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Abstract
Recent machine learning advances demonstrate the effectiveness of zero-shot models 
trained on large amounts of data collected from the internet. Among these, CLIP (Contras-
tive Language-Image Pre-training) has been introduced as a multimodal model with high 
accuracy on a number of different tasks and domains. However, the unconstrained nature 
of the model begs the question whether it can be deployed in open-domain real-word appli-
cations effectively in front of non-technical users. In this paper, we evaluate whether CLIP 
can be used for multimodal video retrieval in a real-world environment. For this purpose, 
we implemented impa, an efficient shot-based retrieval system powered by CLIP. We addi-
tionally implemented advanced query functionality in a unified graphical user interface 
to facilitate an intuitive and efficient usage of CLIP for video retrieval tasks. Finally, we 
empirically evaluated our retrieval system by performing a user study with video editing 
professionals and journalists working in the TV news media industry. After having the 
participants solve open-domain video retrieval tasks, we collected data via questionnaires, 
interviews, and UI interaction logs. Our evaluation focused on the perceived intuitiveness 
of retrieval using natural language, retrieval accuracy, and how users interacted with the 
system’s UI. We found that our advanced features yield higher task accuracy, user ratings, 
and more efficient queries. Overall, our results show the importance of designing intuitive 
and efficient user interfaces to be able to deploy large models such as CLIP effectively in 
real-world scenarios.
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1  Introduction

Very recently, training large language models (LLMs) such as GPT-3 (Brown et  al., 
2020) with self-supervised learning (SSL) has led to versatile open-domain models 
such as e.g. InstructGPT (Ouyang et  al., 2022) or ChatGPT (OpenAI, 2022), leading 
to a large range of machine-learning-assisted real-world applications. Despite these 
advances in natural language understanding, current search engines and retrieval sys-
tems largely remain keyword-based.

Video retrieval is a problem that can particularly benefit from language interpretation 
since bridging modalities can often lead to ambiguous interpretations. A large num-
ber of research has recently been focusing on improving vision-language models for 
zero-shot transfer. Despite these advances, current approaches for multimodal retrieval 
largely still rely on training how to combine different expert models. While these 
approaches have shown great success on benchmark datasets, they have severe issues 
with open-domain scalability and maintenance due to the need to train multiple large 
models independently.

Recently, CLIP has been introduced as a pre-trained model trained on large amounts 
of vision-language data by learning to associate images with text (Radford et al., 2021). 
In this paper, we explore how CLIP can be used for video retrieval to allow more natu-
ral user input and relevance feedback than with keyword-based search. We introduce impa 
(Intelligent Media Production Assistant), a novel video retrieval system that uses CLIP to 
interactively evaluate multimodal queries that can be used with any dataset. In addition, 
we conducted, to our knowledge, the first user study for video retrieval with CLIP in a 
real-world scenario while using TV production professionals as participants. We give them 
known-item search tasks, which, based on our expert interviews, represent a typical usage 
scenario during TV production, e.g. when retrieving stock footage from a video archive or 
searching for short scenes in long unedited raw footage.

Our main contributions are as follows: 

1.	 We introduce impa, a scalable open-domain multimodal video retrieval system powered 
by CLIP, with a focus on a powerful but easy-to-learn UI and features (see Fig. 1).

2.	 We designed a user study with a usability test based on known-item search tasks.
3.	 We evaluated impa by extensively collecting data during the test (i.e., task submissions, 

interaction logs, questionnaires, interviews). Our evaluation focused on A/B testing our 
features, user perception, and overall interface usage and task accuracy.

2 � Related work

2.1 � Self‑supervised learning

The main goal of self-supervised learning (SSL), and zero-shot transfer in particular, is to 
leverage large amounts of unlabeled data for the purpose of training general-purpose mod-
els that can be used in various downstream tasks such as e.g. visual question answering, 
image captioning, and image/video retrieval (Yu et al., 2020).

This is commonly achieved by defining pre-training tasks (e.g. masked language 
modeling and sentence-image alignment) to encourage the emergence of task-agnostic 
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representations. Recent advances in both vision and language models have given rise to a 
number of different ‘vision-and-language’ approaches for zero-shot transfer.

Most approaches use a single-stream model where language and vision representations 
are fed into the same Transformer layer (most notably, VisualBERT (Li et  al., 2019a), 
VL-BERT (Su et al., 2019), Unicoder-vl (Li et al., 2020a), InterBERT (Lin et al., 2020)). 
Some approaches (ViLBERT (Lu et al., 2019), LXMERT (Tan and Bansal, 2019)) suggest 
a dual-stream architecture with separated modality encoding, while an analysis by Bugli-
arello et al. (2021) shows that neither approach comes out on top of the other.

Subsequent models explore variations on feature representations such as object labels 
(OSCAR (Li et al., 2020b)), pixel-level (Pixel-BERT (Huang et al., 2020)) and patch-level 
(VILT (Kim et  al., 2021)) alignment, or by using scene graphs (ERNIE-ViL (Yu et  al., 
2021)).

CLIP (Radford et  al., 2021) simplifies the pre-training process of previous SSL 
approaches significantly. The main idea is to pre-train a simple dual-stream model with 
a contrastive objective by learning to recognize which images belong to which captions 
(and which don’t). Since it has a joint embedding space, the model can not only be used to 
reason from images to text, but also from text to images. Trained on large amounts of data 
crawled from the internet, the model is (without fine-tuning) able to solve a large variety 
of downstream tasks such as OCR, image retrieval, action recognition, geo-localization, 
object classification, sentiment analysis, and more.

Fig. 1   The impa user interface (UI) showing search results (on the V3C1 dataset) for the example query 
q = +f (“church window”) + f (“inside”) − 2 ⋅ f (“dark”) , i.e. non-dark video frames showing church win-
dows from the inside. The UI is divided into four main components: the Left Sidebar (under the logo), the 
Topbar (the query interface to the right of the logo), the Right Sidebar with additional video context for the 
selected shot, and the Gallery which is used to display the retrieved results and offers a shot preview when 
hovering over each entry with the mouse. Note that the task-related information and “submit” button are 
only present for the user study.
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2.2 � Zero‑shot transfer for videos

Pre-training vision-language models for video-based downstream tasks resembles image-
based approaches, except for their temporal processing of video frames. VideoBERT (Sun 
et  al., 2019b) is similar to VisualBERT, in that it is a single-stream model that doesn’t 
differentiate between its input’s modality. Dual-stream models, on the other hand, use 
dedicated video encoders as backbones, e.g. ResNet 3D CNNs (HowTo100M Miech et al. 
(2019)), S3D with contrastive bidirectional Transformers (CBT (Sun et al., 2019a)), and 
Vision Transformers such as with ViViT (Arnab et al., 2021)), UniVL (Luo et al., 2020), or 
the Video Swin Transformer (Liu et al., 2022).

Besides integrating vision and language features, some approaches use additional fea-
tures. Coming naturally for video data, the Video-Audio-Text Transformer (VATT (Akbari 
et al., 2021)) includes raw audio input. However, it is also possible to use more high-level 
features. As an example, Mithun et  al. (2018) project audio and spatio-temporal motion 
features into a common “activity-text space”. The collaborative experts model by Liu 
et al. (2019) and the Multimodal Transformer (MMT (Gabeur et al., 2020)) even use seven 
expert models for audio, actions, faces, OCR, scene, speech, and objects. However, trans-
ferable SSL approaches focusing on two modalities already require large amounts of data. 
Increasing the number of modalities further complicates the collection of large-scale data, 
and as a consequence, of training zero-shot models.

Therefore, some recent approaches only focus on few large-scale pretrained models. 
Luo et al. (2021) fine-tune CLIP, achieving state-of-the-art results on a number of video 
retrieval datasets. Portillo-Quintero et  al. (2021) simplify the usage of CLIP for video 
retrieval even further by exploring both frame averaging and frame sampling as methods 
for temporal feature aggregation, finding rather small differences and an overall competi-
tive performance to more complicated models.

2.3 � Video retrieval systems

While machine-learning-assisted video retrieval systems can be fully automated without 
human intervention and feedback (Awad et al., 2020), these types of setups rarely work in 
open-domain systems, particularly in industrial applications, where final human supervi-
sion of the results is paramount. Consequently, video retrieval systems of the past decade 
have largely focused on improving interactive searches (Lokoč et al., 2021) by using intel-
ligent systems as assistants and implementing relevance feedback. The idea behind rel-
evance feedback is to allow users to tell the system whether the results of the initial query 
are relevant or not. Using this feedback, the system can iteratively improve the results by 
continually refining its hypotheses about the user intent. This can be particularly important 
in a multimodal setup to clear up misunderstandings and dissolve ambiguities.

Partly driven by recent SSL advances, visual-textual embedding spaces to match que-
ries with frames have become increasingly popular in video retrieval systems (Awad et al., 
2020; Rossetto et al., 2021). As an example, the W2VV++ model projects sentence repre-
sentations into a video feature space for ad-hoc video search applications (Li et al., 2019b) 
and has been shown to improve existing systems such as SOMHunter (Veselỳ et al., 2021) 
with temporal and localized text queries.

Generally, multimodal systems have increasingly dominated the previous years’ 
video retrieval challenges such as the Video Browser Showdown (VBS) and TRECVID. 
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Reflecting contemporary model capabilities, these systems do generally have separately 
trained models for different modalities (such as text, images, audio) and features (e.g. que-
rying based on manual sketching, color-selection), giving the user some control in how 
these modalities are weighted to get a final result. For example, an analysis of the VBS 
2019 has shown that VITRIVR (Heller et al., 2021) had a competitive advantage due to an 
integration of ASR and OCR systems, while sketch-based features, offered by systems such 
as VIRET (Lokoč et al., 2019), were rarely adopted by the users. The analysis also finds 
that a text search is often sufficient to solve known-item tasks, even though additional fea-
tures and modalities can be important in rare situations. Most importantly, some user inter-
face (UI) designs can have a very negative impact on novice users, leaving them confused. 
Designing an efficient and intuitive UI can be particularly challenging for novel features 
before any usability testing.

Different to the current state-of-the-art in video retrieval systems, we focus on using 
CLIP as a single multimodal model, implementing previously established core features but 
packaging the model in a simple interface. Concurrent to our work, other video retrieval 
systems powered by CLIP are being developed and under review for VBS 2023 (Dang-
Nguyen et al., 2023). Based on currently available information,1 our system most notice-
ably differs in its user interface design: we allow multimodal queries with vector algebra 
capabilities directly from a single text input field by using React Chip components. Other 
systems use multiple UI elements to accomplish this, not allowing the user to mix text with 
images in the search field.

3 � The IMPA video retrieval system

3.1 � Multimodal encoding

Our objective is to perform video retrieval on shot-level. Each shot is defined as a con-
tiguous sequence of video frames, uninterrupted by a cut (video edit). Based on a database 
of videos, we perform boundary detection to segment the videos into shots. Each shot is 
represented by a single frame (as proposed by Portillo-Quintero et al. (2021)), specifically 
the center frame from each shot. While this effectively limits our system to non-temporal 
queries, we predict a low negative impact on the overall usability: using multiple frames 
has the side effect of overrepresenting longer shots with a potentially negligible impact on 
large video datasets (Karpathy et al., 2014). In addition, previous studies indicate that both 
novice and advanced users do not often use complex temporal expressions for known-item 
search (Rossetto et al., 2021).

We construct a database of visual embeddings e(V)
i

 from shot frames vi using CLIP’s 
ViT-B/32 image encoder fV (vi) = e

(V)

i
 ( dimv = 512 ). Likewise, we use the Transformer text 

encoder fT (ti) = e
(T)

i
 to encode text ti alongside each shot. Depending on the underlying 

data, this can e.g. be captions, transcripts, or video descriptions. We do not perform any 
fine-tuning with additional data as we are only interested in the usability and transfer of the 
originally published model. Based on this database of embeddings, we perform retrieval by 
ranking the embeddings based on closest distance to the query vector q.

1  https://​video​brows​ersho​wdown.​org/​teams/​vbs-​2023-​syste​ms/ (accessed 18 May 2023).

https://videobrowsershowdown.org/teams/vbs-2023-systems/
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Furthermore, we exploit the fact that CLIP’s text and vision encoder operate in the same 
representational space, allowing both image-to-text and text-to-image inference, by pro-
viding users with the ability to refine and extend previous queries by adding positive and 
negative examples from the search results.

3.2 � User interface

The user interface is accessible as a web app in any modern web browser. The project uses 
a scaleable client–server architecture to separate features into two independent but interact-
ing services, deployed in two separate containers for the frontend and backend, ensuring 
flexibility for managing resources and self-contained development updates. The frontend 
container serves the web app from an nginx server which receives all requests from the 
UI, thereby acting as a proxy server for the backend container and forwarding network 
requests. The backend container runs a python uWSGI application built on top of the Flask 
web framework, providing a REST API via a Web Server Gateway Interface. The user 
interface is built with JavaScript libraries, primarily React and Material UI (MUI) for inter-
face design, and Redux for state management. For an increased usability, we implemented 
a tutorial and guided task mode for our usability test, including help text in interactive 
tooltips for user guidance, pop-ups, and system notifications.

The UI is divided into 4 main components with the following features (compare Fig. 1):

•	 Topbar: editable input “groups” supporting both text and image input (using Chip2 
components), arbitrary image URLs as input, image upload, manual and automatic 
weighting of input groups, dynamic query updating based on relevance feedback

•	 Gallery: video shot preview on mouse hover, features for relevance feedback (adding 
results as negative or positive examples to the previous query), result selection and nav-
igation

•	 Right Sidebar: full video context of selected result, shot navigation within video, video 
player, metadata display, search history

•	 Left Sidebar: sliders for modality weighting, search filters based on metadata

The modality weighting sliders allow users to weight which data source shall have a higher 
impact on the results. While images represent video frames, the text modality can e.g. be 
used for transcript search, captions, or video descriptions. Since we use a separate index for 
each modality, querying on both modalities returns two separate lists of results (ranked by 
individual distances to the query q ). Consequently, we combine the distances dV

i
 from the 

vision index with those from the text index dT
i

 , using a weighted average of user-defined 
weights �, � ∈ [0, 1]:

If a shot i is only part of one modality’s results list M ∈ {V, T} , it is approximated as the 
average distance of that modality’s result list di

M

 . We perform this merging of modalities 

(1)di =

(

� ⋅ dV
i
+ � ⋅ dT

i

2

)

2  https://​mui.​com/​mater​ial-​ui/​react-​chip/ (accessed 18 May 2023).

https://mui.com/material-ui/react-chip/
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in the state management of the user interface to avoid the need for additional backend 
requests.

Search filters can be set based on a list of known metadata attributes. Since metadata 
is stored per video, shot-level frame embeddings e(V)

i
 returned from a query q have to be 

mapped to the corresponding metadata attributes. If there are no frame embeddings match-
ing the currently selected filters, we iteratively increase the search space of the embeddings 
five times, while adjusting HNSW hyperparameters or until HTTP timeouts occur.

3.3 � Multimodal queries and relevance feedback

3.3.1 � Vector algebra

By normalizing the embedding vectors, queries can be arbitrarily combined with different 
modalities. As such, an embedding vector ei can either result from using CLIP’s image 
encoder fV (vi) = e

(V)

i
 on an image vi or from using the text encoder fT (ti) = e

(T)

i
 on a text 

string ti . Every query q is then constructed by aggregating up to n ≥ 1 separate embedding 
vectors ei , which can be individually weighted by a scalar wi and signed by �i ∈ {−1, 1}:

Consequently, we enable basic vector algebra in queries by allowing users to specify the 
sign �i of each embedding ei . The ability to add and subtract embeddings opens up possibili-
ties for complex but precise queries. For example, the query q = +f (“red car”) − f (“traffic”) 
evaluates into a single representation q , after using the encoder f (⋅) , to retrieve frames 
showing images of red cars without visible traffic. Most importantly, this introduces rel-
evance feedback (see Fig. 2) which allows users to refine their queries by explaining which 
results are relevant and which are not.

It is important to note that we leave it open to the user how many embeddings they 
encode for their query. Not forcing all input into a single query vector enables the com-
munication of crucial nuances and distinctions by grouping expressions. For an exam-
ple, consider the semantic differences between the queries q1 = f (“white house”) and 
q2 = f (“white”) + f (“house”) , where q1 is significantly more likely to retrieve images of 
the residency of the US president and q2 of houses with a white exterior. The ability to 
weigh each group allows additional nuance. While each group evaluates to a single embed-
ding, it is visually represented by a single UI Chip.

While vector algebra offers a powerful tool for users with a mathematical background, 
the average non-technical user might be unfamiliar with it. Consequently, the concept of 
grouping and weighting expressions serves as an intuitive abstraction for manipulating 
embeddings, concealing the underlying complexity.

3.3.2 � Heuristic fine‑tuning of queries

One issue with allowing users to freely do vector algebra is that it can quickly lead to math-
ematically valid but completely unexpected results, especially when used for relevance 
feedback. As an example, consider the simple case in which a user executes the query q , 
which gets evaluated to the embedding eq , leading to a list of resulting frame embeddings 

(2)q =

n
∑

i

�iwiei
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e
(V)

1
, e

(V)

2
,⋯ . Let’s further assume that the user wants to make a minor adjustment to the 

retrieved results list by picking an image at the top of the list for subtraction to exclude 
a certain type of image from the results. Since the results are ranked by similarity to eq , 
results near the top have a very close distance to eq . With eq ≈ e

(V)

i
 (and low enough i), 

the new query q′ would, therefore, evaluate to q� = eq − e
(V)

i
≈ 0 . Consequently, the new 

results would effectively ignore eq even though it is a positively weighted part of the cur-
rent query. This query can be “fixed” by either including more positive examples or by re-
weighting individual inputs to avoid query vectors close to 0.

To practically solve this issue for the most prevalent cases, we developed some general 
heuristics to automatically tune the weights inside user queries. The main reason for taking 
this approach is to keep impa, particularly its interface, accessible to non-technical users as 
much as possible.

In general, our heuristics for automatic fine-tuning of vector weights assume queries 
of the nature q� = q +

∑n

i
�iwiei with q ≈ ei , wi = 1 , i.e. in practical terms, the resulting 

images of a query are used to construct a new query. Based on this, we count the number 
of positive vectors �+(q) and negative image vectors �−(q) (counting all text vectors as a 
single positive vector) and consider the following cases: 

1.	 if �−(q) ≥ �+(q) (i.e., 
∑

i �i ≤ 0):
	   Set wi =

�+(q)−1

�−(q)
 for each ei with �i = −1,

Fig. 2   Example for our implementation of relevance feedback in impa: The initial query for “sketches” (top) 
returns a variety of video frames (each representing a shot from the database). Clicking “-” on the first 
result removes this image’s characteristics (i.e., a visible hand and a vertical aspect ratio), while clicking 
“+” on the second result adds more results showing sketches on white paper. Note how the refined query 
(bottom) is built by visually appending these two images to the input field, allowing text and image inputs 
side by side.
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2.	 if �+(q) = 1,�−(q) = 1:
	   Set wi = c1 ∶= 0.1 for each ei with �i = −1,
3.	 if 𝜙+(q) = 1,𝜙−(q) > 1:
	   Give a hint that accuracy can be improved by providing at least �−(q) − 1 positive 

examples,
4.	 if 𝜙+(q) = 1,𝜙−(q) >

1−c2

c1
 with c2 ∶= 0.8:

	   Give a hint that accuracy can be improved by providing at least 1−c2
c1

 examples,

where c1 and c2 are empirically determined constants that determine how much the new 
query can deviate from the original query when users provide too many negative examples. 
Note that the last two cases do not necessarily always lead to unexpected results. As a con-
sequence, we simply advise the user to provide more (positive) examples as this is guaran-
teed to improve the result. While these heuristics are not exhaustive, we have found that the 
first heuristic in itself does already cover the most frequently occurring issues. Neverthe-
less, we make the autotuning of weights optional, allowing users to turn the feature off (see 
also Fig. 1).

3.4 � Optimized indexing and retrieval

To be able to scale video retrieval performance with large amounts of data, we do not com-
pare queries to every frame in the database. Instead, we perform approximate similarity 
search, balancing retrieval speed with recall. Building on the approach by clip-retrieval 
(Beaumont, 2022), we index all embedding vectors using faiss (Johnson et al., 2019) with 
one index per modality. For the deployment of the usability test with the V3C1 dataset (see 
subsection 4.1)), we use Hierarchical Navigable Small Word (HNSW) graphs for index-
ing and performing approximate k-nearest neighbor similarity search. HNSW has been 
shown to offer high recall and efficient performance in highly clustered data (Malkov and 
Yashunin, 2020). We organize the quantized embeddings with 214 clusters, retrieving 5000 
results per user query of which the 30 highest ranked are displayed to the user on the first 
page. Additionally, we enable multimodal queries by mapping video and text embeddings 
to the same index. For efficient data retrieval during runtime, we use a compressed cache 
consisting of video metadata, scene boundaries, and embedding vectors with Apache Par-
quet, a columnar storage format for efficient data storage and retrieval (Vohra, 2016).

4 � User study

To perform usability testing of impa within a real-world scenario, we designed a user study 
with TV production professionals. We tasked them with finding given video scenes in a 
large database within a limited amount of time. In doing so, we A/B tested the user inter-
face functionality with a within-subjects design and evaluated how participants interact 
with the UI elements and rate the system’s different aspects.

4.1 � Dataset

We used the V3C1 dataset (Rossetto et  al., 2019) to provide users with a database of 
searchable videos. The dataset is composed of around 1 Mio. shots from 7475 videos with 
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an average length of 8  min, totaling 1.3 TB in size and 1000  h of content. The dataset 
has been used successfully since 2019 in both the VBS (Rossetto et  al., 2021) and the 
TRECVID challenges. We utilized the provided shot boundaries to feed the center frame 
of each shot to CLIP in order to generate visual embeddings to represent the scenes. To 
further improve the quality of the embedding database, we used OpenCV (Bradski, 2000) 
to detect and remove blurry frames and mostly monochrome images. This step is of par-
ticular importance as we have found that CLIP can sometimes favor single-colored images 
over more characteristic images (e.g. for the query “The Simpsons”, ranking a fully yellow 
image higher than one with the characters).

The V3C1 metadata provides video descriptions which we used to generate text embed-
dings of each video. Together with the center frame embeddings, this served as the basis 
for multimodal query functionality. We used the remaining metadata (such as e.g. categori-
zation tags, duration, aspect ratio, title) to display context information in the UI below the 
video player and to allow the users to filter videos based on these variables.

4.2 � Participants

To test the overall system stability and to fine-tune the difficulty of the tasks, we have con-
ducted a prestudy using 6 participants. After some necessary adjustments, the main study 
was done with the help of 17 participants of which 4 had technical difficulties or did not 
complete the experiment. The demographics of the remaining participants were ages 21–56 
( M = 36.30 , SD = 11.35 ), 61.5% male, 92% fluent in English, and 76% with a higher edu-
cation background. The participants were chosen based on invitations from 7 different Ger-
man TV production companies related to news. 76% comprised professional video editors, 
the remaining participants were a mix of journalists, software engineers, and video archi-
vists. Asked to rate their professional skills on a scale from 1 to 5, our participants were 
highly familiar with video editing ( M = 4.54 , SD = 0.78 ), researching information/media 
using Google ( M = 4.31 , SD = 0.63 ) and YouTube ( M = 3.92 , SD = 0.95 ), video archive 
search in general ( M = 3.62 , SD = 1.04 ), and somewhat familiar with video categorization 
( M = 3.38 , SD = 1.19 ), media archiving ( M = 3.08 , SD = 1.26 ), and professional writing 
( M = 2.77 , SD = 1.24).

4.3 � Study design

We picked 11 video scenes from the V3C1 dataset as retrieval tasks, where the first three 
were used as simpler practice tasks so that users can familiarize themselves with the sys-
tem. Further splitting the 8 remaining videos into two groups of videos, we also evalu-
ated two different versions of the UI, one with only basic functionality and one includ-
ing advanced features (see subsection 4.5). This resulted in a 2x2 factorial within-subjects 
design with the two video groups and UI variants as independent variables. Consequently, 
we randomized the order in which participants see the video groups and UI variants, lead-
ing to one of four possible outcomes for each participant.

4.4 � Video groups

Due to the within-subjects design, every participant saw both systems in a randomized 
order. Since showing the same videos in both trials would have trivialized parts of the 
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challenge in the second trial, we picked a different set of videos for both trials, making an 
effort to keep the videos similar to each other (compare Fig. 3). Consequently, the scenes 
from the main video groups VG1 and VG2 have been chosen such that the i-th task from VG1 
matches the i-th task from VG2 in terms of task difficulty and displayed content. However, 
the presentation order of the two main video groups was randomized in spite of this to 
allow us to evaluate whether the video groups were indeed similar enough to not bias the 
results.

4.5 � A/B testing the UI functionality

Since most users were familiar with keyword-based search engines, we hypothesized that 
CLIP presented a strong deviation in how users could formulate queries and how these 
were interpreted. Therefore, we aimed to evaluate how well CLIP can be used “as is” for 
the purpose of video retrieval and how important our additional features are for both user 
perception and task accuracy. For this purpose, we split the feature set into two different 
versions of impa, a basic (B) version and an advanced (A) version (Table 1). Based on ini-
tial testing and feedback, we mainly restricted the basic version to the ability to divide the 
query into groups and to find the most similar frames for a particular result.

Fig. 3   Overview of the 11 scenes that users were asked to find. The test started with 3 practice tasks, con-
tinuing with either VG

1
 or VG

2
 , in which videos had a common theme for each task (on-screen caption, 

cartoon figures, abstract scene description, activity). The videos are referred to as “video ij” based on their 
group ID i and task ID j. 
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Based on the 2x2 factorial within-subjects design (see subsection  4.3), users went 
through two trials (with 4 tasks each) to see both systems. Randomizing the order in which 
the two systems are shown in the first vs. the second trial, allowed us to evaluate the results 
from two different angles: users going from B → A experienced additional features after 
learning the basics first, while users going from A → B actively experienced the removal of 
(potentially helpful) advanced features.

4.6 � Study procedures

We evaluated the user study based on questionnaires, interviews, and server logs of user 
interactions. Centered around a trial for each condition, each participant went through the 
following steps to complete the full user study: 

1.	 Pre-Questionnaire,
2.	 Trial 1: tutorial, 3 practice tasks ( VG0).
	   4 tasks with either VG1 or VG2 (randomized), either basic or advanced features (ran-

domized),
3.	 Questionnaire,
4.	 Trial 2: tutorial, 4 tasks with remaining video group and features,
5.	 Questionnaire,
6.	 Interview.

After giving informed consent, each participant started the study with a pre-questionnaire 
of seven questions collecting demographic information and assessing skill level and prior 
knowledge. To ease users into the usage of the system’s features, and to educate users on 
how CLIP’s query interpretation differs from traditional keyword-based search engines, 
each trial started with a written tutorial as an introduction, for which users needed between 
3–14  min ( M = 7.6 , SD = 3.4 ). The tutorial served as an introduction to impa’s features 
and illustrated some key differences between conventional keyword-based search and using 
CLIP.

After the first trial, in which users were either shown the basic or advanced system (and 
one of the two video groups), users were given the main questionnaire. It consisted of the 

Table 1   Overview of features 
for the basic vs. the advanced 
version of impa 

Features \Version Basic (B) Advanced (A)

Grouping ✓ ✓

Search history ✓ ✓

Video preview ✓ ✓

Metadata ✓ ✓

Show similar ✓ ✓

Show more/less like ✓

Add/subtract groups ✓

Group weighting ✓

Multimodal query ✓

Image query (upload) ✓

Modality weighting ✓

Search filters ✓
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Post-Study System Usability Questionnaire (PSSUQ) by Lewis (1995), Net Promoter Score 
(NPS ®) by Reichheld (2003), Perceived Difficulty Assessment Questionnaire (PDAQ) by 
Ribeiro and Yarnal (2010), and a custom set of questions inquiring about, e.g., the per-
ceived learning curve, usability, transparency, and credibility of the results. The trial was 
repeated with the remaining system and video group, concluding with the same question-
naire. On average, users needed M = 62 minutes ( SD = 28 ) for completion.

Following this practical part of the user study, an experimenter checked the server logs 
for anomalous behavior for a chance to clarify during the post-study interview. The inter-
view was conducted shortly after via videoconferencing and was scheduled to take 15 min. 
Besides asking for feedback on features and suggestions, we asked every user on their 
overall impression, their expectations, whether they “trusted” the results, and whether they 
would use impa at work.

Note that the entire study was designed for remote participation for which we took addi-
tional steps to ensure the validity of the results and a smooth and clear user flow. Prior to 
the experiment, we asked users to set aside a certain amount of time and to participate with 
a workplace setup that they are personally familiar and comfortable with. In addition, the 
user study was fully “automated”, requiring no intervention: participants received an invi-
tation e-mail with a link and ID token to a survey set up with LimeSurvey (2003) and had 
no further interaction with experimenters until the final interview. We randomized the con-
ditions within LimeSurvey, dynamically linking to the basic/advanced systems and tasks, 
opening the tabs in a second browser tab, and asking the user to continue with the survey 
on the first tab after completing each trial.

To assess how users interact with our system, we logged their interactions with the UI. 
Using these server logs, we were able to evaluate the sequence of events that led to a sub-
mission, the popularity and helpfulness of our features, and how much time users spent for 
certain activities. Naturally, we logged all submitted videos and the time needed for each 
task (which was limited to 3 min).

5 � Results

5.1 � Validating the experimental setup

We started our evaluation by validating our experimental setup design, such as our choices 
for the retrieval videos, the experiment length, and potential social biases reflected by 
CLIP.

Using the Perceived Difficulty Assessment Questionnaire (PDAQ), we confirmed that 
on a 7-Likert scale, the perceived difficulty of our retrieval tasks fell, on average, slightly 
above the neutral midpoint of the scale ( M = 4.27 , SD = 1.61 ), indicating a good bal-
ance in difficulty throughout the experiment. Interestingly, users rated the tasks easier 
after using the advanced system ( M = 4.15 , SD = 1.86 ) compared to the basic system 
( M = 4.38 , SD = 1.39 ). We also found video group VG2 to be perceived as slightly more 
difficult ( M = 4.62 , SD = 1.76 ) than VG1 ( M = 3.92 , SD = 1.44 ), although looking at the 
actual task submissions, difficulty and completion times between the two groups even out 
on average.

This can also be seen in Fig. 4, which shows that some tasks took more time than others, 
somewhat balancing out within the two main video groups. Similarly, while we have found 
that there were large differences in how much time the participants needed for the entire 
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experiment, the average perceived length for the trials was the same ( M = 4.77 ), regardless 
of which system variant was used. Most importantly, we have not found the video groups 
to correlate to any of the user’s system preferences and ratings (subsection 5.2), which vali-
dates our experimental setup and thus the foundation of our main conclusions.

As CLIP has been trained on large amounts of open-domain data, it can lead to poten-
tially problematic and off-putting query interpretations, e.g. due to inherited gender and 
age biases (Agarwal et al., 2021). To monitor this factor, we asked participants in the post-
study questionnaire whether they felt like impa had a human personality-driven, potentially 
biased, interpretation of their queries. 70% felt no traces of “personality” or bias, with half 
of the other 30% attributing this to a misunderstanding caused by their own phrasing. Con-
sequently, social biases did not affect user perception noticeably in our user study.

To ensure a good understanding of impa’s features, we deliberately provided a tutorial 
beforehand and asked them to rate its usefulness after the trial. Almost all users gave the 
tutorial a high rating (compare Fig. 6), many mentioning its usefulness in the interviews. 
Exploring whether the tutorial had a measurable effect, we find no link between the time 
participants took to read the tutorial and their enjoyment, how accurately they solved the 
tasks, how many advanced features they used, or any other relevant metric.

Fig. 4   Time needed per task, advanced (A) vs. basic (B) system. Users had a maximum of 180 s for each 
task. Users always started with the introductory videos 01, 02, 03 ( VG

0
 ) before doing the videos 14 − 17 

( VG
1
 ) or 24 − 27 ( VG

2
 ) next.
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5.2 � User perception

We used the 16-item 7-Likert Post-Study System Usability Questionnaire (PSSUQ) to 
compare the advanced (A) to the basic (B) system w.r.t. its 3 item groups system use-
fulness (SYSUSE), information quality (INFOQUAL), and interface quality (INTER-
QUAL). Evaluating the results, we found that both systems had a higher than average 
rating on all item groups (compare Fig. 5). However, system A was rated higher more 
consistently, best visible for INFOQUAL ( p = 0.3 ). It got particularly more agreement 
on the statement “The system gave error messages that clearly told me how to fix prob-
lems” ( Δ = 1.23 ) and “This system has all the functions and capabilities I expect it to 
have” ( Δ = 0.46 ). As both systems had the same system messages and user on-screen 
feedback, we interpret this difference to be primarily caused by the presence of rele-
vance feedback in system A. Overall, the individual answers show that, while system B 
seems easier to learn, system A is seen as more efficient, providing better feedback, and 
with more expected functionality.

To calculate the Net Promoter Score (NPS), we asked participants the likelihood that 
they would recommend impa to a friend or colleague. We find that both systems achieved a 
positive rating, with system A scoring higher (57 vs. 36). During the post-study interviews, 
we asked participants a similar question, i.e. whether they would use impa at work, which 
85% affirmed. The same percentage was also self-reported to “trust” in the search results. 
Further comparing both systems (see Fig. 6), we found that more users prefer system A 
when asked directly about user satisfaction and system performance. Overall, most of our 
questions were answered with above-average scale values, multilinguality being an excep-
tion due to CLIP’s limited multilingual capabilities (we informed our German participants 
of the possibility to mix languages in the queries).

Fig. 5   Average scores for the PSSUQ item groups system usefulness (SYSUSE), information quality 
(INFOQUAL), and interface quality (INTERQUAL), comparing the advanced (A) to the basic (B) system.
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We asked the users in the post-study interview which things they liked about impa the 
most and the least. The vector algebra functionality and the GUI design were mentioned 
the most as positive, whereas two users gave the feedback that it was sometimes difficult 
to understand why they got the wrong results. A transcript search was suggested the most 
as additional features for future work. In general, most participants, mentioned that they 
felt like the system might have a steep learning curve for other people, as it works quite 
different from established keyword-based search systems. Interestingly, we measured the 
opposite in our evaluation: users found working with system A easier and were measur-
ably more accurate with it. Additionally, we find that participants spend less time with the 
search bar and gallery as time passes throughout the experiment, indicating a “learning 
effect” that progresses with each completed task. As such, the perception of a steep learn-
ing curve might be caused by the false consensus effect, i.e. participants misjudging the 
capabilities of their peers. Nevertheless, further research might be necessary to rule out 
other potential causes such as the novelty effect, the subject-expectancy effect, or other 
negative manifestations of system complexity that are conflated with learning difficulty.

5.3 � User submissions and task accuracy

Throughout the experiment, only one person abandoned a task (twice) and only one person 
submitted an incorrect video (once). In all other cases, tasks were either submitted cor-
rectly or users ran out of time (3 min per task). Overall, participants had an accuracy of 
81% with system A and 76% with system B, indicating the success of some of the advanced 
features. This is also supported by our analysis of how far users had to scroll for their 
submitted videos. On average, users scrolled less for system A ( M = 7.9 results) than B 
( M = 9.0 results). As in similar studies (Rossetto et  al., 2021), we have found very few 
submissions beyond the first page of 30 results as users don’t seem to scroll beyond the first 
initial results - despite spending a majority of their time browsing the results. Indeed, the 
fastest task submissions were for videos that ranked in the initial positions of the results 
list.

Analyzing potential relationships between a user’s individual task performance and how 
often they used certain features, we found that, while the grouping feature was essential 

Fig. 6   Average scores for a set of questions on a 10-point (a) and 5-point (b) Likert scale, comparing the 
advanced (A) to the basic (B) system.
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to find some of the videos, using too many can generally lead to somewhat unforeseeable 
results. This is particularly true when most of the groups consist of text embeddings. As 
such, most correct submissions are generally made up of fewer groups, i.e. less than 3 (and 
ranked in the top 5 search results). At the same time, the more groups were used in cor-
rect submissions, the more images were used, whereas the text inputs contained shorter 
phrases.

To understand how a participant’s success impacts their user ratings in the question-
naire, we explored potential relationships between task accuracy and items from the ques-
tionnaire. As expected, we found a polynomial trend ( R2 = 0.158 ) between task accuracy 
and user satisfaction. Somewhat surprisingly, we found a linear correlation between how 
much people had to scroll in the gallery for a correct solution and their self-reported trust in 
the system ( R2 = 0.69 ). Possible interpretations for this are that i) people don’t trust a sys-
tem (or the experiment) if “it feels to easy”, ii) scrolling more correlates with higher task 
difficulty, i.e. people trust the system more once they solved a difficult task (we find this to 
be true for some of the tasks), or iii) the need to scroll more correlates with more complex 
interactions, i.e. people trust the system more once they have used all the features success-
fully. The latter explanation is somewhat supported by the fact that using one of the more 
complex features, the weighting feature, seems to also increase trust ( R2 = 0.49 ). Aggre-
gated over all users, we also report that using more groups (indicative of more complex 
interactions) correlates strongly with how easy users found to learn the system ( R2 = 0.93).

To summarize, using more complex features and interactions seems to have built more 
trust and familiarity with the system. Conversely, users that did not explore most of the 
functionality, seem to only have developed limited trust and understanding throughout the 
experiment.

5.4 � Feature usage

Logging all UI interactions with the React components and actions of the 4 main UI ele-
ments, we were able to evaluate how participants interacted with the features and how this 
correlated to their individual success or failure in the retrieval task.

As expected, the majority of the interactions and time spent was with the search bar 
(entering or modifying a query) and the gallery (clicking on a shot). In particular, for most 
users, more than half of their interactions were with the Gallery itself, generally spend-
ing around 3–6 s browsing before clicking on a shot or action in the Gallery. Weights and 
“show less like this” were the most used advanced features, the search filter the least used 
feature. In general, most participants always started with a simple text search and scrolled 
through the gallery, before using additional features as a means to refine the previous 
search (explaining the popularity of some of the features).

Moreover, while we have found large differences between how much time users needed 
for the entire experiment, most of them spent roughly the same amount of time between 
clicks for each of the 4 main elements of the UI, positively indicating a similar “flow” 
despite individual differences in attention and speed. We also found that 30% of users used 
the mouse to start a query (rather than using the enter key), that the image upload fea-
ture was used only once (likely due to the time limit), and that over 98% of searches never 
navigated to the second page, thereby only considering the top 30 search results on the first 
page.

Figure 7 illustrates heatmaps for all user actions over time, normalized for the individual 
task times, with the start and end of the timeline marking the beginning/end of a task. We 
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grouped the timelines by the NPS subdivisions, which, asked for the likelihood to recom-
mend impa from 1 (lowest) to 10 (highest), consisted of “detractors” (rating of 6 or lower), 
“passives” (7–8), and “promoters” (9–10). As can be seen, users with a high rating, had 
used significantly more of the advanced features throughout each task, in particular the 
“show more/less like this" actions, the feature that was voted as most helpful. Moreover, 
the self-reported trust in impa correlated with NPS and feature usage, further reinforcing 
that a successful trying out of all features led to the best user experience.

6 � Discussion

Our evaluation shows that CLIP can be used quite successfully for video retrieval. How-
ever, deploying the model “as is” is likely to lead to confusion with users who are more 
used to enter keywords instead of natural language into a search engine. As such, we iden-
tified several key components to a successful user adoption:

First, a guided user introduction is critical for an user to phrase a query that maps to 
their intent. Our tutorial explained all features with examples, illustrated peculiarities of 
CLIP, and gave advice on best practices. For the latter, we have found that using descriptive 
sentences of medium length was often preferable to non-grammatical keyword searches. 
Similarly, using multiple input groups (embeddings) should only really be done for disam-
biguation ([“white house”] vs [“white” “house”]) as algebraic expressions with a long list 
of vectors can lead to increasingly arbitrary results. We have found that our heuristics for 
automatic weight tuning cover most of these issues. In our usability test, relevance feed-
back, i.e. picking individual results as positive or negative examples to refine the initial 
query, was the most used and verbally commended feature, leading to collaborative interac-
tions in which query and results were iteratively improved.

Second, features that complement CLIP’s capabilities are vital for a successful user 
adoption. Without the ability to give direct feedback based on the search results, users 
might quickly become frustrated due to a lack of control. In our usability test, participants 
rated the advanced system higher (NPS, system quality, information quality, search results, 
effectiveness), spending more time with it, finding the correct solutions in higher positions, 

Fig. 7   Heatmap of all user actions over time, task-normalized (0.0: start of task, 1.0: end of task). Separated 
by columns based on the Net Promoter Score subdivisions grouping the likelihood to recommend impa to 
colleagues (1: least likely, 10: most likely). Heatmap color indicates the self-reported trust in impa during 
the interview (red and green histograms superimposed on black histogram).
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and scoring a higher task accuracy ( 81% vs. 75% ). Most users tested and utilized the 
advanced features, leading to an increased self-reported trust in the system’s search results.

Another important aspect of the provided features is to package the system’s features 
in a UI that is simple enough to feel intuitive but complex enough to allow more advanced 
interactions where necessary - especially when the user’s intent is misinterpreted. For 
example, impa offers an intuitive abstraction for vector algebra with embeddings that was 
easily understood and well adopted by our users.

Aside from this, it is equally important to understand the data domain on which CLIP 
is used, since the model has been shown to exhibit social biases, a side effect of training 
on large amounts of data scraped from social media websites. While the model poses a 
general risk of interpreting queries in a backhanded, suggestive, and even sarcastic man-
ner, the likelihood for this to happen (and to be noticed by the user) in a retrieval setup is 
e.g. significantly lower on a dataset of dashcam footage compared to videos crawled from 
random Twitter profiles. As such, it might be necessary to fine-tune CLIP on some data-
sets, depending on the associated risk. But while additional training or search filters might 
have to be used for deployment, this can not replace extensive testing of CLIP on the tar-
get domain, as human expert knowledge and large-scale testing currently remains the best 
practice to mitigate risks associated with large models.

The final ingredient for real-world use is effective and scalable resource management 
to ensure fast retrieval times, even for multimodal queries. While we have found vector 
search with faiss to be fast, reliable and scalable, it requires custom index management if 
image and text embeddings are kept separate in order to provide modality weighting for the 
user. Furthermore, faiss provides no useful option to exclude results at search time based 
on certain criteria. This makes it difficult to utilize metadata and to filter search results 
effectively. In many cases, we observed the need to iteratively increase the search space, 
leading to a degradation of the search speed and, in extreme cases, a noticeably worse user 
experience. As a future alternative, Elasticsearch3 provides a REST API to avoid these dis-
advantages, removing the need for custom metadata filtering and metadata management, as 
text embeddings, image embeddings and metadata can be stored in and searched from the 
same index.

7 � Conclusion

In this paper, we have introduced impa: an open-domain video retrieval system that pro-
cesses multimodal queries with CLIP. We focus on moment retrieval by embedding a sin-
gle frame per shot, saving processing time by avoiding explicit temporal modeling. In addi-
tion, we unify multimodal inputs in a single UI component to significantly simplify user 
input despite giving full access to the model’s capabilities and even allowing multimodal 
vector algebra with embeddings.

We evaluated our user interface and CLIP’s real-world usability by inviting profession-
als from the German TV production industry to a specially designed usability test. Our 
results show that our advanced features based around relevance feedback improve both user 
accuracy and user acceptance, thereby highlighting the importance of certain features and 
an intuitive UI to successfully deploy CLIP in a retrieval setup.

3  https://​github.​com/​elast​ic/​elast​icsea​rch (accessed 18 May 2023).

https://github.com/elastic/elasticsearch
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In the future, we would like to enhance multilingual querying by exploring M-CLIP 
(Carlsson et  al., 2022), improve index management with ElasticSearch, and implement 
additional features such as temporal querying, transcript search, and audio-based query-
ing. Further research on bias detection (Gezici et al., 2021) and open model variants like 
OpenCLIP (Ilharco et al., 2021) can also help in introducing better control over data biases, 
robustness, and domain-specific fine-tuning.
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