
Vol.:(0123456789)

 Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

Discover Computing

Research

Fast computation of General SimRank on heterogeneous information
network

Chuanyan Zhang1 · Xiaoguang Hong2,3 · Yongqing Zheng2,3

Received: 20 September 2022 / Accepted: 2 May 2024

© The Author(s) 2024 OPEN

Abstract
Similarity computation is a fundamental aspect of information network analysis, underpinning many research tasks
including information retrieval, clustering, and recommendation systems. General SimRank (GSR), an extension of the
well-known SimRank algorithm, effectively computes link-based global similarities incorporating semantic logic within
heterogeneous information networks (HINs). However, GSR inherits the recursive nature of SimRank, making it compu-
tationally expensive to achieve convergence through iterative processes. While numerous rapid computation methods
exist for SimRank, their direct application to GSR is impeded by differences in their underlying equations. To accelerate
GSR computation, we introduce a novel approach based on linear systems. Specifically, we transform the pairwise surfer
model of GSR on HINs into a new random walk model on a node-pair graph, establishing an equivalent linear system for
GSR. We then develop a fast algorithm utilizing the local push technique to compute all-pair GSR scores with guaranteed
accuracy. Additionally, we adapt the local push method for dynamic HINs and introduce a corresponding incremental
algorithm. Experimental results on various real datasets demonstrate that our algorithms significantly outperform the
traditional power method in both static and dynamic HIN contexts.

Keywords Similarity · General SimRank · Fast computation · Linear system · Heterogeneous information network

List of symbols
G = (V , E) Graph with nodes V and edges E
n, m n = |V | , m = |E|

G2 = (V2, E2) Node-pair graph of G
N, M N = |V2| , M = |E2|

TG = (A, R) Network schema of G
Ri,j Semantic relation for Ai to Aj , Ai ,Aj ∈ A

Wij Adjacency matrix about Ri,j

Xiao Guang Hong contributed equally to this work.

 * Chuanyan Zhang, chuanyan_zhang@sina.cn; Xiaoguang Hong, hxg@sdu.edu.cn; Yongqing Zheng, zhengyongqing@dareway.com.cn
| 1College of Information Science and Engineering, Qilu Normal University, Jinan 250200, Shandong, China. 2Software School, Shandong
University, Jinan 250101, Shandong, China. 3Dareway Software Co., Ltd., Jinan 250000, Shandong, China.

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

G
2 GSR node-pair graph

Qij Similarity transmission matrix on G2 about Ri,j

1 Introduction

In recent years, many information systems have employed complex graph models to represent data, where vertices
symbolize data objects and edges delineate the relationships among them. This structure is commonly referred to as
an information network [1]. A fundamental task in analyzing these networks involves effectively capturing the similari-
ties between objects. This challenge arises in various applications, including recommender systems [2], link prediction,
neural graph learning and so on [3, 4].

To quantify object similarity, several link-based measures have been proposed, such as Random Walk with Restart
[5], Personalized PageRank [6], and SimRank [7]. Among these, SimRank is particularly noted for its intuitive appeal and
robust theoretical underpinnings: (1) it posits that “two objects are similar if they are referenced by similar objects”;
(2) it is recursively defined based on a “pairwise surfer model,” leveraging the global topology of the graph. However,
SimRank is tailored for homogeneous information networks, which consist of a single type of vertices and edges, and
thus, it cannot be directly applied to heterogeneous information networks (HINs) that encompass a variety of objects
and relationships [8].

General SimRank (GSR) [9], an extension of SimRank, adapts the original formula to accommodate HINs. It maintains
the core principle that “two objects are similar if they are referenced by similar objects through the same semantic rela-
tions,” and it stipulates that “similarities exist only between objects of the same type.” GSR represents a link-based global
similarity measure that maintains semantic consistency. Demonstrating its utility, GSR has been applied to recommenda-
tion systems and the exploration of interpretable machine learning methods [2]. The theoretical basis of GSR, known as
the constrained expected meeting distance, retains the recursive nature of SimRank and requires numerous iterations to
achieve convergence in its power solution. This results in high time and space complexities, which restrict its application
in large-scale HINs. In this paper, we focus on developing a rapid all-pair solution to compute GSR scores for all node
pairs within a HIN, aiming to overcome these limitations.

1.1 General SimRank

Given two nodes u and v of a graph G = (V , E) , the similarity of between them is denoted as s(u, v). If G is a homogeneous
network, SimRank computes s(u, v) as follows [7]:

where I(u) denotes the set of in-neighbors of u and c ∈ (0, 1) is a decay factor (generally,c = 0.8). Obviously, SimRank
calculates the similarities only in term of the structural information of a graph.

If G is a HIN whose network schema is TG = (A, R) with two mapping functions: � ∶ V → A;� ∶ E → R , and
�(u) = �(v) = Ai , GSR calculates s(u, v) as follows [9]:

where Rj,i is the semantic relation from node type Aj to Ai and Ij(u) is the set of in-neighbors of type Aj of u. If |A| = 1 and
|R| = 1 , Eq. (2) is equivalent to Eq. (1). Specifically, Eq. (2) is the normal form of GSR without considering multiple semantic
relations and edge weights.

Let Si be the similarity matrix about nodes of type Ai , i.e. Si(u, v) = s(u, v) , the fast computation problem of General
SimRank is defined as follows:

(1)s(u, v) =

�
1 u = v

c

∣I(u)∣∣I(v)∣

∑

x∈I(u),y∈I(v)

s(x, y) u ≠ v

(2)s(u, v) =

�
1 u = v

c

�I(u)��I(v)�

∑

Rj,i∈R

∑

x∈Ij (u)

∑

y∈Ij (v)

s(x, y) u ≠ v

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

Definition 1 (Exact All-pair GSR Computation) Given a HIN G(V, E) with the network schema TG(A, R) and an error bound
� , compute the approximate similarity matrix Ŝi such that ∀u, v , ‖Si(u, v) − Ŝi(u, v)‖ < 𝜀 , where Si is the ground true GSR
matrix for all-pair nodes of type Ai and Si(u, v) = s(u, v).

1.2 Motivation

Due to the recursive nature of General SimRank, the naive iterative method (a.k.a. power method) costs high expensive
both in time and space. To our best knowledge, there’s no related works concentrating on the fast computation problem
of GSR. Meanwhile, there exist many works which focus on the optimization techniques for SimRank computation
[10–12]. Since SimRank can be considered as a special form of GSR, these techniques would help us in designing fast
GSR computation method. Generally, the methods of SimRank can be divided into 3 categories: (1) power method; (2)
random walk method; (3) non-iterative method. The power methods improve efficiency through matrix compression or
pruning based on the naive iterative framework. They can calculate all-pair similarities with high accuracy. However,
the improvement of efficiency is very limited and it is not suitable for dynamic networks [13]. Random walk methods
mainly aim to solve the single source problem, e.g. top-k query [10, 14, 15]. It models the SimRank score s(u, v) as the
first meeting expectation between 2 groups of backward random walks starting from u and v respectively [16–18]. Non-
iterative methods are the main research direction for SimRank computation. They try to design and solve a linear system
of SimRank, which mainly starts from the matrix form of SimRank,

where S is the similarity matrix of SimRank, W is the column normalized adjacency matrix of graph, I is the unit matrix,
and ∨ denotes the entry-wise maximum. Due to the correction operator “ ∨ ”, it is very difficult to design a linear recursive
formula. Thus, many existing works relax Eq. (3) to an approximate linear system, i.e., S = cWTSW + (1 − c)I , and then
utilize different methods for accelerating SimRank computation [19–22]. Thus, it is difficult to guarantee the accuracy of
the similarities. Recently, two works [11, 12] propose the equivalent linear equations based on node-pair graph separately
which inspire us to build the linear system of GSR.

In this paper, we concentrate on fast all-pair GSR computation through linear system. However, we find that all existing
methods of SimRank cannot be utilized to GSR since they have different matrix forms.

Theorem 1 (Matrix Form of General SimRank) Given a HIN G(V, E) and the network schema TG(A, R) , in matrix notation,
General SimRank of Eq. (2) can be formulated as

where Wji is the adjacency matrix from nodes of Aj to nodes of Ai . If e(x, u) ∈ E,�(x) = Aj and �(u) = Ai , Wji(x, u) =
1

|I(u)|
 ;

otherwise, Wji(x, u) = 0.

Proof Please refer to the proof in Appendix. ◻

1.3 Contributions

In this paper, we propose a novel method to calculate all-pair GSR scores effectively with an accuracy guarantee. Firstly,
we derive a equivalent linear system of GSR based on the node-pair graph G2 and study the relationship between GSR and
PageRank. Then, we design a novel solution for the linear system of GSR based on local push algorithm. Compared with
other methods for solving linear systems, the local push algorithm only involves the node pairs with large residuals in
similarity computation. This push-on-demand manner not only avoids updating the whole solution at each iteration, but
is also memory-efficient. Given an error bound � , the iterative method has O(KM) time complexity and O(N) space
complexity where K is the number of iterations, M and N are the number of edges and nodes of G2 respectively. Based

on the previous works [9, 13], K = logc� � , � ∈ (0, 1) . Our solution has O
(

s̄

(1−c)𝜀
M
)

 time complexity and O(nnz(N) +m + n)

space cost where s̄ is the average GSR score, nnz(N) is the number of non-zero element in all node pairs, and m and n

(3)S = cWTSW ∨ I,

(4)Si = (
∑

Rj,i∈R

cWT
ji
SjWji) ∨ I

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

denote the edge and node number of G respectively. Especially, for each iteration of the power method, O(M) = Ω(M) .
Meanwhile, the lower bound of local push is far more less than O(M). Further, We propose an incremental algorithm to
calculate GSR scores in dynamic HINs, using current estimates and residuals of our local push method. In summary, we
have made the following contributions:

• We propose a novel and fast method to calculate all pair GSR scores on HIN based on linear system.
• Based on the node pair graph, we design the equivalent linear system of GSR and solve it through local push

method efficiently.
• An incremental algorithm is proposed to computer GSR scores on dynamic HINs.
• Experiments on several public datasets demonstrate that our methods significantly outperform the original power

method.

2 Preliminaries

To make the paper self-contained, we then give some basic definitions, including HIN, network schema and node-
pair graph, and then briefly introduce some useful operators on vector and matrix.

Definition 2 (Heterogeneous Information Network) An information network is defined as a directed graph G = (V , E)
with an object type mapping function � ∶ V → A and a link type mapping function � ∶ E → R , where each object v ∈ V
belongs to one particular object type �(v) ∈ A and each link e ∈ E belongs to a particular relation �(e) ∈ R . When the
types of objects |A| > 1 or the types of relations |R| > 1 , the network is called heterogeneous information network; other-
wise, it is a homogeneous information network.

Definition 3 (Network Schema) The network schema is a meta template for a heterogeneous network G = (V , E) with the
object type mapping � ∶ V → A and the link mapping � ∶ E → R , which is a directed graph defined over object types A,
with edges as relations from R, denoted as TG = (A, R).

Generally, network schema provides a meta level (i.e., schema-level) description for better understanding the
complex HIN. Meanwhile, node-pair graph provides a higher perspective to the pairwise surfer model of SimRank
and GSR and it is defined as follows.

Definition 4 (Node-pair Graph) Given a directed graph G = (V , E) , its corresponding node-pair graph is denoted as
G2 = (V2, E2) where E2 = {e((a, b), (c, d))|e(a, c), e(b, d) ∈ E} , V2 = {(a, b)|a, b ∈ V}.

Definition 5 (Kronecker Product) Let B ∈ ℝp×q , C ∈ ℝm×n , the Kronecker Product of A and B is defined as:

Definition 6 (Vec Operator) For any matrix D ∈ ℝm×n , ri denotes the row vector of D. Then vec(D) ∈ ℝ1×mn is defined as:
vec(D) =

(
r1, r2,⋯ , rm

)
.

Definition 7 (Uvec Operator) For any row vector set {ri|ri ∈ ℝ1×ni , i, ni ∈ ℕ∗} , the operator Uvec{ri} ∈ ℝ1×
∑

ni is defined
as: Uvec{ri} = (r1, r2,⋯).

Obviously, the Kronecker product of two matrix B and C is an pm × qn matrix; the vec operator is to translate a
matrix into a row vector and the Uvec operator is to combine row vectors of any size into one row vector.

B⊗ C =

⎛
⎜
⎜
⎝

b11C ⋯ b1qC

⋮ ⋱ ⋮

bp1C ⋯ bpqC

⎞
⎟
⎟
⎠

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

3 The linear system of general SimRank

In this section, we propose a linear system of GSR based on the node-pair graph, then study its properties and
compare it with P-PageRank [6].

3.1 General SimRank on node‑pair graph

Based on Eq. (2), the GSR score s(u, v) relies on the scores of all node pairs (x, y), x ∈ Ij(u) , y ∈ Ij(v) , i.e., s(x, y), which is to
say “similarity propagates from (x, y) to (u, v).” This transmission from the in-neighbor pair to the target node pair requires
two edges separately on the original HIN G. While only one edge is needed for each transmission on node-pair graph
since every node pair is modeled as one based on the Definition 4. This observation motivates us construct the node-
pair graph of General SimRank.

Definition 8 (Node-pair Graph of General SimRank) Given a HIN G = (V , E) , the corresponding Node-pair Graph General
SimRank, denoted as G2 = (V2, E2) , is defined as follows:

Distinct from SimRank node-pair graph, each node of G2 represents a node pair (a, b),�(a) = �(b) , which reflects
the intuition that “similarity only exists between nodes of the same type.” In addition, we also declare that c ≠ d when
we create an edge from node n(a, b) to node n(c, d) of G2 , which ensures that s(u, u) ≡ 1 for any u ∈ V based on Eq. (2).
Since the the GSR score s(u, v) of node n(u, v) is raised by its in-neighbors, i.e., n(x, y), we should remove the all the edges
pointing to the nodes of type n(u, u) on G2 so that no similarity could be transmitted to them. Since these nodes only
propagate similarities, not receive any similarity, we call them Source Nodes.

A toy HIN G and its G2 about DBLP are shown in Figure.1. Since only the node pair with two nodes of the same type can be
modeled as new nodes of GSR node-pair graph, we could construct 4 nodes on G2 : {n(a1, a1), n(a1, a2), n(a2, a1), n(a2, a2)}
for the two authors {a1, a2} of G and the rest are the same. Then, we link the nodes of G2 . According to the definition of

V2 = {(a, b)|a, b ∈ V ∧ �(a) = �(b)}

E2 = {e((a, b), (c, d)|e(a, c), e(b, d) ∈ E ∧ c ≠ d)}.

Fig. 1 A toy example of HIN
G about DBLP and its cor-
responding GSR node-pair
graph G2

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

SimRank node-pair graph, there will be an edge e((a1, a1), (p1, p1)) for e(a1, p1) of G. But in G2 , we remove it. Consequently,
there’s no edge linking to any source node and its GSR score is always equal to 1. Finally, we can say that “the GSR score
of any node on G2 is raised by its in-neighbors.”

Based on the observation of GSR on G2 , we can rewrite the Eq. (2) of GSR as follows. Firstly, we separate V2 of G2 into 2
disjoint sets. Let V2

D
= {nk = (u, v)|nk ∈ V2 ∧ u ≠ v} , and V2

S
= V2 − V2

D
 , i.e., the set of source nodes. Suppose each node

nk = n(u, v) ∈ V2 has a value s(nk) and s(nk) = s(u, v) . Then, �(nk) = Ai if and only if �(u) = �(v) = Ai . Finally, the Eq. (2) is
rewritten as:

where Ij(nk) is the in-neighbor set of nk of type Aj , i.e., Ij(nk) = {nl|e(nl , nk),�(nl) = Aj} . For example, the similarity of A1,2
comes from P1,2 and P2,2 in Fig. 1; while for the source nodes, likely A1,1,A2,2, P1,1 and so on, they cannot receive any simi-
larity since they do not have any in-neighbor. Note that G2 and G share the same network schema based on the defini-
tion of GSR node-pair graph. Thus, for any node type Ai ∈ A of TG , there exists the same type Ai of G2 , and the semantic
relations are the same too.

3.2 Equivalent linear system

In this section, we rewrite Eq. (5) into the matrix form and finally derive a equivalent linear system of General SimRank.
First, we construct the adjacency matrix Wji from nodes of type Aj to nodes of type Ai on G2 . Let �(a) = Aj ,�(b) = Ai . If

∃e(a, b) ∈ E , Wji(a, b) =
1

|I(b)|
 ; otherwise, Wji(a, b) = 0 . For any nk = n(u, v), nk ∈ V2

D
,�(nk) = Ai , we set

where nl = (x, y),�(nl) = Aj.
For the node nk ∈ V2

S
 , we set

which conferms to the definition that “ no edge connects to source nodes on G2.”
Finally, we calculate the similarity transmission matrix as follows:

where Qji ∈ ℝp×q and the function � is

Taking Fig. 1 as an example, let {A1,A2,A2} denote {Author, Paper, Term} . Then, we have the adjacency matrix W12 of G
and the corresponding matrix Q12 of G2 as follows:

(5)si(nk) =

�
1 nk ∈ V2

S
c

�I(u)��I(v)�

∑

Rj,i∈R

∑

nl∈Ij (nk)

s(nl) nk ∈ V2
D

Qji(nl , nk) =
1

|I(u)||I(v)|
= Wji(x, u)Wji(y, v)

Qji(∶, nk) ≡ 0

(6)

Qji = 𝜓(Wji ⊗Wji)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Wji(1, 1)Wji(1, 1)
�������������������

=0

⋯ 0 ⋯

⋮ ⋯ 0 ⋯

Wji(x, 1)Wji(y, 1)
�������������������

=0

⋯ Wji(x, k)Wji(y, k)
�������������������

=0

⋯

⋮ ⋱ ⋮ ⋯

Wji(p, 1)Wji(p, 1)
�������������������

=0

⋯ 0 ⋯

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)𝜓(Wji ⊗Wji) = 𝜓(Wji(x, u)Wji(y, v)) =

{
0 u = v

1

|I(u)||I(v)|
u ≠ v

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

where W12(1, 2) =
1

|I(p2)|
= 0.25 , Q12(2, 1) = W12(1, 1)W12(2, 1) = 0 , Q12(1, 2) = W12(1, 1)W12(1, 2) = 0.125 and so on.

Further, with the matrix Qij , wen can formulate the intuition of GSR into a linear system, which says “the GSR score of
any node on G2 is raised by its in-neighbors.”

Theorem 2 Given the node-pair graph G2 = (V2, E2) of a HIN G = (V , E) with TG = (A, R) and Qij , 1 ⩽ i, j ⩽ |A| , the matrix form
of Eq. (5):

where Ii is a identity matrix of the same size as Si.

Proof Suppose that �⃗�i = Vec(Si),�⃗i = Vec(Ii) and s(nk) = �⃗�i(k) . If nk ∈ VS , we have:

If nk ∈ VS , based on Eq. (5), we have:

Since all the source nodes have no in-neighbors in G2 , we can get:

Finally, we have the matrix form of Eq. (5). ◻

For example, if we calculate the similarity between p1 and p2 in Fig. 1, denoted as s2(1, 1) , we have
s2(1, 1) = Vec(S2)(1) = �⃗i(1) = 1 since Vec(S2)Q12(∶, 1) = 0 and Vec(S2)Q32(∶, 1) = 0 . When we calculate s2(1, 2) , only Q12(∶, 2)

and Q32(∶, 2) are left to calculate Vec(S2)(2) due to �⃗i(2) = 0.
The Eq. (8) is already a linear system for {Si} . However, our problem studied in this paper is to computer all-pair GSR

scores. Thus, we propose the complete linear form of GSR. First, we use the Uvec operator to combine all the node vectors
and unit vectors. Let Z = |A| , �⃗� = Uvec{Vec(Si)|1 ⩽ i ⩽ Z} and �⃗ = Uvec{Vec(Ii)|1 ⩽ i ⩽ Z} . Then, we build the complete
matrix Q based on {Qij} as follows:

W12 =

�
0.5 0.25

0 0.25

�

,Q12 =

⎛
⎜
⎜
⎜
⎝

0 0.125 0.125 0

0 0.125 0 0

0 0 0.125 0

0 0 0 0

⎞
⎟
⎟
⎟
⎠

(8)Vec(Si) = c
∑

Rj,i∈R

Vec(Si)Qji + Vec(Ii)

s(nk) = �⃗�i(k) = �⃗i(k) = 1

s(nk) = c
∑

Rj,i∈R

∑

nl∈Ij (nk)

1

|I(u)||I(v)|
s(nl)

= c
∑

Rj,i∈R

∑

nl∈Ij (nk)

Qji(l, k)s(nl)

= c
∑

Rj,i∈R

Vec(Si)Qji(∶, k)

(9)si(nk) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

c
�

Rj,i∈R

Vec(Si)Qji(∶, k)

���������������������������
=0

+ �⃗i(k)
���

=1

nk ∈ V2

S

c
∑

Rj,i∈R

Vec(Si)Qji(∶, k) + �⃗i(k)
���

=0

nk ∈ V2

D

(10)Q =

⎛
⎜
⎜
⎝

Q11 ⋯ Q1Z

⋮ ⋱ ⋮

QZ1 ⋯ QZZ

⎞
⎟
⎟
⎠

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

where Qij = 0 if Ri,j ∉ R . We call Q the similarity transmission matrix of G2.

Theorem 3 (The Linear System of General SimRank) The General SimRank all-pair similarities �⃗� is the solution of the follow-
ing linear system:

Proof Based on the definition of Uvec operator, we have:

For any xi , based on the Eq. (10), we have:

Finally, we can get:

Since Qij = 0 if Ri,j ∉ R , any GSR �⃗�i of Eq. (11) satisfy the GSR form of Eq. (8). Thus, the solution of �⃗� is also the GSR score
vector. ◻

3.3 Properties of the linear system

In this section, we first show that the linear system of General SimRank is strictly diagonally, thus it has a unique solution.
Then, we study the relationship between General SimRank and P-PageRank.

Firstly, we rewrite the linear system of Eq. (11) into

where I is a unit matrix and QT is the transpose matrix of Q.
Next, we give the diagonal dominance property of the linear system.

Theorem 4 I − cQT is strictly diagonally dominant.

Proof Let H = I − cQT .
If Q(k, k) = 0 , we have H(k, k) = 1 . Since

∑
i Q

T (k, i) = 1 or
∑

i Q
T (k, i) = 0 , we can get:

If Q(k, k) ≠ 0 , we have H(k, k) = 1 − cQ(k, k) . Since 1 > c
∑

i Q
T (k, i) , we have

Summarily, we have H(k, k) >
∑

i≠k �H(k, i)� . ◻

According to the Levy-Desplanques theorem [11], strictly diagonal dominant matrices are non-singular. Therefore,
there always exists a unique solution �⃗� for Eq. (11).

(11)�⃗� = c �⃗�Q + �⃗

�⃗� = (x1, x2,⋯ , xZ)

�⃗ = (I1, I2,⋯ , IZ)

�⃗�i = c �⃗�

⎛
⎜
⎜
⎝

Q1i

⋮

QZi

⎞
⎟
⎟
⎠

+ �⃗i

�⃗�i = c

Z∑

j=1

�⃗�iQji + �⃗i

(12)(I − cQT) �⃗�T = �⃗T

H(k, k) > c
∑

i≠k

QT (k, i) =
∑

i≠k

|H(k, i)|

1 − cQ(k, k) > c
∑

i

QT (k, i) − cQ(k, k) =
∑

i≠k

|H(k, i)|

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

Furthermore, we study the relationship between General SimRank and PageRank. PageRank is a hyperlink based
ranking method for web pages, which is based on the assumption that the existence of a hyperlink u → v implies that u
votes for the quality of v. If we utilize a directed graph G = (V , E) to model the pages and hyperlinks, the PageRank score
of a node is raised by its in-neighbors, which is the same as the intuition of GSR on the node-pair graph. Personalized
PageRank (PPR) enters user preferences by assigning more importance to edges in the neighborhood of certain pages
at the user’s selection.

Given G = (V , E) , let A denote the adjacency matrix of the web-graph with normalized rows, and let r be the so called
preference vector including a probability distribution over V. PageRank vector ���⃗�� is defined as the solution of the following
equation

If �⃗� is uniform over V, them ���⃗�� is referred to as the global PageRank vector. Otherwise, it will be referred to as personalized
PageRank vector. For example, ���⃗��t is called individual PageRank vector for node t with an indicator vector �⃗�t in Eq. (13)
where the tth coordinate is 1 and all others are 0.

Given the GSR node-pair graph G2 = (V2, E2) , let nl = (u, v), nk = (x, y) , and e(nk , nl) ∈ E2 . We have Q(k, l) = 1

|I(u)||I(v)|
 , while

A(k, l) =
1

|I(x)||I(y)|
 . Suppose G′ is the reverse graph of G2 . We can get the following theorem.

Theorem 5 The General SimRank �⃗� of Eq. (11) is ��⃗��
1−c

 where ���⃗�� is the Personalized PageRank solution on G′ with �⃗� = �⃗.

Proof Since G′ is the reverse graph of G2 , we have A = Q . The PPR equation on G′ can be rewritten into

Then, we multiply 1

1−c
 on the both sides,

We can see that the equation (14) has the same form as equation (11) of GSR. So we have �⃗� = ��⃗��
1−c

 . ◻

4 Local push algorithm for the linear lystem

In this section, we show our local push based algorithm for all-pair General SimRank computation. Given the linear system
of Eq. (11), a straightforward approach is to solve the inverse matrix Q. However, this process is very expensive due to the
large size of Q ∈ ℝN×N , N =

∑
i n

2
i
, ni = �{u�u ∈ V ∧ �(u) = Ai}� . Based on Theorem 5, there exists a linear relation between

the linear system of GSR and PPR. Hence, we can adopt local push, an optimization technique for calculating PPR to solving
Eq. (11).

4.1 Local push algorithm

Local push (LP), as a kind of iterative method, constantly updates 2 vectors { �⃗�, �⃗�} , where �⃗� is the approximate solution
and �⃗� is called residual vector. On each step, each node pushes its residual to its neighbors [23]. Given Eq. (11) on G2 , the
corresponding residual vector �⃗� is:

In addition, the ground truth �⃗� can also be represented by �⃗� and �⃗� . Left multiplying (I − cQ)−1 on both sides of Eq. (15),
we obtain

which indicates that a more accurate �⃗� can be obtained by iteratively reducing the residual vector �⃗� .

(13)���⃗�� = c ���⃗��A + (1 − c) �⃗�

���⃗�� = c ���⃗��Q + (1 − c)�⃗

(14)
���⃗��

1 − c
= c

���⃗��

1 − c
Q + �⃗

(15)
�⃗� = (�⃗� − �⃗�)(�⃗ − cQ)

= �⃗ − �⃗�(�⃗ − cQ)

(16)�⃗� = �⃗� + �⃗�(I − cQ)−1

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

Suppose �⃗�(t) be the estimate at iteration t, and �⃗�(t) be the current residual vector which is obtained by Eq. (15). The idea of
local push for solving �⃗� is: pick one coordinate i, transform ri to pi , and update �⃗� using the updated �⃗� . That is:

where �⃗�i is an unit vector with 1 for the ith dimension, and Eq. (18) is obtained by substituting Eq. (17) into Eq. (15).
Equation (18) shows how r(t+1) is updated by r(t) : first node i removes its residual r(t) , and then ∀j ∈ Out(j) , node i pushes
c×r

(t)

i

|I(j)|
 to node j.

Given a HIN G = (V , E) and TG = (A, R) , the LP based algorithm to compute all-pair GSR {Si} is shown in Algorithm 1.

Algorithm 1 Local Push Algorithm for all-pair GSR Computation

Since each vertex of G2 is a pair of nodes in G, we use two matrix set {Pi} and {Ri} to represent the vector �⃗� and �⃗�
respectively, i.e., Uvec{vec(Pi)} = �⃗� and Uvec{vec(Ri)} = �⃗� .

4.2 Analysis of local push algorithm

4.2.1 Accuracy

Based on Eq. (16), we have ‖x − p‖max = ‖ �⃗�(I − cQ−1)‖∞ . Since the Q is a column normalized matrix, ‖Q‖∞ = 1 . Thus, we

have ‖x − p‖max ⩽
‖⃗�‖∞

(1−c)‖Q‖∞
=

rmax

1−c
.

Given an error bound � , we can set rmax = (1 − c)� for Algorithm 1 so that ‖x − p‖max ⩽ �.

4.2.2 Time complexity

The proposed Algorithm 1 is different from local push for Personalized PageRank. For ���⃗�� of Eq. (13), it always have
∑

i ���⃗�� i = 1 . While given a node u,
∑

v∈V s(u, v) ⩾ 1 . Thus, their convergence rates are different. We cannot reference the
time complexity of local push based P-PageRank computation method directly.

(17)�⃗�(t+1) = �⃗�(t) + ri × �⃗�i

(18)�⃗�(t+1) = �⃗�(t) − r(t) × �⃗�i + cr
(t)

i
�⃗�iQ

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

Theorem 6 (Time Complexity of Local Push for GSR) Let s̄ be the average GSR score on G = (V , E) . Then the time complexity
of Algorithm 1 is O(s̄M

(1−c)𝜀
) where M is the edge number of G2.

Proof Suppose ∀nl ∈ V2 , nl = (u, v) . When we run algorithm 1 for nl , the time of operations Pi(u, v) = Pi(u, v) + Ri(u, v) is
at most ⌊ s(u,v)

(1−c)�
⌋ , since its increases from 0 to s(u, v) by at least rmax = (1 − c)� . Furthermore, the time to propagate the new

residual score is O(|Out(nl)|) since each out-neighbor of nl must receive some of its score. Then, the running time for all
nodes in G2 is at most:

where M is the edge number of G2 . ◻

4.2.3 Space complexity

The original iterative method of GSR computation needs O(N) space to maintain all the node pairs. The space cost of Algo-
rithm 1 is dominate by the size of {Pi} and {Ri} , whose size also are O(N). In practice, we can construct 2 unified matrix P and
R to represent the two matrix sets respectively. Further, we find that most elements in P and R are zeros when the desired
error bound is achieved. The sparsity motivates us to use 2D hash tables to maintain P and R, which is usually used by current
SimRank solutions [12]. Finally, the space cost of local push for GSR is O(nnz(P) + nnz(R) + n +m) = O(nnz(R) + n +m) since
there always exist residuals that have not been pushed in Algorithm 1, i.e. nnz(R) ≫ nnz(P).

4.3 Incremental algorithm for dynamic HIN

The local push algorithm can be extended to deal with dynamic HINs naturally. In this section, we show how to calculate GSR
scores on dynamic HINs by extending local push.

The idea of incremental local push (ILP) algorithm is that: given {Pi} and {Ri} of the original HIN, only a few elements of
{Ri} exceed rmax due to the HIN change, including edge deletion and insertion. Hence, we can run the local push using the
current {Pi} and an updated {R�

i
} . In the following, we first deduce an invariant for {Pi} and {Ri} , then we show how to update

{Ri} to {R�
i
}.

Theorem 7 Given {Pi} and {Ri} in Algorithm 1, for ∀u, v ∈ V ∧ �(u) = �(v) = Ai , the following invariant holds at any step:

Proof Based on Eq. (15), we have: �⃗� + �⃗� = �⃗ + c �⃗�Q , so the proof can be completed by formulating each coordinate of �⃗�
and �⃗� . ◻

When the original HIN is changed, we always have Pi(u, v) = 1 and Ri(u, v) = 0 if u = v based on Eq. (19). Therefore, we
only need to consider the the node pair (u, v), u ≠ v of Ri . Suppose an edge e(a, b),�(a) = Ak ,�(b) = Ai is inserted into G,
the only entries of {Ri} that are not satisfied with Eq. (19) would be Ri(b, ∗) and Ri(∗, b) due to the change of in-degree. Let
∀v ∈ V ∧ v ≠ b ∧ �(v) = Ai , and R�

i
(b, v) be the updated Ri(b, v) . Then the incremental amount Δ for updating Ri(b, v) can

be calculated as:

∑

nl∈V
2

sl

(1 − c)𝜀
O(|Out(nl)|) ≈

s̄

(1 − c)𝜀

∑

nl∈V
2

O(|Out(nl)|)

= O(
s̄M

(1 − c)𝜀
)

(19)Pi(u, v) + Ri(u, v) =

⎧
⎪
⎨
⎪
⎩

c
∑

Rj,i

∑

x,y

Pj (x,y)

�I(u)��I(v)�
u ≠ v

1 u = v

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

For the situation of edge deletion, the derivation is similar. The ILP algorithm for dynamic HIN is shown in Algorithm 2.

Algorithm 2 Incremental Local Push for Dynamic HIN

Since ILP utilizes Algorithm 1 as return, it has the same accuracy guarantee as Algorithm. In addition, the space cost
of ILP is the same as the static version.

Theorem 8 For each edge insertion/deletion in G = (V , E) , ILP has O(m� +
d̄2

c(1−c)2𝜀
) where m′ is the edge number of updated

semantic relation and d̄ is the average degree of G.

Proof Given a homogeneous graph G = (V , E) , the time cost of Local Push to maintain a PPR vector to a target node t
with an additive error � as k edges are update is O(k + d̄

𝜀
).

Based on Theorem 5, we can reduce the ILP to the existing result of maintaining a PPR vector in dynamic graphs. The
first difference is that one single edge update of a specific semantic relation in G would result in 2m� + 1 edge updates
in G2 . Second, computing the SimRank vector with an error bound � is equivalent to computing a PageRank vector to t
by local push, such that ‖Si(u, v) − ̂Si(u, v)‖ < c(1 − c)𝜀 . Further, based on Algorithm 1, rmax = (1 − c)� . Let d̄2 be the aver-
age degree of G . Therefore, we infer that the time cost of one edge update in G is O(m� +

d̄2

c(1−c)2𝜀
) . ◻

(20)

Δ = R�
i
(b, v) − Ri(b, v)

= {
c
∑∑

Pj(x, y) + c
∑

a�∈Ik (v)
Pk(a, a

�)

(�I(b)� + 1)�I(v)�
− Pi(b, v)}

− {
c
∑∑

Pj(x, y)

�I(b)��I(v)�
− Pi(b, v)}

=
c
∑

a�∈Ik (v)
Pk(a, a

�)

(�I(b)� + 1)�I(v)�
−

c
∑∑

Pj(x, y)

(�I(b)� + 1)�I(b)��I(v)�

=
c
∑

a�∈Ik (v)
Pk(a, a

�)

(�I(b)� + 1)�I(v)�
−

Pi(b, v) + Ri(b, v)

�I(b)� + 1

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

5 Experiment

5.1 Experimental settings

This section experimentally evaluates the proposed solutions against the power method. All experiments are conducted
on a Linux machine with Xeon(R) CPU E5-2670 V2 @ 2.50GHZ and 128GB memory.

Baselines. We evaluate 4 algorithms: (1) the traditional iterative method (IM), (2) local push based algorithm 1 for static
graphs (LP), (3) incremental local push algorithm for dynamic graphs (ILP), (4) Bi-Conjugate Gradient method (BiCG) for
the linear system of Eq. (11) which can be easily rewritten in the form of Ax = y through matrix transpose [11]. We set
c = 0.80 for all algorithms.

Accuracy Metrics. We use the power method to calculate the ground-truth GSR score of each node pair.
Besides the maximum error, we also use mean error to evaluate the accuracy for all-pair GSR computation, i.e.,
ME =

1

N

∑
i

∑
u,v �Ŝi(u, v) − Si(u, v)�.

Data sets. we test the baselines on 4 graph data sets that are publicly available and commonly used in the literature.
Table 1 shows the statistics of each graph. Besides 3 HINs, we also evaluate the algorithms on homogeneous information
network, i.e. email-Enron.

5.2 Experimental results

5.2.1 Effectiveness

In our experimental evaluation, we assessed the accuracy of the BiCG, LP, and ILP algorithms across all datasets with a
precision threshold of � = 0.001 . The ground truth for GSR was computed using the Iterative Method (IM) with an accuracy
of 10−4 . For testing the ILP, we randomly generated 2000 edge updates per dataset, which included an equal split of
50% edge insertions and 50% edge deletions. Each insertion involved adding a new edge, while each deletion involved
removing an existing edge. The outcomes of these tests are presented in Table 2.

The results clearly indicate that the maximum errors for both LP and ILP are well within the specified error bounds,
underscoring the effectiveness of these algorithms. Notably, PiCG exhibited the smallest mean and maximum errors,
attributed to its continuous refinement of all elements in the similarity matrix until the maximum error falls below � .
Further insights from our experiments with LP and ILP include:

Table 1 Data sets

These public data sets can be obtained from the following websites
ahttps:// group lens. org/ datas ets/ movie lens/
bhttps:// datas ets. imdbws. com/
chttps:// snap. stanf ord. edu/ data/ index. html
dhttps:// dblp. org/ xml/

Data sets Node Edge Node type

MovieLens-100K (ML)a 2625 100,000 2

IMDbb 8547 16,651 9

email-Enron (EN)c 36,692 183,831 1

DBLPd 164,341 963,258 5

Table 2 Accuracy results
(� = 10−3)

Dataset LP ILP BiCG

Max error Mean error Max error Mean error Max error Mean error

ML 5.62 × 10−4 2.39 × 10−5 7.26 × 10−4 6.35 × 10−5 3.26 × 10−5 1.32 × 10−7

IMDb 9.45 × 10−4 5.13 × 10−6 4.83 × 10−5 3.78 × 10−5 4.15 × 10−5 2.81 × 10−7

EN 5.01 × 10−4 1.62 × 10−6 8.12 × 10−4 4.02 × 10−6 1.62 × 10−5 4.53 × 10−8

DBLP 7.98 × 10−4 3.22 × 10−6 5.91 × 10−4 1.18 × 10−6 2.74 × 10−5 1.29 × 10−8

https://grouplens.org/datasets/movielens/
https://datasets.imdbws.com/
https://snap.stanford.edu/data/index.html
https://dblp.org/xml/

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

1. The error magnitudes of ILP on dynamic graphs are comparable to those of LP on static graphs. This similarity is due
to Algorithm 2, which utilizes LP as its subroutine.

2. Both LP and ILP algorithms tend to perform better on larger datasets (e.g., DBLP) compared to smaller ones (e.g.,
MovieLens and IMDb). We hypothesize that nodes with higher in-degrees in larger datasets have increased chances
of accumulating residuals from their neighbors, even when their individual errors are below � . Our observations
indicate that maximum errors predominantly occur in nodes with fewer in-neighbors, whereas nodes with higher
in-degrees exhibit significantly lower errors. Generally, nodes in larger-scale networks have more neighbors, which
likely contributes to the superior performance of LP in terms of mean error on these datasets.

3. The efficacy of our LP and ILP algorithms is also validated on homogeneous graphs, as demonstrated by the results
on the email-Enron dataset.

These findings highlight the robustness and adaptability of the LP and ILP algorithms across various types of graphs and
datasets, proving their utility in both static and dynamic contexts.

5.2.2 Efficiency on static graphs

Time Efficiency. We conducted evaluations focusing on two main aspects: (1) the running time required for the IM, BiCG
and LP algorithms to achieve the error bound � and reach convergence across all datasets, and (2) the effectiveness of
these algorithms with respect to varying error bounds � on the same dataset. We set � = 0.001 for all datasets to compare
the time efficiency of each algorithm in reaching this error threshold. The results are depicted in Fig. 2a. It is evident
that LP significantly outpaces IM, improving by 1 − 2 orders of magnitude. BiCG, a state-of-the-art technique for solving
linear systems, also outperforms IM and is surpassed by LP by approximately an order of magnitude. This performance
differential is attributed to BiCG’s inclusion of entries with errors already below � in each iteration, whereas LP focuses
only on node pairs with residuals exceeding (1 − c)� , effectively minimizing unnecessary computations.

Additionally, we examined the time required to achieve sort convergence, which is crucial for applications such as
similarity search. The findings, illustrated in Fig. 2b, show that LP consistently exceeds the performance of both IM and
BiCG across all scenarios. Notably, all algorithms reach sort convergence faster than the set error threshold of � = 0.001 .
These observations affirm Theorem 6, suggesting that LP’s time cost is linearly related to dataset size.

The parameter � plays a dual role, influencing both result quality and computational time. We assessed the impact of
varying � from 0.01 to 0.0001 on the running times of the three methods across all datasets, with the results presented
in Fig. 3. LP consistently outperformed IM by more than an order of magnitude across all tested values of � and was
approximately 2 to 6 times faster than BiCG. Furthermore, as � decreased, the time cost for all algorithms increased,
indicating that higher accuracy demands more computational effort. Particularly, each tenfold increase in accuracy led

Fig. 2 Time cost on static HINs

Fig. 3 CPU Time varying � (s)

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

to a nearly proportional increase in LP’s computation time, aligning with the time complexity analysis of LP discussed
in Theorem 6.

Memory Cost. We next assess the space efficiency of the algorithms under consideration. With � = 0.001 set uniformly
across all datasets, the space consumption results for the three algorithms are depicted in Fig. 4a. It is observed that
the space requirement for LP is less than that for both the IM and the BiCG method. This efficiency in LP arises because
it prunes unnecessary computational node pairs and utilizes 2D hash tables to manage sparse matrices effectively. In
contrast, both IM and BiCG necessitate O(N) space to store all node pairs in the GSR. However, the space cost for BiCG
is greater than that for IM because BiCG requires additional vectors for search and residuals to determine subsequent
search directions.

Further, we explore the impact of varying � from 0.01 to 0.0001 on the memory cost by running LP on the same datasets
to gauge its robustness concerning memory usage. These results are showcased in Fig. 4b. As � decreases, there is a slight
increase in space cost since LP involves more entries to maintain accuracy. Additionally, it is observed that larger-scale
graphs, such as DBLP and Enron, are more sensitive to changes in � compared to smaller graphs like MovieLens. This
sensitivity is attributed to the lower average GSR scores in larger-scale graphs, where a significant proportion of entries
exhibit small residuals, thus affecting the overall space efficiency.

5.2.3 Efficiency on dynamic graphs

We assess the time cost of the ILP algorithm on dynamic networks by examining two aspects: (1) the running time
per edge update as � varies, and (2) the scalability when the number of updated edges changes. Initially, we simulate
10, 000 edge updates for each dataset, comprising an equal split of 50% edge insertions and 50% edge deletions. We
then compute the average running time per edge update as � is adjusted from 0.0001 to 0.01. The results are displayed
in Fig. 5a.

It is readily apparent that the time cost per edge update is measured in microseconds. When compared to the results
of LP shown in Fig. 2, it is evident that ILP operates at a significantly different level of time complexity, highlighting its
high efficiency. Further observations reveal that as � increases, the efficiency of ILP significantly improves. Specifically, a
tenfold increase in � typically enhances the efficiency of ILP by approximately an order of magnitude. This scaling behavior

Fig. 4 Memory cost on static
HINs

Fig. 5 CPU time of ILP on
dynamic HINs

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

supports our theoretical analysis of ILP’s time complexity in Theorem 8, which is O(1
�
) . Performance comparisons across

datasets show that ILP is more effective on IMDb than on MovieLens, while its efficiency on Enron and DBLP is compara-
ble. This suggests that the efficiency of ILP is predominantly influenced by the average degree d̄, c, 𝜀 , rather than by the
number of updates m′ . According to the data in Table 1, the average degree d̄ of MovieLens is nearly 20 times greater
than that of IMDb, and the average degrees of Enron and DBLP are on similar levels. Notably, ILP performs better on DBLP
than on Enron when 𝜀 > 0.001 . We attribute this to the fact that increasing � leads to the removal of a large number of
node pairs with small residuals, particularly in the large-scale DBLP network. This observation underscores the sensitivity
of ILP’s performance to network structure and the chosen error threshold.

Fixing the number of edge updates at 5, 000, we compare the CPU time required for edge insertions and deletions
across all datasets, with the results presented in Fig. 5b. It is readily apparent that ILP processes edge deletions more
quickly than insertions. Notably, the time difference between edge insertion and deletion becomes more pronounced
with smaller datasets. This is because edge insertions tend to increase the average degree d̄ of the network, whereas
deletions decrease it. When the number of edge updates is fixed, the impact of changes in d̄ is more pronounced in
smaller datasets.

In our final set of experiments, we evaluate the scalability of ILP by varying the number of updated edges from 1000
to 5000 across all datasets. With � fixed at 10−3 , the results are displayed in Fig. 6, which includes separate charts for
insertions (a) and deletions (b). Generally, the time cost of ILP exhibits a linear relationship with the number of updated
edges. Furthermore, it is observed that as the number of updated edges increases, the time required for edge insertions
exceeds that for deletions. This consistent pattern highlights the relative computational demands of these operations
within the ILP framework.

6 Related work

Similarity Measure. Measuring the similarity of objects in information networks is a fundamental problem that has
attracted significant attention due to its broad applications [1]. Research in this area generally falls into one of two
categories: (1) Content-based similarity measures, which treat each object as a bag of attributes or as a vector of feature
weights, exemplified by approaches like Similarity Join [24]. (2) Link-based similarity measures, which focus on the
connections between objects, such as personalized PageRank [6], Random Walk with Restart (RWR) [5], and SimRank
[7, 25]. According to evaluations in Sun et al. [8], link-based similarity measures tend to correlate better with human
judgments compared to content-based measures.

Most existing similarity measures that utilize link information are defined on homogeneous networks and cannot be
directly applied to Heterogeneous Information Networks (HINs) due to the varied semantics of the edges. To account for the
diverse semantics in HINs, PCRW introduces a learnable proximity measure based on random walk with restart, defined by
a weighted combination of simple "path experts," each following a specific sequence of labeled edges. Sun Y. et al. define
meta paths on network schemas and propose PathSim to measure the similarity of same-typed objects through symmetric
path instances [8]. Building on the concept of meta paths, several variants have been proposed, such as HeteSim [26] and
HeteRank [27]. However, these approaches primarily provide local similarities. Some studies attempt to integrate these
local similarities into a unified global similarity measure using meta paths or other structures, such as meta trees [28] and

Fig. 6 The scalability of ILP on
dynamic HINs

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

meta graphs [3]. Nevertheless, these methods often struggle to ensure semantic consistency, which requires that each
step of the similarity calculation be logically interpretable so that the final results align with semantic logic.

General SimRank [9], an extension of the well-known SimRank, offers a comprehensive solution for similarity
computation in HINs. GSR calculates the similarity between objects of the same type based on the similarities of their
in-neighbors, providing globally consistent and semantically aware similarity scores without the need for learning.

In contemporary research, deep learning has become the mainstream technology for studying HINs, encompassing
tasks from node embedding to link prediction, recommendation, and clustering. Node embeddings can also measure
similarity. However, there are drawbacks. Firstly, graph embedding inevitably leads to information loss. Secondly, graph
embeddings are often not an end in themselves but are used as inputs for subsequent deep learning models designed to
address practical problems. Despite the successes of deep learning, challenges such as interpretability and learning costs
remain significant [4]. Structure-based learning methods may offer a promising route to interpretable machine learning,
combining the infinite fitting capabilities of deep neural networks with the interpretability of knowledge graphs. From
this perspective, link-based similarity measures are crucial to structure learning models, akin to the roles of conditional
probability and vector inner products in traditional learning models [2].

Fast Computation. To the best of our knowledge, there is currently no research specifically focused on the fast
computation of General SimRank (GSR). However, the computation of SimRank, which can be considered a specific
form of GSR, has been extensively studied over many years with numerous approaches proposed. Insights from these
studies may be applicable to GSR computation. Generally, methods for calculating SimRank can be categorized into
three groups:

• Power Method: This approach is based on a naive iterative method that utilizes the adjacency matrix to compute
the similarity matrix. Due to the sparsity of the adjacency matrix, power methods often employ matrix compression
techniques to reduce space complexity and utilize compact matrix computing technologies to enhance
computational efficiency [20]. Additionally, to reduce the time cost, some studies cache frequently used partial
results [14]. Although the power method is highly accurate, its space and time costs exceed linear complexity,
making it challenging to apply to large-scale or dynamic graphs.

• Random Walk Method: This method posits that the SimRank score s(u, v), is equivalent to the expected first meeting
time E(ct) of two random walks starting from nodes u and v, respectively [15]. Random walk-based methods
typically involve two phases: generating indices for random walks and calculating similarity based on the meeting
times and steps for queries. Efficiency improvements have been made through index structure optimization and
modifications to the Monte Carlo sampling strategy [16–18]. While the random walk method is often used for
single-source queries with linear time complexity [10], its performance can be variable in terms of stability and
accuracy due to the randomness of sampling.

• This is a prominent research direction for SimRank computation. Some approaches approximate the SimRank
formula as a linear system, which is then solved using linear algebra techniques such as eigen-decomposition
or Singular Value Decomposition (SVD) [19–22]. Due to the use of the Kronecker product, the space complexity
becomes O(r2n2) , where r is the rank of the adjacency matrix. Methods like PBiCG [11] and FLP-SR [12] reformulate
the SimRank equation on G2 and derive equivalent linear systems by eliminating the nonlinear operator ∨ , allowing
for the calculation of all-pair SimRank scores with high accuracy.

In summary, while existing methods provide various ways to compute SimRank, each has its own set of trade-offs
concerning accuracy, efficiency, and complexity. These insights could guide the development of efficient algorithms
for computing GSR in both static and dynamic contexts.

7 Conclusion

This paper tackles the challenge of computing exact all-pair General SimRank (GSR) scores in both static and dynamic
HINs. Traditional optimization techniques for SimRank are not directly applicable to GSR due to its distinct matrix
formulation. To address this, we have developed a novel linear system specifically for GSR and introduced a local push-
based algorithm to compute all-pair GSR scores efficiently. A key feature of our algorithm is that it does not require
the computation of all GSR scores, employing a push-on-demand approach that significantly reduces unnecessary

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

computational costs while maintaining guaranteed accuracy. Additionally, we have adapted our algorithm to monitor
GSR scores in dynamic HINs effectively. Our experimental results demonstrate that our algorithms significantly
outperform existing power iteration solutions in terms of both time and memory efficiency.

Acknowledgements We sincerely thank the editors and reviewers for valuable suggestions and constructive comments. This work was sup-
ported by the Shandong Taishan Industry Leading Talent Project NO.tscx202211010; National Natural Science Foundation of China under
Grant 2018IM020200 and MSTIP of Shandong Province of China Grant 2019JZZY010109.

Author contributions Prof. Xiaoguang Hong and Yongqing Zheng identified the problem and proposed the basic solution idea. Dr. Chuanyang
Zhang designed the experiments and wrote the main text of the manuscript. All authors had reviewed the manuscript.

Funding This paper is fully supported by the following funds: Shandong Taishan Industry Leading Talent Project NO.tscx202211010; National
Natural Science Foundation of China under Grant 2018IM020200; MSTIP of Shandong Province of China Grant 2019JZZY010109.

 Data availability All data used in this paper are public, and the sources are listed in Table 1. All models and code generated during the study
are available from the corresponding author (Chuanyan Zhang) by request.

Declarations

 Ethics approval and consent to participate Not applicable

Competing interests We declare that the authors have no Conflict of interest as defined by Springer, or other interests that might be perceived
to influence the results and/or discussion reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Appendix A

Proofs

Proof of Theorem 1 Generally, for any node pair (u, v),�(u) = �(v) = Ai , we have

where si(u, v) is the similarity result after ith iteration based on the naive iterative method.
If u = v , based on Eq. (2) of GSR, for k = 0, 1, 2, ... , we can obtain: sk(u, v) ≡ 1.
If u ≠ v , we can obtain:

.
Finally,in matrix notation, the iterative computation of General SimRank can be formulated as:

(21)s0(u, v) =

{
1 u = v

0 u ≠ v

(22)

sk+1(u, v) =
c

|I(u)||I(v)|

∑

Rj,i∈R

∑

x∈Ij (u)

∑

y∈Ij (v)

sk(x, y)

= c
∑

Rj,i∈R

∑

x∈Ij (u)

∑

y∈Ij (v)

1

|I(u)|
sk(x, y)

1

|I(v)|

= c
∑

Rj,i∈R

∑

x∈Ij (u)

∑

y∈Ij (v)

Wji(x, u)s
k(x, y)Wji(y, v)

= c
∑

Rj,i∈R

WT
ji
(u, ∶)Sk

j
Wji(∶, v)

http://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5 Research

.
Theorem 3 of the work [9] shows that there exists a unique solution of GSR. Thus, we can infer that

Si = (c
∑

Rj,i∈R

WT
ji
SjWji) ∨ I is the equivalent form of Eq. (2).

 ◻

References

 1. Shi C, Li Y, Zhang J, Sun Y, Yu PS. A survey of heterogeneous information network analysis. IEEE Trans Knowl Data Eng. 2017;29(1):17–37. https://
doi. org/ 10. 1109/ TKDE. 2016. 25985 61.

 2. Zhang C, Hong X. Challenging the long tail recommendation on heterogeneous information network. In: 2021 International Conference on
Data Mining, ICDM 2021—Workshops, Auckland, New Zealand, December 7–10, 2021. p. 94–101. https:// doi. org/ 10. 1109/ ICDMW 53433. 2021.
00018.

 3. Fang Y, Lin W, Zheng VW, Wu M, Shi J, Chang KC, Li X. Metagraph-based learning on heterogeneous graphs. IEEE Trans Knowl Data Eng.
2021;33(1):154–68. https:// doi. org/ 10. 1109/ TKDE. 2019. 29229 56.

 4. Zhang Z, Cui P, Zhu W. Deep learning on graphs: a survey. IEEE Trans Knowl Data Eng. 2022;34(1):249–70. https:// doi. org/ 10. 1109/ TKDE. 2020.
29813 33.

 5. Yoon M, Jung J, Kang U. TPA: fast, scalable, and accurate method for approximate random walk with restart on billion scale graphs. In: 34th
IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16–19, 2018. p. 1132–43. https:// doi. org/ 10. 1109/ ICDE.
2018. 00105.

 6. Zhang H, Lofgren P, Goel A. Approximate personalized pagerank on dynamic graphs. In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC,
Shen D, Rastogi R, editors. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13–17, 2016. p. 1315–24. https:// doi. org/ 10. 1145/ 29396 72. 29398 04.

 7. Jeh G, Widom J. SimRank: a measure of structural-context similarity, 2002. p. 538–43. https:// doi. org/ 10. 1145/ 775047. 775126
 8. Sun Y, Han J, Yan X, Yu PS, Wu T. Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc VLDB Endow.

2011;4(11):992–1003.
 9. Zhang C, Hong X, Peng Z. GSimRank: A general similarity measure on heterogeneous information network. In: Wang X, Zhang R, Lee Y, Sun L,

Moon Y, editors. Web and Big Data—4th International Joint Conference, APWeb-WAIM 2020, Tianjin, China, September 18–20, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 12317, 2020. p. 588–602. https:// doi. org/ 10. 1007/ 978-3- 030- 60259-8_ 43.

 10. Wang H, Wei Z, Liu Y, Yuan Y, Du X, Wen J. ExactSim: benchmarking single-source SimRank algorithms with high-precision ground truths. VLDB
J. 2021;30(6):989–1015. https:// doi. org/ 10. 1007/ s00778- 021- 00672-7.

 11. Lu J, Gong Z, Lin X. A novel and fast SimRank algorithm. IEEE Trans Knowl Data Eng. 2017;29(3):572–85. https:// doi. org/ 10. 1109/ TKDE. 2016.
26262 82.

 12. Wang Y, Lian X, Chen L. Efficient SimRank tracking in dynamic graphs. In: 34th IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16–19, 2018. p. 545–56. https:// doi. org/ 10. 1109/ ICDE. 2018. 00056.

 13. Lizorkin D, Velikhov P, Grinev MN, Turdakov D. Accuracy estimate and optimization techniques for SimRank computation. VLDB J. 2010;19(1):45–
66. https:// doi. org/ 10. 1007/ s00778- 009- 0168-8.

 14. Yu W, Lin X, Zhang W. Towards efficient SimRank computation on large networks. In: Jensen CS, Jermaine CM, Zhou X, editors. 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12, 2013. p. 601–12. https:// doi. org/ 10. 1109/ ICDE. 2013.
65448 59.

 15. Tian B, Xiao X. SLING: A near-optimal index structure for SimRank. In: Özcan F, Koutrika G, Madden S, editors. Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26–July 01, 2016. p. 1859–74. https://
doi. org/ 10. 1145/ 28829 03. 29152 43.

 16. Jiang M, Fu AW, Wong RC, Wang K. READS: a random walk approach for efficient and accurate dynamic SimRank. Proc VLDB Endow.
2017;10(9):937–48. https:// doi. org/ 10. 14778/ 30996 22. 30996 25.

 17. Liu Y, Zheng B, He X, Wei Z, Xiao X, Zheng K, Lu J. Probesim: scalable single-source and top-k SimRank computations on dynamic graphs. Proc
VLDB Endow. 2017;11(1):14–26. https:// doi. org/ 10. 14778/ 31511 13. 31511 15.

 18. Song J, Luo X, Gao J, Zhou C, Wei H, Yu JX. Uniwalk: unidirectional random walk based scalable SimRank computation over large graph. IEEE
Trans Knowl Data Eng. 2018;30(5):992–1006. https:// doi. org/ 10. 1109/ TKDE. 2017. 27791 26.

 19. Li C, Han J, He G, Jin X, Sun Y, Yu Y, Wu T. Fast computation of SimRank for static and dynamic information networks. In: Manolescu I, Spaccapi-
etra S, Teubner J, Kitsuregawa M, Léger A, Naumann F, Ailamaki A, Özcan F, editors. EDBT 2010, 13th International Conference on Extending
Database Technology, Lausanne, Switzerland, March 22–26, Proceedings. ACM International Conference Proceeding Series, vol. 426. 2010. p.
465–76. https:// doi. org/ 10. 1145/ 17390 41. 17390 98.

 20. Yu W, Zhang W, Lin X, Zhang Q, Le J. A space and time efficient algorithm for SimRank computation. World Wide Web. 2012;15(3):327–53.
https:// doi. org/ 10. 1007/ s11280- 010- 0100-6.

(23)

⎧
⎪
⎨
⎪
⎩

S0
i
= I

Sk+1
i

= (c
∑

Rj,i∈R

WT
ji
Sk
j
Wji) ∨ I

https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/ICDMW53433.2021.00018
https://doi.org/10.1109/ICDMW53433.2021.00018
https://doi.org/10.1109/TKDE.2019.2922956
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/ICDE.2018.00105
https://doi.org/10.1109/ICDE.2018.00105
https://doi.org/10.1145/2939672.2939804
https://doi.org/10.1145/775047.775126
https://doi.org/10.1007/978-3-030-60259-8_43
https://doi.org/10.1007/s00778-021-00672-7
https://doi.org/10.1109/TKDE.2016.2626282
https://doi.org/10.1109/TKDE.2016.2626282
https://doi.org/10.1109/ICDE.2018.00056
https://doi.org/10.1007/s00778-009-0168-8
https://doi.org/10.1109/ICDE.2013.6544859
https://doi.org/10.1109/ICDE.2013.6544859
https://doi.org/10.1145/2882903.2915243
https://doi.org/10.1145/2882903.2915243
https://doi.org/10.14778/3099622.3099625
https://doi.org/10.14778/3151113.3151115
https://doi.org/10.1109/TKDE.2017.2779126
https://doi.org/10.1145/1739041.1739098
https://doi.org/10.1007/s11280-010-0100-6

Vol:.(1234567890)

Research Discover Computing (2024) 27:8 | https://doi.org/10.1007/s10791-024-09438-5

 21. Fujiwara Y, Nakatsuji M, Shiokawa H, Onizuka M. Efficient search algorithm for SimRank. In: Jensen CS, Jermaine CM, Zhou X, editors. 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12, 2013. p. 589–600. https:// doi. org/ 10. 1109/ ICDE. 2013.
65448 58.

 22. Maehara T, Kusumoto M, Kawarabayashi K. Scalable SimRank join algorithm. In: Gehrke J, Lehner W, Shim K, Cha SK, Lohman GM, editors. 31st
IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13–17, 2015. p. 603–14. https:// doi. org/ 10. 1109/ ICDE.
2015. 71133 18.

 23. Bressan M, Pretto L. Local computation of pagerank: the ranking side. In: Macdonald C, Ounis I, Ruthven I, editors. Proceedings of the 20th ACM
Conference on Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24–28, 2011. p. 631–40. https://
doi. org/ 10. 1145/ 20635 76. 20636 70.

 24. Aumüller M, Ceccarello M. Implementing distributed similarity joins using locality sensitive hashing. In: Stoyanovich J, Teubner J, Guagliardo P,
Nikolic M, Pieris A, Mühlig, J, Özcan F, Schelter S, Jagadish HV, Zhang M, editors. Proceedings of the 25th International Conference on Extending
Database Technology, EDBT 2022, Edinburgh, UK, March 29–April 1, 2022. p. 1–78190. https:// doi. org/ 10. 5441/ 002/ edbt. 2022. 07.

 25. Antonellis I, Garcia-Molina H, Chang C. SimRank++: query rewriting through link analysis of the click graph. Proc VLDB Endow. 2008;1(1):408–21.
https:// doi. org/ 10. 14778/ 14538 56. 14539 03.

 26. Shi C, Kong X, Huang Y, Yu PS, Wu B. Hetesim: a general framework for relevance measure in heterogeneous networks. IEEE Trans Knowl Data
Eng. 2014;26(10):2479–92. https:// doi. org/ 10. 1109/ TKDE. 2013. 22979 20.

 27. Zhang M, Wang J, Wang W. HeteRank: a general similarity measure in heterogeneous information networks by integrating multi-type relation-
ships. Inf Sci. 2018;453:389–407. https:// doi. org/ 10. 1016/j. ins. 2018. 04. 022.

 28. Zhou Y, Huang J, Sun H, Sun Y, Qiao S, Wambura SM. Recurrent meta-structure for robust similarity measure in heterogeneous information
networks. ACM Trans Knowl Discov Data. 2019;13(6):64–16433. https:// doi. org/ 10. 1145/ 33642 26.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICDE.2013.6544858
https://doi.org/10.1109/ICDE.2013.6544858
https://doi.org/10.1109/ICDE.2015.7113318
https://doi.org/10.1109/ICDE.2015.7113318
https://doi.org/10.1145/2063576.2063670
https://doi.org/10.1145/2063576.2063670
https://doi.org/10.5441/002/edbt.2022.07
https://doi.org/10.14778/1453856.1453903
https://doi.org/10.1109/TKDE.2013.2297920
https://doi.org/10.1016/j.ins.2018.04.022
https://doi.org/10.1145/3364226

	Fast computation of General SimRank on heterogeneous information network
	Abstract
	1 Introduction
	1.1 General SimRank
	1.2 Motivation
	1.3 Contributions

	2 Preliminaries
	3 The linear system of general SimRank
	3.1 General SimRank on node-pair graph
	3.2 Equivalent linear system
	3.3 Properties of the linear system

	4 Local push algorithm for the linear lystem
	4.1 Local push algorithm
	4.2 Analysis of local push algorithm
	4.2.1 Accuracy
	4.2.2 Time complexity
	4.2.3 Space complexity

	4.3 Incremental algorithm for dynamic HIN

	5 Experiment
	5.1 Experimental settings
	5.2 Experimental results
	5.2.1 Effectiveness
	5.2.2 Efficiency on static graphs
	5.2.3 Efficiency on dynamic graphs

	6 Related work
	7 Conclusion
	Acknowledgements
	Appendix A
	References

