri-I (lm) 287 (265–302) 292 (274–300) 0.18 279 (266–299) 286 (274–297) 0.24

Peri-T (lm) 278 (269–290) 280 (269–294) 0.38 277 (266–295) 285 (274–302) 0.22

Descriptive statistics are presented as median (25th–75th percentiles)

Para parafoveal, Peri perifoveal, S Superior, N nasal, T temporal, I inferior

Table 4 Descriptive statistics and comparison results for ipsilateral–contralateral foveal, parafoveal and perifoveal thickness

Parameters Ipsilateral Contralateral

Preoperative Preoperative p value Preoperative Postoperative p value

Fovea (lm) 265 (249, 288) 256 (245–282) 0.64 270 (251, 294) 263 (249–291) 0.28

Para-S (lm) 332 (316–341) 319 (284–332) 0.07 336 (323–351) 331 (317–348) 0.27

Para-N (lm) 332 (326–340) 333 (320–340) 0.17 334 (324–341) 334 (322–348) 0.52

Para –I (lm) 328 (314–334) 321 (310–340) 0.47 327 (312–335) 328 (308–344) 0.86

Para-T (lm) 315 (306–327) 310 (298–328) 0.45 316 (306–323) 318 (307–332) 0.75

Peri-S (lm) 299 (284–303) 293 (278–303) 0.86 299 (286–303) 295 (282–311) 0.72

Peri-N (lm) 308 (292–319) 308 (291–317) 0.73 312 (299–318) 307 (296–318) 0.14

Peri-I (lm) 287(265–302) 279(266–299) 0.29 292(274–300) 286(274–297) 0.08

Peri-T (lm) 278 (269–290) 277 (266–295) 0.46 280 (269–294) 285 (274–302) 0.69

Descriptive statistics are presented as median (25th–75th percentiles)

Para parafoveal, Peri perifoveal, S Superior, N nasal, T temporal, I inferior
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cases of relative ischemia reperfusion, subclinical

injury (reversible or irreversible) may occur [39–42].

Many previous studies reported that increased

activation of the N-methyl-D-aspartate (NMDA)

receptor was responsible for neuronal degeneration

induced by ischemia reperfusion [43–45]. Retinal

neurodegeneration (i.e., retinal ganglion cell apoptosis

and thinning of the inner retina) occurred following

intravitreal injections of high doses of NMDA

[46, 47]. In experimental models of retinal neurode-

generation, decreased retinal blood flow exacerbated

ischemic retinal injury [48, 49]. In addition, recent

studies revealed that vascular endothelial growth

factors (VEGFs) played an important role in retinal

neuroprotection [50, 51]. Nishijima et al. reported that

VEGF-A had neuroprotective effects in ischemia and

that VEGF inhibition appeared to aggravate ischemia-

induced neural damage [51, 52]. Research also

demonstrated that VEGF and VEGFR-2 were upreg-

ulated in carotid stenosis and that circulating levels of

VEGF and VEGFR-2 decreased after CEA [53].

Shvartsman et al. [54] reported that VEGF reduced

axonal disruption and promoted axonal regeneration

after acute ischemic injury.

Our findings pointed to reduced superior peripap-

illary RNFL thickness but relatively little loss in GCC

thickness (macular RNFL, GCL, and IPL) after CEA.

The observed pattern of injury may be explained by

the protective effect of VEGF on axons relative to that

of the ganglion cell body. As noted above, VEGF

Table 5 Descriptive statistics and comparison results for preoperative–postoperative parafoveal and perifoveal GCC thickness

Parameters Preoperative Postoperative

Ipsilateral Contralateral p value Ipsilateral Contralateral p value

Para-SN (lm) 111 (103–121) 115 (109–121) 0.51 107 (102–120) 112 (105–119) 0.63

Para-ST (lm) 105 (91–111) 110 (94–114) 0.24 97 (90–108) 111 (96–113) 0.06

Para-IN (lm) 114 (105–124) 106 (97–118) 0.46 113 (106–119) 114 (99–119) 0.69

Para-IT (lm) 107 (93–110) 104 (93–114) 0.93 101 (90–112) 108 (95–112) 0.64

Peri-SN (lm) 112 (104–117) 113 (106–117) 0.67 110 (101–116) 110 (106–117) 0.82

Peri-ST (lm) 88 (81–96) 91 (87–99) 0.75 86 (78–94) 91 (82–99) 0.39

Peri-IN (lm) 110 (98–117) 112 (104–114) 0.73 105 (96–116) 111 (99–114) 0.96

Peri-IT (lm) 84 (78–99) 92 (85–100) 0.32 83 (75–96) 91 (85–100) 0.06

Descriptive statistics are presented as median (25th–75th percentiles)

Para parafoveal, Peri perifoveal, SN superior nasal, ST superior temporal, IN inferior nasal, IT inferior temporal

Table 6 Descriptive statistics and comparison results for ipsilateral–contralateral parafoveal and perifoveal GCC thickness

Parameters Ipsilateral Contralateral

Preoperative Postoperative p value Preoperative Postoperative p value

Para-SN (lm) 111 (103–121) 107 (102–120) 0.44 115 (109–121) 112 (105–119) 0.82

Para-ST (lm) 105 (91–111) 97 (90–108) 0.12 110 (94–114) 111 (96–113) 0.87

Para-IN (lm) 114 (105–124) 113 (106–119) 0.75 106 (97–118) 114 (99–119) 0.87

Para-IT (lm) 107(93–110) 101 (90–112) 0.87 104 (93–114) 108 (95–112) 0.87

Peri-SN (lm) 112 (104–117) 110 (101–116) 0.34 113 (106–117) 110 (106–117) 0.16

Peri-ST (lm) 88 (81–96) 86 (78–94) 0.14 91 (87–99) 91 (82–99) 0.61

Peri-IN (lm) 110 (98–117) 105 (96–116) 0.29 112 (104–114) 111 (99–114) 0.48

Peri-IT (lm) 84 (78–99) 83 (75–96) 0.21 92 (85–100) 91 (85–100) 0.45

Descriptive statistics are presented as median (25th–75th percentiles)

Para parafoveal, Peri perifoveal, SN superior nasal, ST superior temporal, IN inferior nasal, IT inferior temporal
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plays a role in axonal protection. In the present study,

ischemia reperfusion injury due to CEA may have

reduced VEGF levels. The limited and relatively short

period of ischemia may have caused localized superior

peripapillary RNFL quadrant defects in ipsilateral

eyes. We did not detect a significant difference

between preoperative and postoperative RNFL thick-

nesses in contralateral eyes. The aforementioned may

be explained by the regular blood flow of the

contralateral carotid artery and absence of ischemia.

Zhang et al. [55] demonstrated that anti-VEGF

treatment improved neurological function in patients

with malignant tumors of the nervous system.

Novitzky et al. [56] showed neuroprotective effect of

bevacizumab after middle cerebral artery occlusion.

These studies researched the situations where the

VEGF levels are abnormally high. Anti-VEGF agents

might have a neuroprotective effect in cases that the

level of VEGF is high. We believe that the anti-

VEGFs may have a negative effect on neuroprotection

by reducing the levels of VEGF, which is already

shown to decrease after CEA.

The outer retina is more resistant to ischemia than

the inner retina [57]. This could be the reason that the

disk was affected without any change in retina in our

study. Previous histopathological studies have demon-

strated that the peripheral superior sector of the optic

nerve head demonstrates the greatest mean retinal

ganglion cell axonal diameter. It was shown that axons

of larger retinal ganglion cells might be more vulner-

able to ischemic axonal injury. Because neurofilament

phosphorylation requirement is greatest in this site of

the optic nerve [58].

The limitations of our study are the relatively small

number of patients and absence of long-term postop-

erative outcomes of the patients. In addition, we did

not use laser speckle flowgraphy to measure ocular

blood flow.

In summary, ischemia and reperfusion injury due to

CEA results in thinning of the superior peripapillary

RNFL. Patients may be prescribed anti-VEGF agents

for various reasons. For axonal protection, patients

should cease the use of such agents if possible in the

early preoperative and postoperative periods of CEA.

To the best of our knowledge, this is the first study to

examine peripapillary RNFL and GCC thicknesses

before and after CEA. Further long-term studies with

large samples are needed to investigate whether these

alterations are progressive and accompanied by GCC

thinning in the following period.
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