
Vol:.(1234567890)

Information Retrieval Journal (2020) 23:318–386
https://doi.org/10.1007/s10791-020-09374-0

1 3

AXIOMATIC THINKING FOR INFORMATION RETRIEVAL

On the nature of information access evaluation metrics: 
a unifying framework

Enrique Amigó1 · Stefano Mizzaro2 

Received: 21 June 2019 / Accepted: 5 May 2020 / Published online: 29 May 2020 
© Springer Nature B.V. 2020

Abstract
We provide a uniform, general, and complete formal account of evaluation metrics for 
ranking, classification, clustering, and other information access problems. We leverage 
concepts from measurement theory, such as scale types and permissible transformation 
functions, and we capture the nature of evaluation metrics in many tasks by two formal 
definitions, which lead to a distinction of two metric/tasks families, and provide a compre-
hensive classification of the tasks that have been proposed so far. We derive some theorems 
to analyze the suitability (or otherwise) of some common metrics. Within our model we 
can derive and explain the theoretical properties and drawbacks of the state of the art met-
rics for multiple tasks. The main contributions of this paper are that, differently from previ-
ous studies, the formalization is well grounded on a solid discipline, it is general as it can 
take into account most effectiveness metrics as well as most existing tasks, and it allows to 
derive important consequences on metrics and their limitations.

Keywords  Evaluation · Measurement theory · Effectiveness · Accuracy · Metrics

1  Introduction

The number of evaluation effectiveness metrics in information access tasks is very large, 
and growing: in Information Retrieval (IR) alone, more than 100 effectiveness metrics 
exist, not taking into account the user oriented and Web-oriented ones (Amigó et al. 2014); 
in clustering various accuracy measures are used, even in official experimental initiatives 
and sometimes with undesirable properties (Amigó et al. 2009); in filtering the situation is 
analogous (Amigó et al. 2011); and of course, when considering other tasks the number of 
used metrics grows even more.

Being the evaluation scenario so rich and complex, it is not surprising that attempts have 
been made to understand, model, and formalize it. More in detail, researchers have defined 
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formal properties (or axioms, or constraints) that must be satisfied by metrics. This has 
happened both in the early years (Van Rijsbergen 1974; Bollmann 1984) and more recently, 
with a renewed interest and several studies published in the last 5 years or so (Amigó et al. 
2009, 2011, 2013, 2014, 2015; Moffat 2013; Busin and Mizzaro 2013; Maddalena and 
Mizzaro 2014; Ferrante et al. 2015; Sebastiani 2015; Ferrante et al. 2017). All these studies 
have in common a formal attitude: to try to understand in a formal way properties of effec-
tiveness metrics. This paper follows the path of these studies, and addresses the formaliza-
tion of effectiveness evaluation.

As it will be detailed in the following, this paper differs from previous studies in sev-
eral respects. First, we aim at a more general approach: we do not focus on a specific task 
only, as others have done, but we take into account several information access tasks at the 
same time and we provide a uniform account. In this respect, one issue is that the num-
ber of tasks in information access is very large, and their variety is quite high: research-
ers build systems, for example, to classify tweets, cluster terms, retrieve documents, filter 
news, recommend movies, summarize texts, etc. To be able to provide a general and sys-
tematic account, we make two choices. First, we focus on the tasks that can be modeled 
by the assignment of a value to each item; most of the above mentioned examples match 
this description (the only exception being summarization). Second, we make an abstraction 
effort and we distill these many existing tasks into just four: Classification (assigning a cat-
egory to each document), Clustering (organising documents into groups), Ranking (sorting 
documents), and Quantitation (assigning a numeric value to each document). In an attempt 
to avoid confusion, we try to use a specific terminology: we use the term abstract task to 
refer to the latter four only (i.e., Classification, Clustering, Ranking, and Quantitation) and 
we use the term task to refer to all the former ones. Although the terminology is somehow 
different from what commonly used in the literature, we believe that the small effort is 
worthwhile, and it allows us to precisely define the four abstract tasks we are addressing.

A second difference from previous studies is that we ground on measurement theory, 
that provides several useful notions including the measurement scale. We are not by any 
means the first ones to use measurement theory as a tool. However, we use it in a way that 
is different from previous work, and that is important to state upfront also to avoid confu-
sion. It is probably intuitive to directly link the notion of metric with measurement: a met-
ric measures system accuracy/effectiveness. This is the approach of the seminal work by 
Van Rijsbergen (1974) and also of more recent proposals by Ferrante et al. (2017, 2019). 
However, we do not do so, and in our approach measurement theory is used in a different 
way: our starting point is the fact that both system outputs and gold standards can be seen 
as assignments of values to documents, for all four abstract tasks. For example, the output 
of a classification system can be seen as an assignment of values on the nominal scale type; 
a rank of documents (a typical search engine output) can be seen as an assignment of val-
ues to documents, to be interpreted on the ordinal scale type (i.e., considering only the rank 
induced by the assigned values); and so on. Thus, measurement theory allows us to model 
both system outputs and gold standards as assignments of values as well as to state a direct 
relationship between the abstract tasks and the scale types.

Then, coming to the third difference from previous studies, in our framework an evalua-
tion metric compares two assignments of numbers to documents: one provided by a system, 
and another one provided by human assessments. We define the effectiveness/accuracy of the 
system as the closeness of the two assignments. In other terms, measurement theory allows us 
to distinguish the above four abstract tasks on the basis of the scale used when assigning the 
values. For example, the nominal scale is used for classification and clustering (in which the 
task can be modeled as assigning values whose only important properties are equalities and 
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inequalities), the ordinal scale for ranking (in which the order of the values is the important 
property), and the interval and ratio scales for quantitation (in which differences and ratios are 
important, respectively).

But we need to add a notion of closeness, that measurement theory does not include. 
Indeed, we will define two different kinds of closeness: this will allow us to take into account 
all four abstract tasks, and the related metrics, by just varying two parameters (measure-
ment scale type and kind of closeness). The need for two different kinds of closeness will be 
detailed in the following, but can be immediately understood at an intuitive level by observing 
that for both categorization and clustering the scale type is nominal, but the two are clearly 
different: in the former the values used in the assignments are important (otherwise a misclas-
sification occurs), whereas in the latter the equality and inequality relations are important, so 
any measurement which is equivalent for the nominal scale type (another notion provided by 
measurement theory) is adequate.

So, to summarize, we have three aims in this paper. First, to provide a general definition of 
metric valid for different abstract tasks such as classification, clustering, ranking, or quantita-
tion (i.e., value prediction). This definition is based on measurement theory, but measurement 
theory is not enough and we also need to capture the concept of closeness, or proximity; we 
define two kinds of closeness. Second, to make explicit a correspondence between the four 
information access abstract tasks and a two dimensional space defined by: (i) the family of 
the metric (defined on the basis of two different approaches to closeness, based on values and 
equivalence), and (ii) the scale type to be used to analyse the correspondence between system 
and gold. Third, to state some theorems showing how our general definitions and axioms spe-
cialise into the metric properties defined in the literature for each particular information access 
task. Thus, the theoretical limitations of specific metrics that have been derived from the basic 
axioms in the literature can also be derived in our framework.

This paper is structured as follows. In Sect. 2 we extensively survey the previous attempts 
to formalize metrics properties across various abstract tasks. We then turn to defining our 
framework, which is based on measurement theory. The reader can find in Appendix A a basic 
background in measurement theory, a well settled discipline that provides the foundations and 
tools for our formalization. We include basic definitions and some examples. We ground on 
measurement theory to generalize the notion of evaluation metric in terms of closeness at spe-
cific scale types, as discussed in Sect. 3, where two kinds of closeness are defined. Section 4 
focuses on effectiveness metrics: we distinguish two families of metrics; for each of the two 
we provide a formal definition and state some properties as axioms. In Sects. 5 to 7 we exploit 
the framework: we state some theorems, that formally capture both general metric properties 
already proposed in the literature and properties of specific metrics, and that can be derived 
as particular cases from the definitions and axioms presented in our framework (proofs are in 
Appendix B). We finally show the generality of our framework by applying it to novel metrics 
and tasks in Sect. 8. Section 9 summarizes the main results, discusses consequences, assump-
tions and limits of this study, and sketches future work.

2 � Related work

Several authors have proposed formal properties of metrics by defining axiomatics 
focused on a specific task. Terminology needs some clarification. Different authors have 
used “properties”, “constraints”, or “axioms”, and there is even some debate on which 
term is correct. In this paper we privilege the last term, although sometimes we also use 
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as synonym one of previous two, especially when describing previous work (that we do 
usually by using the same terminology as in the original). As already mentioned, we dis-
tinguish between the concepts of information access task and abstract task. The former is 
related with the user context and goals. Examples of tasks could be: searching web pages 
for generating a report about a topic, recommending products for online sales, spam filter-
ing, sentiment analysis over tweets for reputation analysis, novelty detection in news, etc. 
All these tasks share the common characteristic that they consists of organising information 
items (web pages, mails, etc.). In this paper we refer to information items as documents.1 
An abstract task can be seen as an attempt of formalising the tasks and/or their basic com-
ponents, and it is related with the characteristics of system outputs and goldstandards (i.e., 
human judgments/assessments, also called simply golds). We focus on the four abstract 
tasks listed above (Categorization, Clustering, Ranking, and Quantitation), and we survey 
the main approaches, grouped by abstract task. We also note some details that are use-
ful in the following of the paper. We call basic axioms those common to different authors 
and somehow related to the abstract task but independent from the task. Tables 1, 2, and 
3 list the main properties and can be a useful reference; some of the notes in the tables are 
described in Sect. 6.

2.1 � Classification axiomatics

Some authors group classification metrics according to their properties. For instance, Ferri 
et al. (2009) discriminated between probabilistic measures (which consider the deviation 
from the true probability of errors) and measures based on a qualitative understanding of 
errors (which focus on the idea of utility). The authors do not offer a formal distinction 
between probabilistic and qualitative measures.

More recently, Sebastiani (2015) proposed eight axioms. The first one is the Strict 
Monotonicity axiom: it states that, given two classification outputs such that they only dif-
fer on one decision, i.e., the category of a document, then if one of them is correct on that 
document, it must be reflected in an increase in its metric score. This idea is also cap-
tured by Sokolova’s (2006) properties (see below). Sebastiani proved that the traditional 
F-measure (based on Precision and Recall) does not satisfy this property, as it fails when 
components of the contingency matrix have zero value. A similar problem is identified for 
the metric Lam% (Qi et al. 2010). Note, however, that zero values in components of the 
contingency matrix represent in general a very particular situation. We provide a slight 
generalization of MON into a Generalized Strict Monotonicity Axiom (GMON) in the fol-
lowing sections.

Sebastiani’s second axiom, Continuous Differentiability, states that the evaluation 
measure must be continuous and differentiable over the true positives and true negatives. 
According to the author, measures fail to satisfy this axiom, again, in the case of zero val-
ues in the contingency matrix. Something similar happens with his third and fourth axi-
oms, Strong Definiteness and Weak Definiteness, which state that the measures must be 
definable under any gold or system output. One might argue that the Strict Monotonicity 
axiom subsumes these two axioms, because the metric score of every system output must 
be definable in order to produce a score increase in the Strict Monotonicity conditions.

1  To help intuition, we prefer to use “documents” instead of “items”, but let us remark that it is just a mat-
ter of terminology and all the results presented in the following are general and hold for any kind of item.
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The fifth axiom (Fixed Range) sets a restriction about the measure value range. The 
sixth and seventh axioms (Robustness to Chance and Robustness to Imbalance) are related 
to the idea of probabilistic measures proposed by Ferri et al. (2009), and state that random 
or trivial classifiers must achieve the same score regardless the goldstandard. Measures 
such as Accuracy, Utility or F-measure (Precision and Recall), although widely adopted, do 
not satisfy this property. The reason is that actually, there are situations and user contexts 
in which not every trivial or random classifier has the same effectiveness. For instance, put-
ting randomly just a few mails in the spam directory is less problematic for the user than 
putting most of mails. The F-measure tackles this aspect by returning a fixed precision for 
any random output while increasing recall when returning most of e-mails to the user. The 
eighth and last axiom, Symmetry, “enforces the notion that the evaluation measure should 
be invariant with respect to switching the roles of the class and its complement”. Thus, 
replacing the positive samples by negative ones in both the system output and the gold 
produces the same classification score. However, again, this axiom is task-dependent and, 
therefore, not every metric is designed to satisfy it. For instance, class oriented metrics, 
such as the F-measure combination of Precision and Recall, do not satisfy it. Utility met-
rics assign a utility weight to each class, so they do not satisfy it. A system correctly labe-
ling as spam 8 out of 10 spam messages would be useful to the user, even if not perfect, but 
a system correctly labeling as non-spam 8 out of 10 non-spam messages would probably 
be unacceptable. For this reason, non symmetric metrics such as class oriented metrics are 
employed in these tasks.

In an earlier paper, Sokolova (2006) proposed a formal categorisation according to a set 
of properties based on the invariance of measures under a change in the contingency matrix 
(TP, TN, FP, FN, i.e., True Positive, True Negative, False Positive, and False Negative, 
respectively).

Table 1   The main classification axioms proposed in the literature, with some notes (discussed in more 
detail in the text) and their correspondence with the axioms and theorems in our framework (presented in 
the following of the paper)

Basic axioms are labeled with (*) and in italic

Classification Axioms Notes

Sebastiani (2015)
 1. Strict Monotonicity (MON) (*) Subsumed by GMON
 2. Continuous Differentiability (CON)
 3. Strong Definiteness (SDE) (*) Subsumed by MON
 4. Weak Definiteness (WDE) (*)
 5. Fixed Range (FIX) Non related with quality
 6. Robustness to Chance (CHA)
 7. Robustness to Imbalance (IMB) Task-dependent
 8. Symmetry (SYM)

Sokolova (2006)
 1. Invariance to TP-TN swap Correspondence with SYM
 2. Invariance to TN changes Complementary to CHA and IMB. Task-dependent
 3. Invariance to FP changes (*) Subsumed by MON
 4. Invariance to scaling (*) Non compatible with MON
 Generalized Monotonicity (GMON) (*) Captured by VOM

�
 & Theorem 1
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These properties have a correspondence with axioms proposed by other authors. The 
invariance under the swap of TP with TN and FP with FN corresponds to Sebastiani’s 
Symmetry axiom. The second property is the invariance under the change in TN when 
all other matrix entries remain the same. This property characterises the class-oriented 
measures (Precision and Recall). If the measure is not sensitive to one of the components, 
then increasing the amount of returned documents when the document classification is ran-
dom, can be always beneficial. This property is complementary to the sixth and seventh 
Sebastiani’s axioms; thus, this property is also task-dependent. The next property is the 
invariance under the change in FP when all other matrix entries remain the same. The non-
invariance is necessary if the measure satisfies the Strict Monotonicity axiom. The fourth 
and last property is the invariance under the classification scaling. According to the author, 
it is only satisfied by Precision, which is a partial measure that does not satisfy the Strict 
Monotonicity axiom.

In summary, we see that some axioms and properties are related, equivalent, or sub-
sumed, and others are task-dependent. The only exception we find is the Strict Monoto-
nicity axiom, which is common across all authors and is generally satisfied by most met-
rics. According to this analysis, we consider Strict Monotonicity as the unique commonly 
accepted basic axiom for the classification abstract task.

2.2 � Clustering axiomatics

Dom (2001) proposed five formal desirable properties for clustering metrics. These were 
later extended to seven by Rosenberg and Hirschberg (2007). Basically, this axiomatics 
consists of stating a bijective correspondence between clusters and classes in the gold. It 
assumes a set of useful clusters with high correspondence with classes (peer to peer) and 

Table 2   The main clustering axioms (same notation as in Table 1)

Clustering Axioms Notes

Dom (2001)
Extended by Rosenberg and Hirschberg’s axiomatics

Rosenberg and Hirschberg (2007)
 (*) Subsumed by Homogeneity and Completeness

Meila (2003)
 Properties 1, 2, 3, 5, 6, 8, 9, 12 Non related with quality aspects
 Properties 4 and 7 Related with Cluster Size versus Quantity
 Properties 10 and 11 (*) Related with Completeness

Amigó et al. (2009)
 1. Cluster homogeneity (*) Generalized in GHC
 2. Cluster completeness (*)
 3. Rag bag Task-dependent
 4. Cluster size versus quantity
 Generalized Homogeneity / Completeness (GHC) 

(*)
Captured by EOM

�
 & Theorem 2
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a set of noisy (small) clusters. The axioms state that increasing the amount of noisy clus-
ters, splitting or joining useful clusters decrease the score. These properties are implic-
itly subsumed by the Generalized Homogeneity/Completeness axiom that we instroduce 
below, given that these movements require breaking correct relationships and increasing 
the amount of incorrect relationships.

Meila (2003) proposed an entropy-based metric (Variation Information) and listed 
twelve desirable properties associated with it. Most of these properties are not directly 
related to the quality aspects captured by a metric, but rather to other intrinsic features such 
as the ability to scale or computational cost (Amigó et al. 2009). The exceptions are the 
properties 4 and 7, related with Cluster size versus Quantity (task-dependent), and proper-
ties 10 and 11, related with Completeness.

Amigó et al. (2009) proposed an axiomatics consisting of four constraints that, by focus-
ing on extreme situations in which one system output should outperform another, capture 
the essence of previously proposed axiomatics (Dom 2001; Meila 2003):

•	 Cluster Homogeneity: given a certain system output document distribution, splitting 
documents that do not belong to the same class must increase the output quality. This 
restriction was first proposed by Rosenberg and Hirschberg (2007). Although it seems a 
very basic constraint, measures based on editing distance do not satisfy it (Amigó et al. 
2009).

•	 Cluster Completeness: the counterpart to the first constraint is that documents belong-
ing to the same class should be in the same cluster. This intuition is also captured by 
Dom’s constraints. Measures based on set matching, such as Purity and Inverse Purity, 
do not satisfy this contraint.

Table 3   The main ranking axioms (same notation as in Table 1)

Ranking Axioms Notes

Moffat (2013)
 1. Boundedness Non related with quality aspects
 2. Monotonicity Task-dependent

Non compatible with Confidence axiom
 3. Convergence (*) Subsumed by Priority axiom
 4. Top-weightedness Task-dependent
 5. Localization Non general. Only for deepness threshold based metrics
 6. Completeness About definability
 7. Realizability Non related with ranking quality

Ferrante et al. (2015)
 1. Replacement (*) Subsumed by the Priority axiom
 2. Swapping (*)

Amigó et al. (2013)
 1. Priority (PRI) (*) Captured by EOM

�
 & Theorem 3

 2. Deepness Task-dependent
 3. Closeness Threshold
 4. Deepness Threshold
 5. Confidence
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•	 Rag Bag: introducing disorder into a disordered cluster (rag bag) is less harmful than 
into a clean cluster. In general, all traditional measures fail to comply with this con-
straint. However, it can be considered task-dependent, for example, in an early alarm 
detection task, considering a few related messages in isolation could be crucial.

•	 Cluster size versus quantity: a small error in a big cluster is preferable to a large num-
ber of small errors in small clusters. This constraint prevents the problem that measures 
based on counting pairs (Amigó et  al. 2009; Meila 2003; Halkidi et  al. 2001) over-
weight big clusters (these measures are sensitive to the combinatory explosion of pairs 
in big clusters, and fail on this constraint). Although this principle is shared by several 
authors (Amigó et al. 2009; Dom 2001; Meila 2003), we can consider a task in which 
this axiom is not mandatory, as one could be interested in penalizing errors in large 
clusters more than multiple errors in small clusters.

Cluster Homogeneity and Cluster Completeness constraints can be generalized into a sin-
gle one: given two identical clustering outputs with the exception that the second output 
contains correct clustering relationships that do not appear in the first output, or it does not 
contain incorrect clustering relationships that appear in the first system, then the metric 
must strictly increase. In the following sections we formalise this as Generalized Homoge-
neity/Completeness (GHC).

In summary, we can conclude that the basic axioms which are shared by different analy-
ses are Completeness and Homogeneity which can be generalized into a unique axiom.

2.3 � Ranking axiomatics

Most of the work on ranking axiomatics has been developed in the context of IR (as dis-
cussed in the first part of this section). There has been some discussion about ordinal clas-
sification too (as discussed in the last part). It is however important to understand that, by 
being focused on those concrete tasks, researchers have proposed, if not taken for granted, 
some properties, that do not apply for the abstract task of ranking. For example, it might 
sound surprising but top-heaviness is not mandatory for the abstract task of ranking. It is 
possible to imagine concrete ranking tasks that do not reward correctness in earlier rank 
positions more than in later ones: to provide a simple example, if one has to evaluate an 
approximate algorithm alphabetically sorting an array, Kendall’s Tau correlation would be 
a reasonable measure, although it is not top-heavy — and indeed it would not make any 
sense to reward the sorting algorithms that are more correct for “A” than for “Z”.

In one of the early works on formalizing IR evaluation, Van Rijsbergen (1974) already 
suggested to use measurement theory (as we do extensively in this paper). However, that 
seminal work does not state formal properties for simple evaluation measures, but for the 
combination of them (e.g., the well known F-measure), using the Conjoint Measurement 
Theory. Other authors tried to exploit measurement theory and to define a notion of simi-
larity between measurements when formalizing IR (Busin and Mizzaro 2013; Maddalena 
and Mizzaro 2014; Ferrante et al. 2015). This paper extends that idea, but using measure-
ment theory to state definitions and axioms for evaluation measures equally valid for differ-
ent information access abstract tasks, not just IR.

Moffat (2013) listed seven properties that IR metrics should satisfy. The first one is 
Boundedness. It is not about quality; it requires the existence of a bounded range of scores. 
The second one is called Monotonicity and states that if a ranking of length k is extended 
so that k + 1 elements are included, the metric value never decreases. This second property 
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is task-dependent: in some situations, reducing the size of the returned document list could 
be useful, for instance if it contains only irrelevant documents. In addition, according to the 
author, this property gets in contradiction with the next one, the Convergence property, that 
reflects the basic principle that relevant documents must occur above irrelevant documents 
in the system output ranking. The property states that swapping two documents in the rank-
ing in concordance with the relevance judgements strictly increases the metric scores. The 
fourth property, Top-weightedness, explicits that in IR the first positions in the rank are 
the most important ones. As anticipated at the beginning of this section, this constraint, 
although widely accepted, is task-dependent, because it is related with the cost of exploring 
the ranking produced by the system, i.e., the probability that the user actually explores each 
ranking position. Usually it is reasonable to assume that this probability decreases by going 
down the rank, but one might imagine situations where this is not true and a very persistent 
user explores all the ranking positions. The fifth one is referred as Localisation: a metric 
value at a given rank position k should depend only on the documents in the first k posi-
tions. This axiom can be applied only to metrics that assume a certain deepness threshold 
as input parameter. That is, it is not a general axiom. The sixth property, Completeness, 
states that the metric must be definable even when there are no relevant documents in the 
collection. Finally, Realisability states that the maximal score can be achieved even when 
there exists only one relevant document in the collection. This property is related with the 
normalisation of scores across test cases.

Ferrante et al. (2015) proposed two axioms: Replacement (replacing an irrelevant docu-
ment in the output ranking with a relevant one increases the score) and Swapping (swap-
ping two documents in the ranking output in concordance with the gold annotation relative 
relevance increases the score). In fact, if we assume that documents out of the output rank-
ing are located together in an additional last ranking position, then Replacement is sub-
sumed by Swapping. In addition, Swapping is equivalent to Convergence.

Amigó et al. (2013) proposed five axioms. The first one (Priority (PRI)) states again that 
swapping documents in a correct way increases the score. It is similar to Ferrante’s Swap-
ping axiom, and equivalent to it, although somehow more relaxed since it requires a metric 
score increase only when the ranking position of the swapped documents are contiguous. 
The next three axioms are related with assumptions about the user task: deeper positions 
in the ranking are less likely to be explored (Deepness axiom); there is an area at the top of 
the ranking which is always explored by the user (Closeness Threshold axiom); and there 
is an area deep enough that is never explored by the user (Deepness Threshold axiom). 
The last two axioms are formalised in terms of comparing one relevant document in the 
first position, n relevant documents in the 2n first ranking positions, and a huge amount of 
relevant documents after a huge amount of irrelevant documents. The fifth axiom states 
that given a ranking containing only irrelevant items, the shorter the ranking the higher the 
metric score (Confidence axiom). This axiom is also task-dependent. We could think that 
reducing the ranking length, instead of avoiding user effort, adds uncertainty about the pos-
sibility of finding relevant documents at lower ranks.

In summary, according to our analysis, most of the axioms and properties are task-
dependent. The basic axioms, common to all studies, are related with the correctness of 
priority relationships: the Swapping constraint proposed by both Ferrante et al. (2015) and 
Moffat (2013), and its relaxed version, the Priority axiom proposed by Amigó et al. (2013).

We also briefly mention the task of assigning items to categories which have an order, 
named Ordinal Classification: is a sort of mixture between classification and ranking. It is a 
quite popular task in some situations: besides the common assignment of “stars” in several Web 
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reviews sites, let us consider the polarity detection task, in which text fragments must be classi-
fied in terms of sentiment analysis according to a few categories such as “Very positive”, “Posi-
tive”, “Neutral”, “Negative” and “Very negative”. The task is defined in an ordinal manner, 
but the perfect system should return exactly the same values, so it is not a ranking problem like 
traditional IR. Then, some evaluation campaigns have applied a classification oriented metric, 
such as in Barbieri et al. (2016). In other campaigns, systems were evaluated with ranking met-
rics, such as in Amigó et al. (2013); in other ones, different tasks were defined in concordance 
with different metrics (ranking or classification), such as in Rosenthal et al. (2017).

We can see a similar situation in semantic textual similarity (Agirre et al. 2015) in which 
text pairs must be categorised according to a few classes (high / average similarity, etc.): 
the organizers used Pearson correlation. The prediction of stars in product recommendation 
also fits into this case: sorting products in a correct way is desirable, as well as assigning the 
correct amount of stars. In fact, recommender systems were initially evaluated in terms of 
accuracy, before the community began to work under ranking based metrics. We can find 
a few studies in the literature that analysed the behavior of some traditional metrics in this 
task such as Mean Average Error, Mean Squared Error, linear correlation, or Accuracy with 
n (Gaudette and Japkowicz 2009), proposed a method to make Ordinal Classification met-
rics robust to imbalance (Baccianella et al. 2009), and analysed the suitablity of traditional 
metrics by means of a particular case and proposed the Ordinal Classification Index met-
ric (Cardoso and Sousa 2011). However, differently from the previous abstract tasks, these 
studies do not define properties to be satisfied, and in general there is not a clear choice of 
the metric to be used when predicting a few labels that keep an ordinal relationship.

2.4 � Quantitation axiomatics

Quantitation,2 i.e., the abstract task of assigning numeric values to documents, is per-
haps less common, but it is not only theoretical and some examples can be found. In the 
Semantic Textual Similarity task at SemEval-2016 (Agirre et al. 2016), systems are asked 
to return a numeric value predicting the similarity between two snippet of texts. In some 
sentiment polarity detection tasks, the absolute polarity values returned by systems are 
compared with the reference values. In both cases the stated goal consists of maximising 
the linear correlation between system outputs and golds. The most frequent metric in these 
cases is the Pearson coefficient, although this choice is being criticised (Reimers et  al. 
2016) and might change in the future.

In other cases the goal consists of predicting the exact values. One example is the pro-
posal to evaluate information retrieval systems not only on the basis of the rank of the 
retrieved documents, but on the basis of the numeric relevance values assigned to docu-
ment. With this approach, and assuming a continuous notion of relevance, Della Mea and 
Mizzaro (2004) proposed ADM (Average Distance Measure). More recently, magnitude 
estimation has been proposed as a technique to gather relevance assessment on a ratio scale 
(Maddalena et al. 2017). One might even claim that there is a trend to go beyond the clas-
sical (category relevance and ranking retrieval) situation, although we are not aware of 
any attempt to capture the properties of metrics for quantitation. Therefore we include this 
abstract task in our analysis.

2  To avoid ambiguity, we use “quantitation” instead of its synonym “quantification” https​://en.wikip​edia.
org/wiki/Quant​ifica​tion_(scien​ce), that in data and text mining “consists in providing an aggregate estima-
tion (e.g., the class distribution in a classification problem) for unseen test sets, applying a model that is 
trained using a training set with a different data distribution” (González et al. 2017, p. 74).

https://en.wikipedia.org/wiki/Quantification_%28science)
https://en.wikipedia.org/wiki/Quantification_%28science)
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3 � Measurement theory and closeness

Measurement theory is briefly recalled in Sects. 3.1 and 3.2 (for more details see Appen-
dix A), where we also discuss the notion of closeness. We then outline the structure of our 
framework in Sect. 3.3. Sections 3.4–3.6 provide some definitions, and Sect. 3.7 provides 
an example (and the reader might find it useful to go back to Sects. 3.4–3.6 after having 
read it).

3.1 � Measurement theory

Appendix A recalls some of the basic concepts of measurement theory, that we assume 
as known in the following: assignment, measurement, scale types and permissible trans-
formation functions, equivalence, and meaningfulness (see Definitions A.1–A.4 and A.6). 
The reader familiar with measurement theory can probably just skim the appendix to get 
acquainted with our notation, or maybe even skip it and refer to specific parts when needed.

Briefly, measurement theory studies the properties of value assignments to objects like, 
for instance, temperature, height, and distance. At the core of measurement theory there is 
the notion of scale type. The classical scale types are nominal, ordinal, interval, and ratio. 
At each scale type, some relationships between values make sense and others are not mean-
ingful. For instance, at the nominal scale type only equality and inequality of values can be 
taken into account, whereas considering the ratio or the interval between values makes no 
sense (e.g., “red” divided by “green”). For each scale type, a set of permissible transfor-
mation functions is defined. These, when applied to a measurement, determine which are 
the measurements that, though different, are equivalent, i.e., carry the same meaning. For 
example, for the ordinal scale type, value assignments that order objects in the same way 
are equivalent, and the set of permissible transformation functions are the strictly mono-
tonically increasing functions.

This matches with our abstract tasks: in general, we can say that systems assign values 
to items (relevance, topics, categories, priority, etc.), and evaluation consists in compar-
ing the system output assignment against the human annotated assignment (gold). As an 
example, suppose that we want to categorize some documents into “physics”, “biology”, 
and “social sciences”. This is a classification problem, and there are no ordinal or inter-
val relationships between classes. The goal consists in maximizing the amount of equali-
ties between system output values and gold values, and there is no consideration about the 
range or interval of errors. In other words, the predicted categories are either accurate or 
not. In other terms, classification problems can be mapped onto the nominal scale type. 
Similarly, ranking problems can be mapped onto the ordinal scale type, and quantitation 
problems onto the interval and ratio scales. However the situation is slightly more com-
plex; this can be seen when considering that clustering can be mapped onto the nominal 
scale type as well, but it is an intrinsically different problem from classification. Anticipat-
ing what we will discuss in detail in the following, we model this difference on the basis 
of the kind of closeness that can be defined between two measurements: for classification 
we seek for equal measurements; for clustering we seek for equivalent measurements. We 
will also discuss that it is not even necessary to assume that system outputs and golds are 
measurements; assignment is enough.

Incidentally, we remark that by exploiting the basic concepts of measurement theory, 
like scale types and meaningful statements, it would be possible to directly derive some 
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consequences on effectiveness metrics. For example, the well known Mean Reciprocal 
Rank (MRR) metric is computed by considering the rank of the first relevant document, 
computing its reciprocal, and averaging these values. But by doing so, one is neither apply-
ing permissible transformation functions, nor deriving meaningful statements, for the scale 
type at hand, which is the ordinal one; a similar remark has been made by Fuhr (2018). 
Also the widely adopted Normalized Discounted Cumulative Gain (nDCG) metric trans-
forms an ordinal relevance scale (e.g., Highly relevant, Relevant, Marginally relevant, 
Not relevant) into numerical gains which are on a ratio scale type, and this is intrinsically 
arbitrary.

But we believe that the consequences of measurement theory on evaluation are deeper; 
in the rest of the paper we discuss those more foundational aspects.

3.2 � Closeness

Measurement theory focusses on equivalence rather than closeness. For instance, accord-
ing to Suppes and Zinnes (1963) the two first fundamental problems in measurement 
theory are the Representation Theorem and Uniqueness. Both are related with finding 
homomorphisms between the empirical and numerical structures, thus studying which 
assignments are indeed measurements. The third problem is the Meaningfulness Problem 
(see Sect. A.4). There is nothing that discusses the similarity, or distance, or closeness of 
two assignments or measurements. However, the main goal of evaluation is to compare 
system outputs against gold standards or references, which are almost never equivalent. 
In fact, equivalence would mean perfect effectiveness, which is an extremely rare event 
in information access. So, a simple binary comparison (equivalent versus non equivalent) 
is not enough, and, in this sense, the concept of closeness between two assignments (and, 
consequently, measurements) needs to be added to measurement theory concepts to for-
malise the evaluation scenario. As we will see in Sect. 4, this will allow to define the notion 
of evaluation metrics. Going back to the classification problem of the example in Sect. 3.1, 
this means that we need to model the closeness between system output values and gold 
values at the nominal scale type.

As another example, suppose that we are interested in grouping documents correctly. 
That is, the system must assign to documents about physics the same value, but different 
from biology documents. In this case, the document tags generated by the system (assigned 
values) are not necessarily equal to the category identifiers provided by humans in the gold. 
For this, we can exploit the notion of equivalence in measurement theory. That is, two 
assignments are equivalent at the nominal scale type if they keep the same equality rela-
tionships between objects. For instance, the assignments ( A = 1 , B = 1 , C = 2 ) and ( A = 3 , 
B = 3 , C = 1 ) are equivalent at the nominal scale type, given that, in both cases, A = B ≠ C 
is true. This matches with our clustering problem. In terms of measurement theory we can 
say that the goal of clustering evaluation is to quantify how close is the system output to be 
equivalent to the gold at the nominal scale type.

Let us finally consider the abstract task of sorting documents according to their rele-
vance, the classical document ranking problem. In this case, the evaluation must consider 
the ordinal relationships between assigned values, while the interval or ratio between 
assigned values is not important. That is, documents must be sorted in the same way as in 
the gold, i.e., relevant documents earlier than irrelevant documents. In terms of measure-
ment theory, the goal of ranking is generating a relevance assignment equivalent to the 
gold. We can interpret document ranking as an ordinal equivalence oriented problem.
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We state two general definitions of evaluation metric, value-oriented and equivalence-
oriented, and we prove that, depending on the scale type, existing metrics and their desira-
ble properties defined in the literature for each abstract task fit into the corresponding defi-
nition. But then, more situations appear spontaneously in the proposed model. For instance, 
in polarity detection, (positive, neutral, negative) categories present an ordinal relationship, 
while the intervals between polarity levels are undefined. However, unlike in ranking prob-
lems, predicting the specific polarity category of documents must be rewarded. This is an 
Ordinal Classification problem (see Sect. 2.3), but there is not a consensus about how this 
problem must be formalized. Our framework identifies it as a value-oriented ordinal prob-
lem, fitting in our definition.

The proposed model goes further, and includes abstract tasks at interval and ratio scales. 
The model also allows us to analyze evaluation metrics, and to understand when they can 
be used appropriately. For example, we prove in this paper that Pearson coefficient fits into 
our equivalence-oriented metric definition at the interval scale type, the popular cosine dis-
tance fits into the equivalence-oriented metric definition at the ratio scale type, and the 
commonly used error rate or mean average error fit into the value-oriented metric defini-
tion at the ratio or interval scale type.

3.3 � Structure of the framework

By exploiting some basic results of measurement theory, as well as the notion of close-
ness, we now turn to defining our framework. Figure 1 sketches the overall structure of the 
framework and can be a useful reference in the following. We ground on some definitions 
from measurement theory (orange boxes with dotted borders); we have briefly recalled them 
above but the reader is referred to the corresponding Definitions A.1–A.6 in Appendix A. 
Then, we analyse the notion of proximity, or closeness (dashed green boxes). We start from 

Fig. 1   Overall structure of the framework: from basic definitions of measurement theory, through closeness, 
to the two families of metrics
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a simple but general definition of closeness (Definition 1) and we particularize it for the four 
classical scale types (Definition 2). On this basis, we define two kinds of closeness meas-
ures for assignments, depending on whether they focus on value matching (Definition 3) or 
on measurement equivalence (Definition 4). These definitions can be particularised for any 
scale type: nominal, ordinal, interval, or ratio. Then, moving to the yellow boxes, we define 
system outputs and golds as assignments of numeric values to items (Definition 5); let us 
remark that this is done for compatibility with measurement theory and without loss of gen-
erality as long as we consider the abstract tasks. Finally, the definition of metric in general 
is directly derived from the notion of closeness (Definition 6), as well as the the two specific 
definitions of value- and equivalence-oriented metrics (Definitions 7 and 8).

3.4 � Defining closeness for a scale type

In this subsection, we start from a simple but general definition of closeness between 
single values, and then we propose a definition dependent on the scale types. Exploit-
ing these definitions, a more intuitive description of closeness for the scale types is then 
derived in Lemma 1; this will be used to define closeness between assignments in the next 
subsections.

A first important remark is that it is possible to define different distance functions, and 
therefore, multiple closeness notions. There is some unavoidable arbitrariness. A second 
remark is that the closeness between values also depends on the scale type of reference. For 
the nominal scale type, two values are similar when they are equal (e.g., since 3 ≠ 4 = 4 , 4 
is more similar to 4 than 3). For the ordinal scale type, we observe relative closeness when 
values are in sequence (e.g., since 3 < 4 < 5 , 3 is more similar to 4 than to 5). For the inter-
val scale type, when the absolute difference is lower (e.g., since |3 − 5| < |1000 − 5| , 3 is 
more similar to 5 than 1000). Notice that due to the subsumption effect across scale types 
(Formulas (30) and (31)), each assertion is valid for the other higher scale types (e.g., if 
3 ≠ 4 = 4 then 3 < 4 ≤ 4 and |3 − 4| > |4 − 4|).

For our framework a simple definition of closeness is sufficient, based on a distance 
between two values x, y ∈ ℝ computed as |x − y| . Moreover, we are interested in compar-
ing closeness values, not in precise closeness values. Therefore we do not define a function 
returning a closeness value, but simply the following relationship.

Definition 1  (Closeness) Let x, y, r ∈ ℝ . We say that x is (strictly) closer to a reference 
value r than y, and we write x ≼r y ( x ≺r y for the strict case), if and only if:3 

We now particularize closeness for a certain scale type. We refer to the four classic 
scale types, i.e., Nominal (denoted with � from now on), Ordinal ( � ), Interval ( � ), and 
Ratio ( � ). There is a natural order on the scale types, going from the lowest scale type � to 

(1)x ≼r y ⟺ |r − x| ≤ |r − y|

(2)x ≺r y ⟺ x ≼r y ∧ ¬(y ≼r x) ⟺ |r − x| < |r − y|.

3  It is easy to see that the last equivalence in (2) derives simply by applying (1) and observing that

x ≼r y ∧ ¬(y ≼r x) ⟺ |r − x| ≤ |r − y| ∧ ¬|r − y| ≤ |r − x|
⟺ |r − x| ≤ |r − y| ∧ |r − x| < |r − y| ⟺ |r − x| < |r − y| ⟺ x ≺r y.
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the highest scale type � . This order is derived from the inclusion chain of the permissible 
transformation functions of the four scale types: if F

�
 denotes the set of permissible trans-

formation functions for the scale type � , then F
�
⊂ F

�
⊂ F

�
⊂ F

�
 . This allows us to write 

� < � < � < � and to speak of higher and lower scale types accordingly. See Appendix A 
for further details.

Definition 2  (Closeness for a scale type) Let x, y, r ∈ ℝ , and F
�
 the set of permissible 

transformation functions for the scale type � . We say that x is closer to a reference r than 
y for a certain scale type � , and we write x ≼r

�
y if and only if it is closer for at least one 

permissible transformation function in F
�
:

The associated strict relationship is:

Given a fixed reference r, non-strict closeness is a binary relationship that satisfies 
reflexivity ( ∀x

(
x ≼r

�
x
)
 ), transitivity ( ∀x, y, z

(
x ≼r

𝚃
y ∧ y ≼r

𝚃
z ⟹ x ≼r

𝚃
z
)
 ), and is a connex 

relation ( ∀x, y
(
x ≼r

�
y ∨ y ≼r

�
x
)
 ). Non-strict closeness is not a total order since it is not anti-

symmetric, as two different values can be equally non-strict close to the reference. The strict 
closeness relationship is irreflexive, transitive, asymmetric ( ∀x, y

(
x ≺r

𝚃
y ⟹ ¬(y ≺r

𝚃
x)
)
 ), 

and acyclic.
Table 4 illustrates the behavior of these definition by analyzing whether the value v is 

non-strictly or strictly closer to the reference 0 than 1 for any scale type � (i.e., v ≼0
�
1 and 

v ≺0
�
1 ). Each column is associated with a value v, and each row with non-strict or strict 

closeness under different scale types. In other terms, we ask whether a given value v is 
closer to 0 than 1 for a given scale type; the upper and lower parts of the table discuss strict 
and non-strict closeness, respectively. For instance, looking at the first row, all values are 
non-strictly closer (actually, equally closer) to 0 than 1 for the nominal scale type, since a 
permissible transformation function, i.e., a bijective function, can be found that transforms 
any value into any other one, including 0; looking at the fourth row, only the zero value 
is strictly closer to 0 than 1 for the nominal scale type. For the ordinal scale type (second 
row), only 2 can not be non-strictly closer to 0 than 1 (because 2 is farther away to 0 than 
1 for any monotonic transformation); looking at the fifth row, any value in [0, 1) is strictly 
closer. For the interval and ratio scale types, any value in (−1, 1) is strictly closer to 0 than 
1. In general, the table reflects the subsumption of permissible transformation functions 
across scale types (Formulas  (30) and  (31)). The effect is that, when considering higher 

(3)x ≼r
𝚃
y ⟺ ∃f ∈ F

𝚃

(
f (x) ≼f (r) f (y)

)
.

(4)x ≺r
𝚃
y ⟺ x ≼r

𝚃
y ∧ ¬

(
y ≼r

𝚃
x
)
.

Table 4   Examples for closeness 
and strict closeness at different 
scale types

−2 −1 −0.5 � 0.5 � 2

v ≼0
�
1 ○ ○ ○ ○ ○ ○ ○

v ≼0
�
1 ○ ○ ○ ○ ○ ○ ×

v ≼0
�,�

1 × ○ ○ ○ ○ ○ ×

v ≺0
�
1 × × × ○ × × ×

v ≺0
�
1 × × × ○ ○ × ×

v ≺0
�,�

1 × × ○ ○ ○ × ×
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scale types, the number of strict closeness relationships increases, whereas the number of 
non-strict closeness relationships decreases.

This definition of (strict) closeness is general and valid for any scale type. We can instanti-
ate it into the four scale types as shown by the following lemma; this form helps intuition and it 
will be useful to develop the formal proofs in the following (all the proofs are in Appendix B).

Lemma 1  (Closeness for the four scale types) Let x, y, r ∈ ℝ . The value x is (strictly) 
closer to a reference r than y for each scale type � respectively if and only if the conditions 
in Table 5 are satisfied.

We now turn to closeness for assignments. We define two kinds of closeness (value-ori-
ented and equivalence-oriented), whose meaning is discussed in the example in Sect. 3.7.

3.5 � Value‑oriented assignment closeness

On the the basis of value closeness, we define a first closeness notion between assignments 
for a certain scale type. Consistently with Definition A.1, we denote assignments with � , 
�′ , �i , etc.

Definition 3  (Value-oriented assignment closeness) Given a set of objects D , an assign-
ment � is value-closer to a reference assignment � than another assignment �′ for the scale 
type � (we write 𝜔 ⊴

𝜌

�
𝜔′ and we speak of Value-Oriented Assignment Closeness) if and 

only if for every value (i.e., objects in D ) � is closer to � than �′ for the scale type �:

Moreover, we say that an assignment � is strictly value-closer to a reference assignment � 
than another assignment �′ for the scale type � if:

Note that strict value-closeness can be expressed as:

i.e., by applying (4) for any scale type � ∈ {�, �, �, �},

(5)𝜔 ⊴
𝜌

𝚃
𝜔�

⟺ ∀d ∈ D

(
𝜔(d) ≼

𝜌(d)

𝚃
𝜔�(d)

)
.

𝜔 ⊲
𝜌

𝚃
𝜔�

⟺ 𝜔 ⊴
𝜌

𝚃
𝜔� ∧ ¬

(
𝜔� ⊴

𝜌

𝚃
𝜔
)
.

𝜔 ⊲
𝜌

𝚃
𝜔�

⟺∀d ∈ D

(
𝜔(d) ≼

𝜌(d)

𝚃
𝜔�(d)

)
∧ ¬

(
∀d ∈ D

(
𝜔�(d) ≼

𝜌(d)

𝚃
𝜔(d)

))

⟺∀d ∈ D

(
𝜔(d) ≼

𝜌(d)

𝚃
𝜔�(d)

)
∧ ∃d ∈ D

(
¬
(
𝜔�(d) ≼

𝜌(d)

𝚃
𝜔(d)

))
,

Table 5   The conditions for 
closeness and strict closeness in 
Lemma 1

� x ≼r

�
y x ≺r

�
y

� (r ≠ y ∨ r = x) (r = x ∧ r ≠ y)

� ¬((r ≥ y > x) ∨ (x > y ≥ r)) (r ≥ x > y) ∨ (y > x ≥ r)

� , � |r − x| ≤ |r − y| |r − x| < |r − y|
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We use “value-closer” (and not simply “closer”) because we now define another closeness 
notion for assignments, before discussing an example in Sect. 3.7.

3.6 � Equivalence‑oriented assignment closeness

We formalise the closeness between assignments in terms of their equivalence class, rather 
than value correspondence.

Definition 4  (Equivalence-oriented assignment closeness) Given a set of objects D , an 
assignment � is equivalence-closer to a reference � than another assignment �′ for the scale 
type � (we write 𝜔 ⊑

𝜌

�
𝜔′ and we speak of Equivalence-Oriented Assignment Closeness) if 

and only if for every assignment �′
i
 in the equivalence class of �′ , there exists at least one 

assignment in the equivalence class of � that is value-closer to � for the scale type �:

The strict closeness is analogous to Definition 3:

Two assignments are closer according to Definition 3 if they tend to assign similar val-
ues, and according to Definition 4 if there exists a permissible transformation function that 
makes them assign similar values. In general, Definition 3 is useful for tasks like “meas-
ure temperature using the Celsius scale”; Definition 4 for tasks like “measure temperature 
using a scale of the interval scale type”. Referring to our abstract tasks, as we will discuss 
in detail in the following, the former is useful for categorization, where the assigned values 
are important; the latter for clustering, where cluster labels can be changed without affect-
ing the result. The two kinds of assignment closeness lead to two different families of met-
rics, as discussed in Sect. 4; we first provide an intuitive example.

3.7 � An example

As an example, consider the situation in Table 6, representing some assignments of three 
objects in D = {o1, o2, o3} : � is the reference assignment, and the �i are some different 
assignments. Now, if the scale type is � or � , all the assignments are equivalent. Therefore, 
these �i are all equally close to the reference � in terms of equivalence-closeness.

(6)𝜔 ⊲
𝜌

𝚃
𝜔�

⟺∀d ∈ D

(
𝜔(d) ≼

𝜌(d)

𝚃
𝜔�(d)

)
∧ ∃d ∈ D

(
𝜔(d) ≺

𝜌(d)

𝚃
𝜔�(d)

)
.

(7)𝜔 ⊑
𝜌

𝚃
𝜔�

⟺ ∀𝜔�
i
∈ [𝜔�]

𝚃

(
∃𝜔i ∈ [𝜔]

𝚃
(𝜔i ⊴

𝜌

𝚃
𝜔�
i
)
)
.

(8)𝜔 ⊏
𝜌

𝚃
𝜔�

⟺ 𝜔 ⊑
𝜌

𝚃
𝜔� ∧ ¬

(
𝜔� ⊑

𝜌

𝚃
𝜔
)
.

Table 6   The example described 
in the text

D � �
1

�
2

�
3

�
4

o1 10 1 11 12 12
o2 20 2 20 20 22
o3 30 3 30 30 32
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However, the situation changes when looking at value-oriented closeness, since �2 and 
�3 are strictly value-closer to � than the other assignments, given that they achieve equality 
for objects o2 and o3 . Thus, for the � scale type:4

If the scale type is � the situation is slightly more complex. In addition to the previous rela-
tionships, now �2 is closer to � than �3 ( �2 ⊲

�

�
�3 ) since the value 11 is ordinal closer to 

10 than 12. At interval (or ratio) scale type, in addition, �4 ⊲
�

�
�1 , and therefore (where � 

is � or �)

The meaningful statements of the interval scale type capture differences between assign-
ments that are not captured at ordinal or nominal scale types.

When considering again equivalence-oriented assignment closeness, we obtain a differ-
ent, and contradictory, outcome: �1 and �4 are closer to � than �2 and �3 , i.e.,

To see why, consider that for any linear transformation applied to �2 or �3 , we can define 
a transformation for �1 or �4 to make them closer to � : for instance ��

1
= �1 ∗ 10 and 

��
4
= �4 − 2 . Finally, if the scale type is � , �1 is equivalence-closer to � than �4 , i.e.,

It is clear that which assignment to prefer depends on the scale type, the abstract task, and 
whether value-oriented or equivalence-oriented closeness is used.

4 � Metrics: two families, eight classes

We can now turn to analyse effectiveness metrics. As it can be seen in the following, the 
previous framework based on the inclusion of closeness in measurement theory allows 
general definitions and theorems (in the next sections).

We first define some notation and provide a basic definition of metrics (in Sect. 4.1); 
on this basis, and exploiting the two kinds of closeness notions, namely value- and equiv-
alence-oriented (Definitions  3 in Sects.  3.5 and  4 in Sect.  3.6, respectively), we distin-
guish between two families of metrics, namely value- and equivalence-oriented metrics (in 
Sects. 4.2 and 4.3, respectively). We then revisit the example of Sect. 3.7 (in Sect. 4.4) and 
classify the metrics into eight classes (in Sect. 4.5).

(9)�2,�3 ⊲
�

�
�1,�4.

(10)�2 ⊲
�

�
�3 ⊲

�

�
�4 ⊲

�

�
�1.

(11)𝜔1,𝜔4 ⊏
𝜌

�
𝜔2,𝜔3.

(12)𝜔1 ⊏
𝜌

�
𝜔4.

4  We are slightly abusing the notation here: the meaning of Formula  (9) is that �
2
⊲
�

�
�
1
 , �

2
⊲
�

�
�
4
 , 

�
3
⊲
�

�
�
1
 , and �

3
⊲
�

�
�
4
 . A similar remark holds for the following Formula (11).
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4.1 � System outputs, gold standards, and metrics

The first step is to formalise system outputs and golds as assignments: they can be rel-
evance judgments, assigned categories, etc. We use � for golds and � for system outputs ( � 
is a mnemonic for assessment, � for system); thus �, � ∈ � (see Definition A.1).

Definition 5  (System output and gold) A system output � or a gold � is an assignment from 
a set of documents D to real numbers ℝ:

This approach is different from the classical approach by van Rijsbergen (1981) who 
focussed on considering measuring retrieval effectiveness itself as a measurement, as well 
as from the recent proposal by Ferrante et al. (2017), who consider evaluation metrics as 
measurements and set to determine if an IR evaluation metric is a measure on an interval 
scale. We do not represent an effectiveness metric as a measurement. Our approach is more 
similar to the already cited work of Busin and Mizzaro (2013) and Maddalena and Miz-
zaro (2014), but with an important difference. That previous work modeled system outputs 
and golds as measurements; however, this is not necessary in our approach, where they are 
simply assignments. This is an important simplification. We also remark that we are not 
the only ones to represent Golds as assignments. For example, Ferrante et al. (2019, Sec-
tion 4) write: “the ground-truth GT is a map which assigns a relevance degree rel ∈ REL 
to a document d with respect to a topic t′′ . We extend that approach by applying it to (i) 
system outputs and (ii) other abstract tasks beyong IR (ranking).

On the basis of Definition 5 we can represent any system output and gold. For exam-
ple, when human assessors judge relevance using the usual 4-levels scale for Highly rel-
evant, Relevant, Marginally relevant, Not relevant, it is common to translate them into the 
numeric values 3, 2, 1, and 0. Turning to system outputs, of course the Retrieval Status 
Values are an assignment; but any ranked list of retrieved documents can easily be con-
verted to an assignment, for example using the reciprocal of the rank. If the abstract task is 
not Ranking but, let us say, Clustering, the gold and system output will be again an assign-
ment of numbers to documents, with the natural convention that two documents having the 
same value means that they are in the same cluster, according to the gold and/or the system 
output; similarly for Classification.

On these basis we define a metric as a function that, given a system output � and a gold 
� , returns a real value that depends on how much � is close to �.

Definition 6  (Metric) A metric is a function M ∶ �2
⟶ ℝ.

We remark that some authors and metrics require a bounded codomain for M . Mof-
fat’s (2013) first property is Boundedness (see Sect. 2.3). Several metrics assume values 
in [0, 1]. However, this is not always the case: some metrics (that we will analyze in the 
following) such as Utility metrics (for classification) are unbounded and assume values in 
(−∞,+∞) , other metrics like DCG (for IR), and MAE (for quantitation) in [0,+∞) , and 
Pearson and Spearman in [−1,+1] . We choose the most general possibility for two reasons: 
(i) we aim at a general framework, thus we do not want to exclude metrics and to do so we 
focus on monotonicity and invariance properties; and (ii) normalizations can be applied, 
though this seems a technical and minor issue that we leave for future work.

� ∶ D ⟶ ℝ and � ∶ D ⟶ ℝ .
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However, we have defined two notions of closeness; therefore we define two families of 
metrics, as follows.

4.2 � First family: value‑oriented metrics

Value-oriented metrics quantify to what extent a system resembles the values assigned to 
items in the gold. The more the system values are close to the gold values, the more the 
metric returns high scores for the system. For instance, the values spam/non spam assigned 
by a spam filter should match with the values given by the human references. Given that 
the concept of closeness defined in the previous section depends on the scale type, the 
definition of a value-oriented metric is also dependent on the scale type. In addition, trans-
forming both the system output and the gold by the same permissible transformation func-
tion should not affect the metric result. For instance, we can apply a bijective transforma-
tion from the value representing the category “spam” to the value representing the category 
“trash-messages” (that, being bijective, is in F

�
 , i.e., is a permissible transformation func-

tion for the nominal scale) as long as we do it for both the system output and the gold.
We first define the following two properties.

Property 1  (VOI, value-oriented invariance) A metric M is value-oriented invariant for the 
scale type � if for any reference gold � and system output � , both of them on the same set of 
objects D , the metric value does not change by applying the same permissible transforma-
tion to both � and �:

Property 2  (VOM, value-oriented monotonicity) A metric M is value-oriented monotonic 
for the scale type � if for any reference gold � and system outputs � and and �′ , all three 
of them on the same set of objects D , it holds that if � is value-closer to � than �′ , then the 
metric value for � has to be higher than that for �′ . In formulas:

We can now specialize Definition 6 and formally define a value-oriented metric on the 
basis of value-oriented assignment closeness (Definition 3) as follows.

Definition 7  (Value-oriented metric) A value-oriented evaluation metric for the scale type 
� is a metric that satisfies the two properties VOI and VOM for the scale type �.

Therefore, the metrics of this family need to satisfy just two basic properties: (i) invari-
ance to permissible transformation functions (VOI), i.e., the metric value does not change 
when transforming both assignments in the same permissible way, and

(ii) monotonicity to value-oriented closeness (VOM), i.e., if an assignment is value-
closer to the gold than another, then the former has a higher metric value. Note that the two 

(13)∀�, � ∈ �, ∀f ∈ F
�

(
M(�, �) = M(f (�), f (�))

)
.

(14)∀𝛼, 𝜎, 𝜎� ∈ 𝛺
(
𝜎 ⊲

𝛼
𝚃
𝜎�

⟹ M(𝜎, 𝛼) > M(𝜎�, 𝛼)
)
.
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properties VOI and VOM depend on the scale type: a given function could be a metric for a 
scale type � and not be a metric for another scale type �′.5

4.3 � Second family: equivalence‑oriented metrics

Directly comparing the values of system outputs to the values assigned by the gold is in 
some cases too strict. For instance, the purpose of search engines consists of offering the 
most relevant documents rather than quantifying the relevance of documents: the key point 
is that any assignment that keeps the ranking of documents in the search engine output 
is equally effective. That is, any assignment in the same equivalence class for the ordinal 
scale type.

The metrics of the second family, the equivalence-oriented metrics, are formally defined 
on the basis of the following two properties.

Property 3  (EOI, equivalence-oriented invariance) A metric M is equivalence-oriented 
invariant for the scale type � if for any reference gold � and system output � , both of them 
on the same set of objects D , the metric value does not change by applying any permissible 
transformation to � . In formulas:

Property 4  (EOM, equivalence-oriented monotonicity) A metric M is equivalence-ori-
ented monotonic for the scale type � if for any reference gold � and system outputs � and 
and �′ , all three of them on the same set of objects D , it holds that if � is equivalence-closer 
to � than �′ , then the metric value for � has to be higher than that for �′ . In formulas:

We can now specialize again Definition 6 and define an equivalence-oriented metric on 
the basis of equivalence-oriented assignment closeness (Definition 4) as follows.

Definition 8  (Equivalence-oriented metric) An equivalence-oriented evaluation metric for 
the scale type � is a metric that satisfies the two properties EOI and EOM for the scale type 
�.

Therefore, also the metrics of this family need to satisfy two basic properties only, 
namely invariance (EOI) and monotonicity (EOM), although these are defined in a slightly 
different way from the corresponding properties of the previous family of metrics (VOI and 
VOM): in EOI the function f is applied to � only, and in EOM equivalence-oriented assign-
ment closeness is used. As above, we will use the scale type as a subscript for the EOI and 
EOM properties when needed (see Footnote 5).

(15)∀�, � ∈ �, ∀f ∈ F
�

(
M(�, �) = M(f (�), �)

)
.

(16)∀𝛼, 𝜎, 𝜎� ∈ 𝛺
(
𝜎 ⊏𝛼

𝚃
𝜎�

⟹ M(𝜎, 𝛼) > M(𝜎�, 𝛼)
)
.

5  In the following, we use the specific scale type as a subscript of the property name to specify the property 
for that scale type when needed. So, for example, VOI

�
 is the VOI property for the nominal scale type.
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4.4 � The example revisited

We provide some intuition by discussing again the example in Sect.  3.7 and Table  6: 
here � is the gold ( � using the notation of this section) and the �i are the system outputs 
( �i ). Let us first interpret the assignments as being of the � scale, and focus on �1 and 
�2 . Since �2 is value-closer to � than �1 ( �2 ⊲

�

�
�1 , see Formula  (10)), a value-oriented 

metric will assign a higher value to �2 than to �1 ( M(𝜔2, 𝜌) > M(𝜔1, 𝜌) ), because of 
the VOM property. Conversely, since �1 is equivalence-closer to � than �2 ( 𝜔1 ⊏

𝜌

�
𝜔2 , 

see Formula  (11)), an equivalence-oriented metric will assign a higher value to �1 than 
to �2 ( M(𝜔1, 𝜌) > M(𝜔2, 𝜌) ), because of the EOM property. Metrics of the first family 
reward �2 for “almost guessing” the correct � values; metrics of the second family reward 
�1 for guessing better the ratios between the intervals (i.e., the meaningful statements for � ) 
among the values in �.

Indeed, �1 guess of the ratios of the intervals is not only better, it is perfect. This can 
be seen also considering the EOI property: if the values in �1 are multiplied by ten (a per-
missible transformation function for � ) we obtain exactly � . Since it is not possible to do 
better that �1 , an equivalence-oriented metric should assign to �1 a higher value than any 
other one. Note that the above remarks hold also when replacing �1 with �4 (apart from 
changing the permissible transformation function), as �4 is equivalent to �1 (simply use the 
transformation f (x) = x−2

10
 ) and to � ( f (x) = x − 2 ). This also means, again because of EOI, 

that M(�1, �) = M(�4, �).
Changing the scale will in general change the situation. For example, if we now inter-

pret the same assignments as being of the � scale, we get different outcomes. On the � 
scale, �4 is not equivalent to �1 and � anymore: there is no function in F

�
 that maps the one 

into the other two. Indeed, since �1 is equivalence-closer to � than �4 (see Formula (12)), 
equivalence-oriented metrics for the ratio scale will assign a higher value to �1 than to �4 
( M(𝜔1, 𝜌) > M(𝜔4, 𝜌) ), because of the EOM property.

4.5 � Eight classes of metrics

Our framework is now complete: we have provided two definitions, one for each metric 
family: value- and equivalence-oriented metric. Both definitions can be applied at different 
scale types: nominal, ordinal, interval or ratio. By combining the four scale types �, �, �, � 
and the two families of metrics (value- and equivalence-oriented) we obtain the eight 
classes of metrics summarized in Table 7.

Table 7   The eight classes of 
metrics

Family

Value-Oriented  
(VOI + VOM)

Equivalence-Oriented 
(EOI + EOM)

Scale type � 1. Classification 2. Clustering

� 3. Ordinal Classification 4. Ranking

� 5. Quantitation-1 6. Quantitation-3

� 7. Quantitation-2 8. Quantitation-4
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In the following we prove some theorems that show that:

•	 The basic axioms proposed in the literature for specific abstract tasks can be derived 
from the general metric definition, taking into account the particular combination of 
family and scale type. Notice that we have used the term basic axiom instead of axiom. 
The reason is that, as we have seen in Sect. 2, some axioms depend on the particular 
task, while other (basic) axioms are common for any task that fits into the correspond-
ing abstract task.

•	 Existing abstract tasks, and the corresponding metrics, actually fit into our classifica-
tion. More specifically, we show that each information access abstract task (classifi-
cation, clustering, etc.) corresponds to a metric class, i.e., a particular combination 
of metric family and scale type, as well as that metrics that fit in the same category 
according to these two dimensions are used in the literature for that abstract task.

•	 The theoretical limitations of metrics that have been identified in the literature (i.e., 
metrics that do not satisfy basic axioms) can be explained also in the general frame-
work proposed in this paper.

•	 By exploring the classes of metrics along the two dimensions (scale type and family 
of metric), it is possible to address evaluation gaps and provide formal definitions, for 
example, of Ordinal Classification metrics, which have not been addressed yet.

5 � Properties and scale types

We start by making explicit some implication relationships between the four properties 
VOI, VOM, EOI, and EOM at different scale types. These are derived from the fact that 
permissible transformation functions are subsumed across scale types (see, in Appendix A, 
Sect. A.2 and in particular Formulas (30) and (31)). That is, the set of bijective functions 
includes the set of monotonic functions, which in turn includes the set of linear affinity 
functions. Therefore, closeness for low scale types (e.g., nominal) implies closeness for 
higher scale types (e.g., interval). The resulting relationships are listed in the following 
lemma and in the two subsequent corollaries, with the aims of: (i) provide the basis to 
prove some properties in the following of the paper, and (ii) help to better understand the 
meaning of the four axioms VOI, VOM, EOI, EOM and their relationships with the four 
scales �, �, �, �.

Lemma 2  (Four properties, four scale types) The following relationships hold among the 
four properties (VOI, VOM, EOI, EOM) and the four scale types ( �, �, �, � ). 

(a)	 If a metric satisfies VOI for a certain scale type, then it satisfies VOI for higher scale 
types:

(b)	 If a metric satisfies EOI for a certain scale type, then it satisfies EOI for higher scale 
types:

∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}, 𝚃 < 𝚃
� (VOI

𝚃
⟹ VOI

𝚃�
).
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(c)	 VOI for the nominal or ordinal scale type and VOM for higher scale types are incom-
patible:

(d)	 VOI for the nominal or ordinal scale type and EOM for higher scale types are incom-
patible:

(e)	 VOM and EOM are incompatible, whatever the scale type:

(f)	 VOM
�
 and VOM

�
 are equivalent:6 

(g)	 VOM and EOI are incompatible, whatever the scale type:

(h)	 EOM for a certain scale type and EOI for lower scale types are incompatible:

From this lemma, we can infer the following corollaries. It is easy to see that items (c), 
(d), (e), (g), and (h) can be restated as implications.

Corollary 1  (Incompatibilities and implications) Items (c) and (d) of Lemma  2 can be 
restated as follows. If a metric satisfies VOI for the nominal or ordinal scale type, then it 
does not satisfy VOM and EOM for higher scale types, and vice-versa if a metric satisfies 
VOM or EOM for higher scale types, then it does not satisfy VOI for the nominal or ordinal 
scale type:

∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}, 𝚃 < 𝚃
� (EOI

𝚃
⟹ EOI

𝚃�
).

∀� ∈ {�, �}, �� ∈ {�, �, �}, � < �
�
(
¬
(
VOI

�
∧ VOM

��

))
.

∀� ∈ {�, �}, �� ∈ {�, �, �}, � < �
�
(
¬
(
VOI

�
∧ EOM

��

))
.

∀�, �� ∈ {�, �, �, �}
(
¬(VOM

�
∧ EOM

��
)
)
.

VOM
𝙸
⟺ VOM

𝚁
.

∀�, �� ∈ {�, �, �, �}
(
¬(VOM

�
∧ EOI

��
)
)
.

∀�, �� ∈ {�, �, �, �}, �� < �
(
¬(EOM

�
∧ EOI

��
)
)
.

(17)∀𝚃 ∈ {𝙽, 𝙾}, 𝚃 < 𝚃
�
(
VOI

𝚃
⟹ ¬(VOM

𝚃�
)
)

(18)∀𝚃 ∈ {𝙽, 𝙾}, 𝚃 < 𝚃
�
(
VOM

𝚃�
⟹ ¬(VOI

𝚃
)
)

(19)∀𝚃 ∈ {𝙽, 𝙾}, 𝚃 < 𝚃
�
(
VOI

𝚃
⟹ ¬(EOM

𝚃�
)
)

(20)∀𝚃 ∈ {𝙽, 𝙾}, 𝚃 < 𝚃
�
(
EOM

𝚃�
⟹ ¬(VOI

𝚃
)
)
.

6  This property is not used anywhere in this paper; we include it for completeness.
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Item (e) of the lemma can be restated as follows. If a metric satisfies VOM for a certain 
scale type, then it does not satisfy EOM for any scale type, and vice-versa:

Item (g) of the lemma can be restated as follows. If a metric satisfies EOI for any scale 
type, then it does not satisfy VOM for any scale type, and vice-versa:

Item (h) of the lemma can be restated as follows. If a metric satisfies EOM for a certain 
scale type, then it does not satisfy EOI for lower scale types, and vice-versa:

Another result is that, knowing that a metric fits into one metric class ensures that that 
metric does not fit into other definitions, with only one exception. The unification between 
value-oriented metrics for interval and ratio scale types is due to the fact that the concepts 
of closeness for those two scale types are equivalent (see Table 5).

Corollary 2  (Compatibility of value-oriented interval and ratio) Under our definition of 
metrics, there exists only one case in which a metric can be classified in more than one 
class (see Table 7): the value-oriented metrics for the interval and ratio scale types (5 and 
7 in the table).

6 � Basic axioms in the literature

In this section we state some theorems that prove that the basic axioms proposed in the 
literature for classification, clustering, and ranking, i.e., GMON (Generalized Strict Mono-
tonicity Axiom), GHC (Generalized Homogeneity / Completeness), and PRI (Priority 
Axiom) (see Sect. 2) can be derived in our framework. As anticipated in Sect. 4.5, we focus 
on the basic axioms that we have identified in Sect. 2 (i.e., the axioms marked with (*) and 
shown in italics in the tables in Sect. 2), leaving aside the task-dependent axioms. As noted 
in Sect. 2.4, there are no axiomatics, and no basic axioms, for quantitation, at least in the 
context of information access evaluation: it is left out from this section, and analyzed in 
Sect. 8.1.

(21)∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}
(
VOM

𝚃
⟹ ¬(EOM

𝚃�
)
)

(22)∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}
(
EOM

𝚃�
⟹ ¬(VOM

𝚃
)
)
.

(23)∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}
(
EOI

𝚃
⟹ ¬(VOM

𝚃�
)
)

(24)∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}
(
VOM

𝚃�
⟹ ¬(EOI

𝚃
)
)
.

(25)∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}, 𝚃� < 𝚃
(
EOM

𝚃
⟹ ¬(EOI

𝚃�
)
)

(26)∀𝚃, 𝚃� ∈ {𝙽, 𝙾, 𝙸, 𝚁}, 𝚃� < 𝚃
(
EOI

𝚃�
⟹ ¬(EOM

𝚃
)
)
.
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6.1 � Classification: GMON is equivalent to VOM
�

As discussed in Sect. 2.1, the common axiom that can be applied to any classification task 
is the Strict Monotonicity Axiom (MON). It states that if � and �′ are two classifiers and 
� is the ground truth, all of them over a set of documents D , and if � and �′ differ only for 
a single document d ∈ D , which is correctly classified for � and wrongly for �′ , then the 
metric value must be higher for � . More formally, if

then M(𝜎, 𝛼) > M(𝜎�, 𝛼).
This definition requires that � and �′ return the same result for all documents different 

from d. However, this is not strictly necessary: we can slightly generalise MON requiring 
that both systems are accurate or wrong, with respect to the gold, for the same documents, 
except for d.

Axiom 1  (GMON, generalized strict monotonicity axiom) Let � , � , and �′ be three assign-
ments. If every document with an error in � is also an error in �′ , and there exist an error 
in �′ which is not an error in � , i.e.,

then the metric value must be higher for � than �′:

When there are only two classes (only two possible values in � and � ), GMON and 
MON are equivalent, given that if �(d) ≠ �(d) and ��(d) ≠ �(d) then �(d) = ��(d).

We can now prove the following theorem.

Theorem 1  (VOM
�
 and GMON) The VOM property for the nominal scale type ( VOM

�
 ) 

and the Generalized Strict Monotonicity (GMON) axiom are equivalent.

6.2 � Clustering: GHC is equivalent to EOM
�

As mentioned in Sect.  2.2, the basic clustering axioms Homogeneity and Completeness 
can be generalized into a unique GHC axiom, which can be formalized as follows.

Axiom 2  (GHC, generalized homogeneity/completeness) Let � , � , and �′ be three assign-
ments. If (i) for each document pair if �′ is correct then also � is correct, i.e.,

and (ii) there exists at least a document pair d1 , d2 such that � adds to �′ a correct relation, 
i.e., � is correct and �′ is not, i.e.,

∃!d ∈ D

(
∀d� ∈ D ⧵ {d}

(
�(d�) = ��(d�)

)
∧ �(d) = �(d) ≠ ��(d)

)

∀d ∈ D
(
�(d) = �(d) ∨ �(d) ≠ ��(d)

)

∃d ∈ D
(
�(d) = �(d) ≠ ��(d)

)

M(𝜎, 𝛼) > M(𝜎�, 𝛼).

(27)
∀di, dj ∈ D

((
��(di) = ��(dj) ∧ �(di) = �(dj) ⟹ �(di) = �(dj)

)
∧

(
��(di) ≠ ��(dj) ∧ �(di) ≠ �(dj) ⟹ �(di) ≠ �(dj)

))
,
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then the metric value must be higher for � than �′:

The following theorem states that the GHC and the EOM properties for the nominal 
scale type are equivalent.

Theorem 2  (EOM
�
 and GHC) The EOM property for the nominal scale type ( EOM

�
 ) and 

the Generalized Homogeneity and Completeness (GHC) axiom are equivalent.

6.3 � Ranking: PRI is equivalent to EOM
�

We have seen in Sect. 2.3 that the basic axiom Swapping appears in most axiomatics and 
that it can be generalized as the Priority axiom (PRI). PRI states that swapping two con-
tiguous documents in the ranking according to the gold necessarily increases the score. We 
formalize it as follows.

Axiom 3  (PRI, priority axiom) Let � , � , and �′ be three assignments such that di and dj 
have contiguous values at scale type � in both � and �′ . If:7

then the metric value must be higher for � than �′:

We can prove the following theorem.

Theorem 3  (EOM
�
 and PRI) The EOM property for ordinal scale type ( EOM

�
 ) and the 

Priority (PRI) axiom are equivalent.

In other words, our definition of metrics captures the basic axiom for metrics in ranking 
tasks. We now turn to analyse the implications for specific tasks and metrics.

(28)
∃d1, d2 ∈ D

((
��(d1) = ��(d2) ∧ �(d1) ≠ �(d2) ∧ �(d1) ≠ �(d2)

)
∨

(
��(d1) ≠ ��(d2) ∧ �(d1) = �(d2) ∧ �(d1) = �(d2)

))

M(𝜎, 𝛼) > M(𝜎�, 𝛼).

(29)
∃i, j

(
𝛼(di) > 𝛼(dj) ∧ 𝜎(di) > 𝜎(dj) ∧ 𝜎�(di) < 𝜎�(dj) ∧

∀k, l ≠ i, j
(
𝜎(dk) > 𝜎(dl) ⇔ 𝜎�(dk) > 𝜎�(dl)

))

M(𝜎, 𝛼) > M(𝜎�, 𝛼).

7  Even when the scale type of reference is � , by 𝜎(d) > 𝜎(d�) we mean that for the � assignment d is more 
relevant than d′.
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7 � Metrics analysis

In this section, we analyse existing metrics in terms of our theoretical framework. We have 
the twofold aim of: (i) showing that existing abstract tasks and corresponding metrics are 
explained by our framework, and (ii) that the theoretical limitations of metrics that have 
been identified in the literature (i.e., metrics that do not satisfy basic axioms) are captured 
in our framework as well. As noted in the previous section, we postpone the quantitation 
case to Sect. 8.1.

Table 8 summarises the analysis carried out in this section. The columns represent the 
metrics categorised by abstract tasks. The rows represent the properties VOI, VOM, EOI, 
and EOM, at different scale types. Circles indicate that properties are satisfied, black cir-
cles emphasize that both properties (from the corresponding definition of evaluation met-
ric) are satisfied. As the table shows, only metrics in the corresponding category satisfy our 
definition of metric. In addition, for each abstract task category, there exist metrics which 
are not able to satisfy both properties. This does not mean that these metrics are absolutely 
useless. For instance, Purity and Inverse Purity in clustering, or P@N in IR have the advan-
tage of being easy to interpret. However, the evaluation results have to be analysed care-
fully to prevent misinterpretations of systems’ quality. We will see in this section that these 
cases correspond with theoretical metric drawbacks previously reported in the literature 
with practical implications.

Table 8   Metric analysis for classification, clustering, and ranking abstract tasks

Crosses ( × ) indicate that the property is not satisfied, circles (○) that it is satisfied and filled circles (●) 
emphasize that both properties are satisfied. The superscript letter represents the item of Lemma 2 that sup-
ports the conclusion. The dash (–) indicates that the property is not formally checked in this paper (we leave 
them for future work)

Classification metrics Clustering metrics Ranking metrics

Accuracy, 
MAAC, 
Phi

F-measure, 
Odds, Lam%

Entropy, BCubed, 
Count pairs, Mutual 
Inf.

Purity and 
Inv. Purity, 
F-measure

MAP, ERR, nDCG, 
RBP, Kendall, 
Spearman

P@N, 
R@N, 
MRR

VOI
�

● ○ – – ×c –
VOM

�
● × ×g – ×g ×g

VOI
�

○a ○a – – – –
VOM

�
×c ×c ×g ×g ×g ×g

VOI
�

○a ○a – – – –
VOM

�
×c ×c ×g ×g ×g ×g

VOI
�

○a ○a – – – –
VOM

�
×c ×c ×g ×g ×g ×g

EOI
�

×g – ● ○ ×h –
EOM

�
×e – ● × – –

EOI
�

×g – ○b ○b ● ○
EOM

�
×e ×d ×h ×h ● ×

EOI
�

×g – ○b ○b ○b ○b

EOM
�

×e ×d ×h ×h ×h ×h

EOI
�

×g – ○b ○b ○b ○b

EOM
�

×e ×d ×h ×h ×h ×h
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7.1 � Classification: value‑oriented, nominal

We define classification metrics as follows.

Definition 9  (Classification metric) A classification metric is a value-oriented metric for 
the nominal scale type.

According to our aim (i) above, we want to show that metrics satisfying VOI and 
VOM for the nominal scale type are those that are used for classification problems in 
the literature. Most of the metrics used in classification tasks are combinations of the 
contingency matrix components, i.e., the amount of true and false, positive and negative 
samples. Formally, the contingency matrix can be defined as follows.

Definition 10  (Contingency matrix) Being the system output � and the gold � two func-
tions over a limited amount of values V , the contingency matrix C ∶ V × V → N  is:

We can prove easily that C(x,  y) is invariant across the permissible transformation 
functions for the nominal scale type F

�
 (i.e., the bijective functions, see Sect.  A.2 in 

Appendix A) applied to � and � . In other words, changing the names of categories with-
out merging them (as it is done with bijective functions) in both the gold and the system 
output does not affect the contingency table. That is, being fb any bijective function

Therefore, we can state the following theorem.

Theorem 4  (VOI
�
 and contingency matrix) Any function over the elements in the contin-

gency matrix satisfies the VOI property for the nominal scale type ( VOI
�
).

Table 8 includes some metrics used in classification tasks, such as Accuracy, Macro-
Average Accuracy, F-measure, Odds ratio, Lam%. All of them are computed from the 
contingency matrix. Therefore, according to the previous theorem, they satisfy VOI

�
 . 

According to Lemma 2(a) they also satisfy VOI for the rest of (higher) scale types.
We can prove that some common metrics applied in classification satisfy VOM

�
 (and, 

given Theorem 1, GMON).

Theorem 5  (VOM
�
 and classification metrics) The metrics Accuracy, Macro Average Accu-

racy and Phi Correlation satisfy the VOM property for the nominal scale type ( VOM
�
).

Given that these metrics also satisfy VOI
�
 (according to Theorem  4), we can state 

that they fit into our definition of value-oriented metrics for the nominal scale type, and 
therefore, they are classification metrics.

We now turn to our aim (ii) above. The main theoretical drawbacks of classifica-
tion metrics are related with MON. For instance, according to Sebastiani (2015), the 
F-measure (computed as the harmonic mean of precision and recall) does not satisfy 
MON when there is a zero value in one component of the contingency matrix. Accord-
ing to Qi et  al. (2010), the classification metric Lam% has the same drawback when 

C�,�(x, y) = card
(
{d ∈ D | �(d) = x ∧ �(d) = y}

)
.

C�,�(x, y) = Cfb(�),fb(�)
(fb(x), fb(y)).
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zero values appear in the contingency matrix. Something similar happens with the Odds 
ratio. This problem can be solved by considering the contingency table as a probabilistic 
distribution and applying smoothing techniques (Amigó et al. 2018), but this is not the 
focus of this paper. Given that they do not satisfy MON, they do not satisfy also GMON, 
and therefore, VOM

�
 . Mutual Information (MI) is another metric used in classification. 

However, we can assert that it does not satisfy GMON (and VOM
�
 ), given that accord-

ing to MI, an output achieves the highest score even if the label names are replaced. We 
will see shortly that MI is a clustering metric.

The second and third columns of Table 8 summarize the properties satisfied by these 
metrics according to the implications derived from Lemma 2. In general, the main result 
of this analysis is that metrics used in classification tasks fit into our definition, while 
the main limitations of metrics such as F-measure, Lam% or Odds identified in the lit-
erature are also captured by our model.

7.2 � Clustering: equivalence‑oriented, nominal

We define clustering metrics as follows.

Definition 11  (Clustering metric) A clustering metric is an equivalence-oriented metric 
for the nominal scale type.

We aim to show that this definition actually captures the existing clustering metrics 
and their desirable basic constraints. We start by noting that existing clustering met-
rics such as Purity and Inverse Purity, BCubed precision and Recall, Entropy and Class 
Entropy, F-measure, or clustering metrics based on counting, are all functions over a 
set partition. A partition is the standard set concept: a decomposition of a set in subsets 
such that their (pairwise) intersection is empty and their union is the original set. A 
function over a partition is any function that takes the original set and its partition as 
input parameters. We can now state as a theorem that all the above metrics satisfy EOI

�
.

Theorem 6  (EOI
�
 and functions over a partition) Any function over a set partition satisfies 

the EOI property for the nominal scale type ( EOI
�
).

Checking if each metric proposed in the literature satisfies EOM
�
 (or GHC, which 

is equivalent according to Theorem 2), is too complex to be included in this paper. For 
this reason, we will analyse the existing metrics by using the categorisation proposed by 
Amigó et al. (2009). Then, we will check to what extent a category can produce metrics 
that satisfy EOM and EOI at the nominal scale type.

A first category is called counting pairs based metrics [e.g., Rand Statistic, Jac-
card Coefficient, or Folkes and Mallows (Meila 2003; Halkidi et al. 2001)], that count 
how many pairs correspond to the gold in terms of same/different cluster: correct rela-
tionships between pairs of items increases the score. This principle matches directly 
with the GHC conditions, which is equivalent to EOM

�
 . On the other hand, the metric 

BCubed (Amigó et al. 2009) also increases with the amount of document pairs that are 
consistent with the gold. It also satisfies GHC. Therefore, according to Theorem 2, we 
can state that metrics based on counting pairs fit into our definition of clustering metric.
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A second category is the entropy based metrics. Some examples are Entropy and 
Class Entropy (Wu et al. 2003), Variation of Information (Meila 2003), Mutual Infor-
mation (Xu et al. 2003) or V-measure (Rosenberg and Hirschberg 2007). Proving that 
all those metrics satisfy EOM and EOI requires too much analysis for this paper: we 
focus on Entropy and Class entropy only. Given a set of documents D , a ground truth 
clustering � and a clustering � , the average Entropy of clusters is computed as (Wu et al. 
2003)

where the sums are over the documents d ∈ D , as well as the probability P computed by 
frequency count as usual, V(�) is the set of different values generated by the gold assign-
ment � , and V(�) is the set of values generated by the system assignment � . The Class 
Entropy is defined as

Notice that the evaluation score is inversely correlated with the entropy values. Then we 
can prove the following theorem.

Theorem 7  (EOM
�
 and entropy metrics) Entropy and Class Entropy satisfy the EOM prop-

erty for the nominal scale type ( EOM
�
).

The conclusion is that BCubed, metrics based on counting pairs, and entropy based met-
rics are able to satisfy EOI

�
 and EOM

�
 . Therefore, they fit into our definition of clustering 

metric. However, not all metrics used in clustering tasks fit into our definition. In particu-
lar, metrics based on set matching such as F-measure [notice that F-measure has a different 
meaning in the context of clustering (Amigó et al. 2009)] or Purity and Inverse Purity do 
not satisfy Completeness (Amigó et  al. 2009). Therefore, they do not satisfy GHC and, 
according to Theorem 2, neither EOM

�
 . The reason is that they assume a certain corre-

spondence between system output and gold clusters. This produces a lack of sensitivity in 
some cases.

The fourth and fifth columns in Table 8 illustrate the properties satisfied by these met-
rics according to the implications derived from Lemma 2. In summary, we can say that 
most metrics used in clustering fit into our definition, capturing the limitations described in 
the literature.

As we mentioned before, there exist other axioms that are not captured by our defini-
tion, but they are task-dependent. For instance, the range of values (Meila 2003), the ability 
to join single clusters into a rag bag cluster (Amigó et al. 2009), or the robustness under the 
overweighting of big clusters due to the combinatory explosion of document pairs.

E(�, �) = −
∑

c∈V(�)

(
P(�(d) = c)⋅

∑

l∈V(�)

(
P(�(d) = l | �(d) = c) ⋅ log(P(�(d) = l | �(d) = c))

))
,

CE(�, �) = −
∑

l∈V(�)

(
P(�(d) = l)⋅

∑

c∈V(�)

(
P(�(d) = c | �(d) = l) ⋅ log(P(�(d) = c | �(d) = l))

))
.



349Information Retrieval Journal (2020) 23:318–386	

1 3

7.3 � Ranking: equivalence‑oriented, ordinal

We define ranking metrics as follows.

Definition 12  (Ranking metric) A ranking metric is an equivalence-oriented metric for the 
ordinal scale type.

Let us see that ranking metrics satisfy EOI
�
 and EOM

�
 . Let us first consider the obvious 

fact that ranking metrics compare system output ranking against the gold. By definition, a 
ranking is invariant across monotonic functions (the permissible transformation functions 
for ordinal scale types, F

�
 ). Therefore, we can state the following theorem.

Theorem 8  (EOI
�
 and ranking metrics) Metrics that compare rankings with a gold stand-

ard satisfy the EOI property for the ordinal scale type ( EOI
�
).

Concerning EOM
�
 , we have seen in Theorem 3 that it is equivalent to the Priority axiom 

(PRI). According to Amigó et al. (2013), many metrics applied in ranking problems actu-
ally satisfy PRI. Therefore, we can state the following theorem.

Theorem 9  (EOM
�
 and ranking metrics) The metrics MAP, DCG, nDCG, RBP, ERR, and 

ordinal correlation coefficients such as Kendall or Spearman satisfy the EOM property for 
the ordinal scale type ( EOM

�
).

Therefore, many of the metrics used in ranking problems actually fit our definition. This 
is the case of metrics such as MAP, DCG, nDCG, RBP, ERR and also ordinal correlation 
coefficients such as Kendall or Spearman. However, these last two coefficients are normally 
not used in IR, since the collection contains a huge amount of documents that will never be 
explored by the user. Indeed, IR evaluation metrics, besides satisfying the priority axiom, also 
give more weight to the top of the ranking returned by the system. This is captured for exam-
ple by Moffat’s properties Convergence and Top-weightedness (2013), or by Amigó et al.’s 
Deepness, Closeness Threshold, and Deepness Threshold (2013) (see Table 3). These proper-
ties are not captured in our framework and have to be added explicitly if needed; this is usually 
the case, although, as we already discussed in Sect. 2.3, one might imagine a ranking task 
where the top-weightedness property is undesirable: for instance, if we need to rank a set of 
documents, and we know that the user will explore all the documents anyway.

However, not every metric used in ranking satisfies the Priority axiom (Amigó et  al. 
2013). This is the case of some metrics such as Precision at N, Recall at N or Maximum 
Reciprocal Rank: P@N and R@N do not consider the order of documents before position 
N, and MRR does not consider the order of documents after the first relevant one. There-
fore, according to Theorem 3 we can infer that they do not satisfy EOM

�
 : they do not fit 

into our definition of ranking metrics. Table 8 (last two columns) illustrates the ranking 
metrics.

In summary, again, most of the metrics used in ranking problems fit into our definition, 
with some exceptions whose limitations have been discussed in the literature.
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8 � Other tasks and metrics

The previous two sections show how the classical abstract tasks (classification, clustering, 
and ranking) and their metrics can be modeled in our framework. In this section we aim to 
demonstrate the generality of the framework, showing how it adapts also to other informa-
tion access tasks, by (i) analyzing the metrics for the quantitation, and (ii) showing that the 
framework leads to ordinal classification, which has not yet been studied from an axiomatic 
perspective.

8.1 � Quantitation: value‑ and equivalence‑oriented, interval and ratio

The proposed framework gives us the opportunity of modeling tasks at the higher scale 
types � and � . We now analyze the four quantitation variants shown in Table 7.

8.1.1 � Quantitation‑1: Value‑oriented, interval

Let us analyse the effect of applying the metric definition for the interval scale type. For 
instance, a value-oriented metric for the interval scale type must be invariant under linear 
transformations, and it must increase when every assignment is value-closer to the gold-
standard. Let us consider the widely used Mean Absolute Error (MAE). It is computed as 
the average difference between the � and � values:

Notice that the definition of this metric directly matches with the definition of closeness 
for these scale types. This metric satisfies VOM for both interval and ratio scale types. 
However, as it is, it does not fit into the definition of value-oriented metric, since VOI

�
 (as 

well VOI
�
 ) does not hold. For instance, transforming both the assignments by multiply-

ing them by a constant factor (a permissible transformation function) affects the average 
difference. However, the average error has always to be expressed in terms of a unit. For 
instance, a MAE of 2 when measuring temperature has no sense: one should say a MAE 
of 2 centigrades. That is, we need to incorporate a unit |�(d0) − �(d�

0
)| which depends of 

empirical observations over a fixed pair of objects (e.g., a centigrade is a hundredth of the 
temperature difference between ice and water vapor). Then, applying a transformation also 
implies transforming the unit, and in this way the average error is invariant for the interval 
scale type. We can define MAE with a reference difference as:

After this definition, we can state the following theorem.

Theorem 10  (VOI
�
 , VOM

�
 and MAE ) The Mean Absolute Error with a reference differ-

ence is a value-oriented metric for the interval scale type, i.e., MAERD satisfies VOI
�
 and 

VOM
�
.

MAE (�, �) = Avg d∈D|�(d) − �(d)|.

MAERD(�, �) = Avg d∈D

(
|�(d) − �(d)|
|�(d0) − �(d�

0
)|

)
.
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8.1.2 � Quantitation‑2: Value‑oriented, ratio

But in the ratio scale type we do not need a reference difference: a single reference object 
is enough (a meter has been defined in terms of a prototype meter bar). We can define the 
mean absolute error with a reference unit as:

This can be applied to ratio scaled dimensions such as length or speed. Now we can prove 
the following theorem.

Theorem 11  (VOI
�
 , VOM

�
 and MAE ) The Mean Absolute Error with a reference unit is a 

value-oriented metric for the ratio scale type, i.e., MAERU satisfies VOI
�
 and VOM

�
.

8.1.3 � Quantitation‑3: Equivalence‑oriented, interval

Let us consider the behaviour of an equivalence-oriented metric for the interval scale type. 
First it should be invariant under linear affine transformations of the system output. In addi-
tion, there must be a metric value increase if for every linear affine transformation for one 
assignment we can find a transformation for the other assignment which is value-closer to 
the gold. This is the case of the traditional Pearson correlation coefficient, which is defined 
as:

MAERU(�, �) = Avg d∈D

(
|�(d) − �(d)|

|�(d0)|

)
.

Table 9   Metric analysis for high 
scale types ( � and � ) and value-
oriented for ordinal scale type

Crosses ( × ), circles (○), filled circles (●), dashes (–) and the super-
script letters have the same meaning as in Table 8

Quantitation metrics

MAE MAE
RD

MAE
RU

CORR COS

VOI
�

×c ×c ×c ×c ×c

VOM
�

– – – ×g ×g

VOI
�

×c ×c ×c ×c ×c

VOM
�

– – – ×g ×g

VOI
�

× ● × – –
VOM

�
○ ● ○ ×g ×g

VOI
�

× ● ● – –
VOM

�
○ ● ● ×g ×g

EOI
�

×g ×g ×g ×h ×h

EOM
�

×e ×e ×e – –
EOI

�
×g ×g ×g ×h ×h

EOM
�

×e ×e ×e – –
EOI

�
×g ×g ×g ● ×h

EOM
�

×e ×e ×e ● –
EOI

�
×g ×g ×g ○b ●

EOM
�

×e ×e ×e ×h ●
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We can now prove the following theorem.

Theorem 12  (EOI
�
 , EOM

�
 and Pearson) The Pearson correlation coefficient is an equiva-

lence-oriented metric for the interval scale type, i.e., it satisfies EOI
�
 and EOM

�
.

8.1.4 � Quantitation‑4: Equivalence‑oriented, ratio

Finally, we can also find equivalence oriented metrics at the ratio scale type. The most 
popular metric in this category is probably the cosine distance, defined as (where 
�⃗𝜎 = ⟨𝜎(i1),… , 𝜎(in)⟩ and �⃗𝛼 = ⟨𝛼(i1),… , 𝛼(in)⟩):

The strength of this similarity criterion is that it is not affected by proportionality trans-
formations of assignments. According to the state of the art, the cosine distance is a good 
estimator for document similarity (in this case each item is the frequency of a word in the 
document). We can prove the following theorem.

Theorem 13  (EOI
�
 , EOM

�
 and cosine distance) Whenever assignment values are positive, 

the cosine distance is an equivalence-oriented metric for the ratio scale type, i.e., it satis-
fies EOI

�
 and EOM

�
.

Table 9 shows the properties satisfied by these metrics according to the above theorems 
and the implication relationships between properties stated in Lemma 2 (the last column of 
the table is discussed in the following).

8.2 � Ordinal classification: Value‑oriented, ordinal

In Sect. 2.3 we highlighted that the Ordinal Classification task has not yet been analysed in 
depth, although several evaluation campaigns match this task and several authors have ana-
lysed the most popular metrics and have made some proposals (Gaudette and Japkowicz 2009; 
Baccianella et al. 2009; Cardoso and Sousa 2011). Our framework leads to this problem when 
considering value oriented metrics at ordinal scale, and provides two properties to be satisfied 
by metrics: VOI

�
 and VOM

�
 . The first one states that the metric must be invariant under strict 

increasing functions (permissible transformation functions for the ordinal scale type) applied 
over both the system output and the gold: if we keep the relative order of gold and system 

CORR (�, �) =

∑
i(�(i) − Avg (�))(�(i) − Avg (�))

√∑
i(�(i) − Avg (�))2

√∑
i(�(i) − Avg (�))2

.

COS (𝜎, 𝛼) =
�⃗𝜎 ⋅ �⃗𝛼

‖ �⃗𝜎‖ ⋅ ‖ �⃗𝛼‖
.

Table 10   The example described 
in the text

� �
1

�
2

�
3

�
4

d1 Very positive Very positive Positive Positive Negative
d2 Positive Positive Neutral Negative Negative
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values, the metric must return the same result. VOM
�
 states that approaching a value to the 

correct one must increase the system score.
Let us analyse the most popular metrics used in this task. On the one hand, the popu-

lar Accuracy metric is invariant at value-oriented nominal ( VOI
�
 ) and, therefore, it is also 

invariant at value-oriented ordinal scale, but it does not satisfy monotonicity ( VOM
�
 ). That 

is, it does not capture closeness to the gold value. An attempt in the literature to solve 
this gap is by means of Accuracy with n (Gaudette and Japkowicz 2009) which relaxes 
the range of values for a response to be accepted as matching. However, this solution does 
not solve the monotonicity problem for larger ordinal differences. Other authors proposed 
to use correlation coefficients, such as Pearson, Spearman, or Kendall; in particular, non 
parametric ones such as Kendall and Spearman are invariant at the ordinal scale, but they 
do not satisfy monotonicity, given that the maximum value of 1 can be achieved with-
out returning the correct values. The Normalized Distance Performance Measure (NDPM) 
(Yao 1995) has the same behavior.

On the other hand, the Mean Average Error (MAE) and also the Mean Square Error 
(MSE) have been applied to this problem. They satisfy monotonicity ( VOM

�
 ) but at the 

cost of invariance, given that they take into account the interval distance between system 
and gold assigned values.

Let us focus on a specific example and consider two documents d1 and d2 , a gold � , and 
four system outputs �1, �2, �3, �4 with the values shown in Table 10. Notice that �1 resem-
bles exactly the gold, �2 does not hit the target with the values, but it keeps the correct 
ordering as well as the correct distance between the categories (they are adjacent in this 
case), and �3 keeps the correct ordering but the second value moves further away from the 
correct result. Finally, �4 does not reflect the correct order of values and neither the correct 
value matching. Then, a metric should satisfy:

Accuracy is not able to discriminate among �2 , �3 and �4 , given that all these system out-
puts fail in both target values. Therefore, value-oriented metrics for the nominal scale type 
are not adequate, since being closer to the real target should increase the score. Non para-
metric correlation coefficients (Kendall, Spearman, etc) do not discriminate among �1 , �2 
and �3 , given that all of them sort the documents in the correct way. The reason is that it is 
not a ranking problem either, so equivalence-oriented metric for the ordinal scale type are 
not appropriate. The linear correlation coefficient Pearson, an equivalence-oriented metric 
at interval scale, shows the same non discriminating effect as Spearman. In addition it also 
assumes that there exists the same interval between each category. However, we know that 
there are more categories between “Positive” and “Negative” than between “Positive” and 
“Neutral”, but we can not assert that the distance is the double, which is assumed by the 
Pearson coefficient. MAE and MSE would sort systems in a correct manner, given that 
they satisify monotonicity ( VOM

�
 ). The limitation is that MAE and MSE are not invariant, 

and they require to assume an invariant value corresponding to each category, and thus pre-
defined intervals between categories.

We claim that in this situation one must use value-oriented metrics for the ordinal scale 
type. The goal consists of reducing the distance between � and � values, but at the same 
time, the distance can be defined only in ordinal terms. The more a prediction is far away 
from the target in ordinal terms, the more the system is penalized. The question is how 
to satisfy monotonicity and invariance simultaneously. We leave this open issue as future 
work.

M(𝜎1, 𝛼) > M(𝜎2, 𝛼) > M(𝜎3, 𝛼) > M(𝜎4, 𝛼).
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9 � Conclusions and future work

9.1 � Summary

In this paper, we have defined a theoretical framework that explains the nature of evalua-
tion metrics by grounding on measurement theory. Besides exploiting the traditional meas-
urement theory, we have also introduced the concepts of value-oriented and equivalence-
oriented closeness, for all scale types (nominal, ordinal, interval, ratio).

The theoretical results derived from the framework are:

•	 There is a clear correspondence between abstract tasks, metric kinds, and scale types. 
That is, classification, clustering, ranking, value prediction, and linear correlation ori-
ented tasks can be interpreted as assignments for nominal, ordinal, interval, and ratio 
scale types, in which the closeness to the gold is evaluated at value or equivalence 
level.

•	 The definitions of value- and equivalence-oriented evaluation metrics match with the 
basic axioms stated in the literature for particular abstract tasks (strict monotonicity for 
classification, homogeneity and heterogeneity for clustering, and swapping for rank-
ing): we only need to instantiate over the different scale types to infer these axioms.

•	 The proposed framework gives a single and unified explanation for most theoretical 
criticisms of classification, ranking, and clustering metrics found in the literature.

•	 The proposed framework explains the need for an interval and ratio units (i.e., meters, 
grades, etc.) when assignments are compared at the interval and ratio scale types.

•	 The proposed framework explains the popularity of Pearson coefficient and cosine dis-
tance when estimating the closeness of assignments at interval and ratio scale types.

Tables 8 and 9 summarize the aggregated analysis for all abstract tasks and metrics. Met-
rics used in different tasks match with the corresponding kind of metric according to our 
definition. The discarded metrics match with metric limitations actually identified in the 
literature. In addition, by filling the gap of value-oriented metrics for the ordinal scale type 
we understand how to evaluate tasks such as semantic textual similarity, recommendation, 
or polarity detection.

9.2 � Practical consequences

We have already mentioned that our framework is not only theoretical. Let us summarize 
the practical contributions of this paper, mainly addressed to the communities of tasks and 
metric designers. First, the framework gives a tool for selecting and checking the suitability 
of metrics. One only needs to know: (i) in what scale the system output is defined, and (ii) 
if the goal consists of predicting values (i.e., classification, mean error, etc.) or relation-
ships (i.e., clustering, ranking, or linear correlation). Second, the framework helps users 
to distinguish between necessary properties and properties that depend on the particular 
characterization of the task. The constraints found in the literature that match with our 
basic definitions of evaluation metric are strictly necessary for the corresponding abstract 
task. The other constraints depend on the particular task in which the evaluation is taking 
place. For instance, the priority constraint is a common desirable property to be satisfied by 
any ranking metric for the asbtract task of ranking, while top-heaviness is task-dependent, 
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although necessary for IR. Third, the framework provides a tool for defining metrics in sit-
uations in which, nowadays, the lack of suitable metrics enforces the use of several metrics. 
The most clear example is the simultaneous use of Pearson and Spearman as well as error 
rate metrics when evaluating value prediction in an ordinal scale (i.e., sentiment polarity 
prediction).

9.3 � Limits of this study and future developments

Our framework opens the door for evaluation metrics in empty theoretical spaces, such as 
value-oriented metrics for the ordinal scale type (that have not been proposed yet). How-
ever, it does not cover every scenario nor every metric property. The reason is that there 
exist particular axioms that depend on a particular task. One example is top-weightedness 
in the case of ranking. Another one is the ability of clustering metrics to avoid the combi-
natory effect of element pairs in big clusters (counting pairs metrics fail on this). In classi-
fication, metrics can be grouped into classes depending of how random or non informative 
outputs are evaluated: this also depends on the particular task. However, we find this as 
a common situation in science. The first example that comes to mind is the exclusion of 
Euclid’s fifth postulate to define different kinds of geometry.

Moreover, the framework is based on the assumption that system outputs and golds are 
assignments (of numerical values). This idea does not match with translation or summari-
zation systems that generate text. Measurement theory has also a gap regarding the genera-
tion of structures. For instance, the inference of dependency trees from a text, or the con-
struction of a hierarchical clustering do not fit into the idea of assignment. However, these 
tasks are often abstracted into classification or clustering abstract tasks.

In the literature one can find also composite metrics. For instance, diversity metrics 
in fact consider two golds simultaneously: the ordinal relevance of documents and their 
redundancy which is modeled as as assignment at the nominal scale type (information nug-
gets). These kinds of scenarios are not covered at the moment by the framework.

Finally, we have been focusing on the four classical scale types, but in measurement 
theory other scale types are proposed. Thus adding more tasks to our framework will be 
straightforward as long as they can be associated with a scale type. In this respect, we plan 
to further discuss the role of document filtering and its relations with other tasks.8

Acknowledgements  This research has been partially supported by Grants Vemodalen (TIN2015-71785-R) 
and MISMIS (PGC2018-096212-B-C32) from the Spanish government, as well as by the Google Research 
Award Axiometrics: Foundations of Evaluation Metrics in IR.

8  Document filtering, i.e., discriminating relevant against irrelevant documents, is often considered as a 
task. The issue is probably more complex: filtering can be interpreted as: (i) a classification task (but with 
an implicit preference order, as one needs to know which is the positive/higher class), (ii) as a sort of “sin-
gularity” of ranking task with two levels only, for which some classification metrics are suitable, or (iii) a 
mixture of different tasks.
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Appendix A: Measurement theory

In this appendix, we recall some basic concepts in measurement theory. Measurement the-
ory is the discipline that studies the theoretical foundations of the activity of measuring. 
It is not a new field, and its roots are usually dated back to the seminal work by Stevens 
(1946). We try to make this paper self-contained: we therefore sacrifice some of the most 
technical issues when not necessary to our aims, as well as abuse the notation sometimes, 
and we provide some examples to help the intuition. A more formal and complete account 
can be found in the classical works by Suppes and Zinnes (1963), Roberts (1984), or Ped-
hazur and Schmelkin (1991).

Assignments and measurements

In measurement theory a measurement is defined as a function that assigns real numbers 
to elements of a set X  of objects or events in the real world. To be a measurement, the 
function must be a homomorphism, i.e., it must be such that the relationships in the so 
called empirical relational structure9 (i.e., the real world) are preserved in the numerical 
relational structure (i.e., the codomain of the function, the set of real numbers ℝ ). For 
example, when measuring the weight of objects, we can have in the real world a relation-
ship R that stands for “heavier than” and an operation ◦ of “combination” (considering two 
objects together). A measurement will assign numbers such that R corresponds to “>” and 
◦ to “ + ”, thus defining a homomorphism from the empirical relational structure (the tuple 
⟨X,R, ◦⟩ ) to the numerical relational structure ( ⟨ℝ ,>,+⟩).

For our purposes, we can start from a simpler situation: we define an assignment as a 
function that assigns a real number to a characteristic of an object or event.

Definition A.1  (Assignment) An assignment � ∈ � (we denote with � the set of all pos-
sible assignments) is a function that assigns values to objects in a set D:

Then, to be a measurement, an assignment must be a homomorphism (Roberts 1984; 
Suppes and Zinnes 1963; Pedhazur and Schmelkin 1991).

Definition A.2  (Measurement) Let ⟨D,RD⟩ be an empirical relational structure and 
⟨ℝ ,R

ℝ
⟩ be a numerical relational structure.10 A measurement � ∈ � (we denote with 

𝛹 ⊂ 𝛺 the set of all possible measurements) is an assignment of objects in a set D

that is a homomorphism between the empirical relational structure and the numerical rela-
tional structure, i.e., ∀x, y ∈ D

(
RD(x, y) ⟹ R

ℝ
(�(x),�(y))

)
.

� ∶ D ⟶ ℝ .

� ∶ D ⟶ ℝ

9  In this paper we prefer to use the term “structure” in place of the original “system” to avoid confusion, 
since the latter is already used for “IR system” and “system output”.
10  We assume that both empirical and numerical relational structures are pairs (a set with a single relation-
ship). To be truly general, we should consider empirical and numerical relational structures having: (i) more 
than one relationship, (ii) relationships of different arity, and (iii) also functions besides relationships. This 
would mainly be a technical exercise and we refrain to do so to avoid unnecessary technical complications.
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This definition is similar to the classical ones that can be found in the literature (Roberts 
1984, pp. 51–52; Suppes and Zinnes 1963, pp. 4–8; Pedhazur and Schmelkin 1991, p. 17); 
it is very general and includes different kinds of measurements. Let us see some examples 
to emphasize this fact.

Example A.1  Let us consider three objects D = {o1, o2, o3} , and the measurement �t of 
their temperature in Celsius degrees (we represent the function �t as a set of pairs); then 
�t = {⟨o1,−5⟩, ⟨o2, 5⟩, ⟨o3, 15⟩}.

Example A.2  Let us consider three products D = {p1, p2, p3} , and the quality meas-
urement �q into high (we use the real number 2 for this), medium (1) or low (0); then 
�q = {⟨p1, 0⟩, ⟨p2, 1⟩, ⟨p3, 2⟩}.

Example A.3  Let us consider three students D = {s1, s2, s3} , and a measurement �c which 
assigns each student to a class (foreign, local) identified with a number (1 = foreign, 2 = 
local): then �c = {⟨s1, 1⟩, ⟨s2, 2⟩, ⟨s3, 2⟩}.

It is important to remark that measurements are assignments (with further require-
ments). All the above �t , �q , and �c are of course assignments; to be measurements they 
need to be “correct”, in order to satisfy the homomorphism requirement. For example, the 
assignment � �

t
= {⟨o1, 5⟩, ⟨o2,−5⟩, ⟨o3, 15⟩} would not be a measurement when using Cel-

sius degrees, assuming that the values in �t are indeed correct.
Given a measurement, one can of course make some inferences from it and derive some 

further properties such as equalities, greater than / less than relationships, differences, 
ratios, ratios of differences, etc. These properties have been named “numerical statements” 
(Suppes and Zinnes 1963) or simply “statements” (Roberts 1984). We use the latter term 
and we denote as �∗ the set of statements that can be derived from the values assigned by 
� to the set of objects in D . That is, 𝜓∗ = {x | 𝜓 ⊨ x} . For instance, going back to our 
Example A.1, �∗

t
 contains statements like: ∀i ∈ {2, 3}(𝜓t(oi) > 0) (“temperatures of o2 and 

o3 are above zero”); 𝜓t(o3) > 𝜓t(o2) > 𝜓t(o1) ; �t(o3) = 3 ⋅ �t(o2) ; and �t(o3)−�t(o2)

�t(o2)−�t(o1)
= 1.

Let us remark that such statements can be either “value oriented” (i.e., �t(o3) = 15 ) or 
“relationship oriented” (i.e., �t(o3) = 3 ⋅ �t(o2) or 𝜓t(o2) < 𝜓t(o3) ). This distinction is 
reconsidered and further discussed in the paper. Provided that there are no errors, all the 
statements derived from a measurement are numerically correct. For instance, in our 
Example A.1, �t(o3) = −3 ⋅ �t(o1) is numerically correct, while �t(o3) = 4 ⋅ �t(o1) is not. 
However, it makes no sense to assert that o3 is minus three times hotter than o2 ; whereas we 
can assert that there is the same difference of temperature between o1 , o2 and o3 . That is, 

Table 11   For each scale type, the set of permissible transformation functions F
�
 and the classic examples 

of Meaningful Statement s

� F
�
 (Permissible Transformation Functions) �̂∗

�
 (Meaningful Statements)

� F
�
= {f | x = y iff f (x) = f (y)} �̂∗

𝙽
(x, y) ⟺ x = y

� F
�
= {f | if x < y then f (x) < f (y)} �̂∗

𝙾
(x, y) ⟺ x ≥ y

� F
�
= {f | f (x) = a ⋅ x + b, a > 0} �̂∗

𝙸
(x, y, z,w, k) ⟺

x−y

z−w
= k

� F
�
= {f | f (x) = a ⋅ x, a > 0} �̂∗

𝚁
(x, y, k) ⟺

x

y
= k
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the statement �t(o3)−�t(o2)

�t(o2)−�t(o1)
= 1 is numerically correct and makes sense, as well as the com-

parison 𝜓t(o3) > 𝜓t(o2) . In an analogous way, in the case of the Example A.2, it makes no 
sense to state that there is the same difference in quality between the products p1 , p2 and p3 
although it is numerically true. We only know that some products have a higher quality 
than other products ( 𝜓q(p3) > 𝜓q(p2) > 𝜓q(p1) ). Finally, in the example of students and 
classes, there is no ordering relationship between classes: we can only say that two students 
belong to the same class or not.

According to the terminology used in measurement theory, we can summarize the above 
observations by saying that not all statements are meaningful. Meaningful statements are 
modeled in measurement theory on the basis of the concepts of levels, or scales.

Scales and scale types

The concepts of scale and scale type are central in measurement theory. The most typi-
cal categorization of scales is probably the one going from Nominal ( � , the lowest scale 
type), through Ordinal ( � ) and Interval ( � ), to Ratio ( � , the highest scale type). In our three 
examples above, temperature, product quality, and class assignment are � , � , and � scale 
types respectively. Other scales commonly used for temperature are of scale type � , like 
Fahrenheit, or � , like Kelvin. The choice of scale types is somehow arbitrary in the sense 
that there is not a single choice of which ones to define.

More formally, each scale type can be defined by means of an associated set of permis-
sible transformation functions: each scale type corresponds to a particular set of functions.

Definition A.3  (Permissible transformation functions) The sets F
�
 of permissible transfor-

mation functions for each scale type � ∈ {�, �, �, �} are (see also Table 11):

•	 F
�
= {f | f is bijective, i.e., x = y iff f (x) = f (y)};

•	 F
�
= {f |f is strictly increasing monotonic, i.e., if x < y then f (x) < f (y)};

•	 F
�
= {f | f is a linear affinity, i.e., f (x) = a ⋅ x + b, a > 0};

•	 F
�
= {f | f is linear, i.e., f (x) = a ⋅ x, a > 0}.

We also write f (�):

Given these permissible transformation functions, the potential measurements over 
a set of objects are grouped into equivalence classes according to the following equiva-
lence relation.

Definition A.4  (Measurement equivalence) Two measurements � and � ′ are equivalent for 
the scale type � if there exists a permissible transformation function f ∈ F

�
 such that � 

and f (� �) are identical:

The set of all equivalent measurements is the equivalence class [�]
�
.

f (�) = {� | � ∈ � ,�(x) = f (�(x))}.

� ≈
𝚃
� �

⟺ ∃f ∈ F
𝚃

(
� = f (� �)

)
.



359Information Retrieval Journal (2020) 23:318–386	

1 3

The basic idea is that permissible transformation functions determine if two measure-
ments are equivalent or not. For the nominal scale type, measurements which distribute 
objects into the same groups are equivalent, given that there exists a bijective function 
which transforms values from one measurement to the other. For instance, the student 
distribution in Example A.3 is equivalent to {⟨s1, 4⟩ , ⟨s2, 3⟩ , ⟨s3, 3⟩} . The bijective func-
tion f (x) = 5 − x transforms one measurement into another. For the ordinal scale type, 
measurements which order objects in the same way are equivalent. For instance, the 
measurement {⟨p1, 4⟩ , ⟨p2, 7⟩ , ⟨p3, 10⟩} is equivalent to the product quality measurement 
in Example  A.2. The monotonic transformation function which confirms that the two 
measurement are equivalent is f (x) = 4 + 3 ⋅ x.

These examples illustrate two characteristics of measurement scale types. The first one 
is that they are additional features of measurements. That is, two measurements defined on 
different scale types could assign the same numbers to objects, and therefore, the derived 
statements are identical, but the set of meaningful statements would not be the same.

The second characteristic is that there exists a natural subsumption across measure-
ment scale types. For instance, equality relations are meaningful in every scale type. 
Greater than and less than make sense in every scale type except in � . The difference 
between two values makes no sense in � nor in � . In other words, the more we consider 
“higher” scale types, the more we can state meaningful statements. That is, the permissi-
ble transformation functions for high measurement scale types (e.g., ratio, or interval) are 
also transformation functions for low measurement scale types (e.g., ordinal or nominal):

Therefore, there exists also a subsumption between equivalence of measurements across scale 
types. That is, two equivalent measurements for a high scale type are also equivalent for lower 
scale types:

We denote the ordering relationship on the set of the four scale types as

and we speak of higher and lower scale types accordingly.
We briefly mention a property that is further discussed in the rest of the paper: there is a 

dependence between abstract tasks and scale types. Roughly, classification and clustering are 
based on the nominal scale type; ranking on the ordinal, and quantitation on the interval and 
ratio. However this dependence is not clear cut, as we discuss in more detail in the paper.

From assignment to measurements and back

Let us remark that although measurement theory is focused on measurements, some 
parts of it can be immediately generalized to assignments. More specifically, the notions 
of equivalent measurements and of equivalence class [�]

�
 of a measurement � of Defini-

tion A.4 can be generalized to assignments in a straightforward way. Thus, given an assign-
ment, it is possible to speak of an equivalent assignment for a given scale type � . The fol-
lowing definition formalizes the simple generalization of Definition A.4.

Definition A.5  (Assignment equivalence) Two assignments � and �′ are equivalent for the 
scale type � if there exists a permissible transformation function f ∈ F

�
 such that � and 

f (��) are identical:

(30)F
�
⊂ F

�
⊂ F

�
⊂ F

�
.

� ≈
𝚁
� �

⟹ � ≈
𝙸
� �

⟹ � ≈
𝙾
� �

⟹ � ≈
𝙽
� �.

(31)� < � < � < �,
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The set of all equivalent assignments is the equivalence class [�]
�
.

The reason behind this definition is that if an assignment is not a measurement, then 
it means that there is no homomorphism between the empirical and numerical relational 
spaces, i.e., the assignment values are not correct w.r.t. the “real situation” (since measure-
ment theory is interested in correct measurements, these cases are usually not taken into 
account); but in Definitions A.4 and A.5 there is no reference to the homomorphism.

Meaningfulness

We can now address the last element of measurement theory of interest here, namely the 
so called meaningfulness problem (Suppes and Zinnes 1963): as we have seen, given a 

� ≈
𝚃
��

⟺ ∃f ∈ F
𝚃

(
� = f (��)

)
.

Fig. 2   Diagram of equivalent measurements (dashed line labelled with ≈
�
 ), equivalence classes (dotted 

rectangle labeled with [�]
�
 ), derivation (zigzag lines labelled with ⊨ ) of statements ( �∗ ), and intersection 

(continuous lines labeled with ∩ ) to get the meaningful statements ( ̂�∗
�
)

Fig. 3   (Meaningful) statements and scale types
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measurement � , not all the statements in �∗ (sometimes not even some of those in � ) are 
meaningful.

Commonly, measurement scale types are described in terms of what statements can 
be stated over two or more objects: the nominal scale type focusses on the equality rela-
tionships, the ordinal scale type incorporates the greater than and less than relationships 
between values, the interval scale type adds ratios of differences, and the ratio scale type 
includes ratios. Suppes and Zinnes (1963) define a “meaningful numerical statement” as a 
numerical statement which is constant under permissible transformation functions, that is, 
under an equivalent measurement. In this paper, we refer to this as Meaningful Statement .

Definition A.6  (Meaningful Statement ) Given a measurement � of scale type � , the set of 
its Meaningful Statement s, denoted as �̂∗

�
 , contains the statements that are invariant across 

equivalent measurements:

Figure 2 shows how equivalence and meaningfulness are related to each other. At the 
top left of the figure, there is the measurement � . On its right there are its equivalent meas-
urements ( �i ) on the same domain and for the same scale type � . All of them belong to the 
equivalence class [�]

�
 . For instance, they could be different measurement of the ordinal 

scale type which keep the same order across object values. Each measurement produces 
different derived statements ( �∗,�∗

i
 ), but the meaningful statements for the scale type � are 

those that are shared by every derived measurement.
According to this definition, we can infer certain meaningful statements for each scale 

type. Figure 3 shows a graphical representation of some meaningful statements for each 
scale type. As the figure shows, there is a subsumption across scale types, being the 
equality the most basic relationship in the nominal scale type. It is important to remark 
that those listed in the figure are not all the possible meaningful statements. For exam-
ple, one could compute the arithmetic mean of some temperatures in Example  A.1 as 
mean (�t(o1),�t(o2)) = 0 , mean (�t(o2),�t(o3)) = 10 and state that the difference between 
the two means is the same as �t(o2) − �t(o1) , and this would be true under any permissible 
transformation function in F

�
 , i.e., meaningful.

The most important aspect of this figure is the grey area that highlights how some state-
ments for certain scale types are not meaningful. For instance, the ordinal relationship 
between values ( a > b ) is not invariant across equivalent measurements of the nominal 
scale type. Therefore it is hidden by the grey area.

As shown in the last column of Table 11, equality is a boolean 2-ary meaningful rela-
tionships for the � scale type; greater than ( ≥ ) is a meaning relationship for the � scale type; 
the ratio of differences is a 5-ary meaningful relationship for the � scale type; and the ratio 
is a 3-ary meaningful relationship for the � scale type.

It is also important to remark that, perhaps surprisingly but obviously, for any measure-
ment � , the assignments of single values in � (e.g., �(d1) = 6 ) are never meaningful:11 
none of them is invariant under the corresponding permissible transformation functions. 
In other terms, to find something meaningful one needs to look inside the set of derived 

�̂∗
�
=
{
x ∈ �∗ | ∀�i ≈�

�
(
x ∈ �∗

i

)}
=

⋂

∀�i≈�
�

�∗
i
.

11  The only case for which this would be different is the sometimes proposed absolute scale type, for which 
the only permissible transformation function is identity.
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numerical statements �∗ . For example, �t(d1) = −5 of Example A.1 is false when chang-
ing to Fahrenheit, although “the real temperatures are always the same”. This statement 
captures something that is not “in the empirical relational structure” (Suppes and Zinnes 
1963), and does not represent properties of the “true” temperatures; rather, it is an artefact 
of a particular measurement approach.

It is also important to understand that meaningfulness is not always an important, 
or even desired, property. If one is given the task “measure temperature using the Cel-
sius scale”, then providing an equivalent measurement in Fahrenheit is not a satisfactory 
achievement of the task. Also this issue is discussed in the paper.

Appendix B: Proofs

Proof of Lemma 1  We need to prove that a value x ∈ ℝ is (non-strictly) closer to a refer-
ence r than y for each scale type � respectively if and only if the conditions in Table 5 are 
satisfied.

According to Definition 2, a value x ∈ ℝ is (non-strictly) closer to a reference r than y 
for a certain scale type � if there exists a permissible transformation function in F

�
 such 

that it is (non-strictly) closer. We prove each scale type independently.
Let us consider the nominal case and non-strict closeness. By contraposition:

Therefore, for any nominal transformation function applied over r, x and y, given that they 
preserve the equalities and inequalities:

and therefore

Let us consider the other direction:

First, note that:

If r ≠ y we can find a permissible transformation function such that f (r) ≥ f (x) > f (y) . 
If r = x = y , then the identity transformation also satisfies f (r) ≥ f (x) ≥ f (y) . Therefore, 
x ≼r

�
y.

The strict case can be inferred starting from the definition in Formula (4) and by exploit-
ing the non-strict case:

¬(r ≠ y ∨ r = x) ⟺ ¬(r ≠ y) ∧ ¬(r = x) ⟺ r = y ∧ r ≠ x.

∀f ∈ F
𝙽
(f (r) = f (y) ∧ f (r) ≠ f (x))

⟹ ∀f ∈ F
𝙽
(|f (r) − f (x)| > 0 ∧ |f (r) − f (y)| = 0)

⟹ ∀f ∈ F
𝙽
(|f (r) − f (x)| > |f (r) − f (y)|)

⟹ ¬∃f ∈ F
𝙽
(|f (r) − f (x)| ≤ |f (r) − f (y)|)

⟹ ¬∃f ∈ F
𝙽

(
f (x) ≼f (r) f (y)

)
⟹ ¬

(
x ≼r

𝙽
y
)

x ≼r
𝙽
y ⟹ (r ≠ y ∨ r = x).

(r ≠ y ∨ r = x) ⟹ x ≼r
𝙽
y.

(r ≠ y ∨ r = x) ⟺ (r ≠ y ∨ r = x = y).



363Information Retrieval Journal (2020) 23:318–386	

1 3

Let us turn to the ordinal case. We have to prove that:

We start by observing that:

In all these three cases, we can define a permissible transformation function for the ordinal 
scale type such that:

Therefore:

On the other hand, if ¬(¬(r ≥ y > x ∨ x > y ≥ r)) , then r ≥ y > x or x > y ≥ r . Given that 
in both cases y is strictly closer to r than x, we can not find a permissible ordinal trans-
formation function such that |f (r) − f (x)| < |f (r) − f (y)| , and therefore ¬(x ≼r

�
y) . Then, by 

contraposition:

The strict case is easily derived, again starting from (4) and by exploiting the non-strict 
case:

Finally, regarding the scale types � and � , we want to prove that:

We can prove that the condition on the right hand side is invariant under the permissible 
transformation functions for the ratio scale type:

x ≺r
𝙽
y ⟺ (x ≼r

𝙽
y) ∧ ¬(y ≼r

𝙽
x)

⟺ (r ≠ y ∨ r = x) ∧ ¬(r ≠ x ∨ r = y)

⟺ (r ≠ y ∨ r = x) ∧ r = x ∧ r ≠ y

⟺ (r = x ∧ r ≠ y).

x ≼r
𝙾
y ⟺ ¬(r ≥ y > x ∨ x > y ≥ r).

¬(r ≥ y > x ∨ x > y ≥ r)

⟺ ¬(r ≥ y > x) ∧ ¬(x > y ≥ r)

⟺ (¬(r ≥ y) ∨ ¬(y > x)) ∧ (¬(x > y) ∨ ¬(y ≥ r))

⟺ (r < y ∨ y ≤ x) ∧ (x ≤ y ∨ y < r)

⟺ (r < y ∧ (x ≤ y ∨ y < r)) ∨ (y ≤ x ∧ (x ≤ y ∨ y < r))

⟺ (r < y ∧ x ≤ y) ∨ (r < y ∧ y < r) ∨ (y ≤ x ∧ x ≤ y) ∨ (y ≤ x ∧ y < r)

⟺ (r < y ∧ x ≤ y) ∨ (x = y) ∨ (y ≤ x ∧ y < r).

|f (r) − f (x)| ≤ |f (r) − f (y)|.

x ≼r
𝙾
y ⟸ ¬(r ≥ y > x ∨ x > y ≥ r).

x ≼r
𝙾
y ⟹ ¬(r ≥ y > x ∨ x > y ≥ r).

x ≺r
𝙾
y ⟺ x ≼r

𝙾
y ∧ ¬(y ≼r

𝙾
x)

⟺ (r ≥ x > y ∨ y > x ≥ r) ∧ ¬(r ≥ y > x ∨ x > y ≥ r)

⟺ (r ≥ x > y ∨ y > x ≥ r) ∧ (r < y ∨ y ≤ x) ∧ (x ≤ y ∨ y < r)

⟺ (r ≥ x > y) ∨ (y > x ≥ r).

x ≼r
𝙸,𝚁

y ⟺ |r − x| ≤ |r − y|.
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Therefore, the condition is valid for the � scale type. In addition, we know that adding a 
constant does not affect the absolute difference (|r − x| = |r + b − (x + b)|) . Therefore the 
condition is invariant also for the interval scale type:

Therefore

and

The proof for the strict case is immediate. 	�  ◻

Proof of Lemma 2  We prove each item in the lemma independently, with the exception of 
items (c) and (d) that are proved together. 

(a)	 VOI
�
 states the property in Formula (13) for any f ∈ F

�
 . Obviously, the same prop-

erty holds for f in any subset of F
�
 , and if � < �

′ then F
�′
⊂ F

�
 (see Formulas (30) 

and (31)). In other terms, if a metric value does not change by applying any transforma-
tion function of a certain scale type, then the metric is also invariant for transformation 
functions of higher scale types: satisfying VOI for a certain scale type implies satisfy-
ing VOI for higher scale types.

(b)	 The proof for EOI is analogous to that for VOI: see the previous case (a) and start from 
Formula (15).

(c)	 This item is proved together with the next one.
(d)	 The proof is divided into two parts. First, we focus on the nominal scale type and we 

prove that VOI
�
 is incompatible with both VOM (item (c) of the lemma) and EOM 

(item (d) of the lemma) at higher scale types. Let us assume that VOI
�
 holds. Then, by 

reduction to absurdity, we prove that if VOM or EOM hold, then we find a contradic-
tory implication and therefore, they are incompatible. Let us consider the following 
particular assignments for D = {d1, d2, d3} : 

Note that if we apply the nominal permissible transformation function x ↦ f (x) 
defined in Table  12, then ∀d ∈ D f (�(d)) = ��(d) , f (��(d)) = �(d) , and 
f (�(d)) = �(d) . Now, if a metric satisfies VOI

�
 , this implies that the metric must be 

|r − x| ≤ |r − y| ⟺ a ⋅ |r − x| ≤ a ⋅ |r − y| ⟺ |a ⋅ r − a ⋅ x| ≤ |a ⋅ r − a ⋅ y|.

|r − x| ≤ |r − y| ⟺ |a ⋅ r + b − (a ⋅ x + b)| ≤ |a ⋅ r + b − (a ⋅ y + b)|.

x ≼r
𝙸,𝚁

y ⟹ ∃f ∈ F
𝙸,𝚁(|f (r) − f (x)| ≤ |f (r) − f (y)|) ⟹ |r − x| ≤ |r − y|

|r − x| ≤ |r − y| ⟹ ∃f ∈ F
𝙸,𝚁(|f (r) − f (x)| ≤ |f (r) − f (y)|) ⟹ x ≼r

𝙸,𝚁
y.

� = (1, 2, 3)

�� = (6, 5, 4)

� = (10, 20, 30).

Table 12   The nominal 
permissible transformation 
function

x 1 2 3 6 5 4 10 20 30
f(x) 6 5 4 1 2 3 10 20 30
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invariant under any nominal transformation f ∈ F
�
 applied over both the system out-

put and the gold. Therefore: 

 (when clear from the context we omit the subscript on the metric). On the other hand, 

Therefore, according to the closeness definition at ordinal, interval, and ratio scale 
types, for any d ∈ D , ��(d) is closer to �(d) than �(d) , i.e., ∀� ∈ {�, �, �}(�� ⊲�

�
�) . 

Now, by reduction to absurdity, if we assume that VOM at � , � , or � scale types holds, 
we can derive that 

(see Formula  (14)), which contradicts (32). Therefore VOM can not be satisfied at 
higher scale types than nominal. This proves item (c).

	   Now, let us prove that EOM can not be satisfied at higher than nominal scale types. 
We can assert that 𝜎�(d1) > 𝜎�(d2) > 𝜎�(d3) and 𝛼(d1) < 𝛼(d2) < 𝛼(d3) . Therefore, �′ 
and � are not equivalent at � , � , or � scale types. This implies that the assignment � is 
strictly equivalence-closer to itself than �′ to � . On the other hand, the ratio, interval, 
and ordinal permissible transformation function f (x) = 10 ∗ x makes f (�(i)) = �(i).

	   Therefore, for any transformation f �(��) at � , � , or � , there exists a transformation 
f (�) = � that is value-closer to � than f �(��) , whereas the converse does not hold: 
according to Formulas (7) and (8), ∀� ∈ {�, �, �}(𝜎 ⊏𝛼

�
𝜎�) . Therefore, according to 

EOM at � , � , or � (see Formula (16)), 

which again contradicts (32): also EOM can not be satisfied at higher scale types than 
nominal. Now we turn to the second part of the proof, which has a similar structure: 
we focus on the ordinal scale type and we prove, again by reduction to absurdity, that 
VOI

�
 is incompatible with both VOM and EOM at higher scale types. Let us consider 

the following particular assignments: 

Note that if we apply the ordinal permissible transformation function x ↦ f (x) in 
Table 13, then f (�) = �� and f (�) = � . Now, satisfying VOI

�
 implies that the met-

ric must be invariant under any ordinal permissible transformation function f ∈ F
�
 

applied over both the system output and the gold, i.e., Formula  (32) must hold for 
any such f. On the other hand, (33) still holds. Therefore, according to the closeness 
definition at interval and ratio scale types, for any d ∈ D , ��(d) is closer to �(d) than 

(32)M(�, �) = M(f (�), f (�)) = M(��, �)

(33)∀d ∈ D
(
𝜎(d) < 𝜎�(d) < 𝛼(d)

)
.

(34)M(𝜎�, 𝛼) > M(𝜎, 𝛼)

(35)M(𝜎, 𝛼) > M(𝜎�, 𝛼),

� = (1, 2, 3)

�� = (10, 100, 1000)

� = (10000, 20000, 30000).

Table 13   The ordinal permissible 
transformation function x 1 2 3 10 100 1000 10000 20000 30000

f(x) 10 100 1000 2000 3000 4000 10000 20000 30000
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�(d) , i.e., ∀� ∈ {�, �}(�� ⊲�
�
�) . Now, if by reduction to absurdity we assume that 

VOM at � or � scale types holds, we can derive (34) (see Formula (14)), which con-
tradicts (32): VOM can not be satisfied at higher scale types than ordinal. In addition, 
the interval and ordinal permissible transformation function f (x) = 10000 ∗ x makes 
f (�) = � . And given that �′ and � are not linearly correlated, since 

we can assert that �′ and � are not equivalent at � or � scale types. Therefore, for 
any transformation f �(��) at � or � , there exists a transformation f (�) = � that is 
value-closer to � than f �(��) , whereas the converse does not hold: according to For-
mulas (7) and (8), ∀� ∈ {�, �}(𝜎 ⊏𝛼

�
𝜎�) . Therefore, according to EOM at � or � (see 

Formula (16)) we have that (35) holds, which again contradicts (32): also EOM can 
not be satisfied at higher scale types than �.

(e)	 The proof is again by reduction to absurdity. Let us consider the following assignments: 

f (x) = 10 ∗ x is a permissible transformation function for every scale type. Given that 
�(i) = �(i) ∗ 10 , we can say that � and � are equivalent at every scale type, whereas 
there does not exist any bijective relationship between �′ and � , i.e., there does not 
exist any nominal permissible transformation function between �′ and � . Therefore, 
there does not exist any permissible transformation at any scale type. It follows that, 
for any transformation at any scale type of �′ , the transformation �(i) ∗ 10 is value-
closer to � . Thus, we can say that for every scale type, � is equivalence-closer to � 
than �′ . Then, if EOM is satisfied by M at any scale type, we obtain: 

On the other hand, �′ is strict value-closer to � than �′ at nominal scale type, given 
that �(d1) ≠ ��(d1) = �(d1) , �(d2) ≠ ��(d2) ≠ �(d2) and �(d3) ≠ ��(d3) = �(d3) . 
Then, by subsumption of scale types, we can say that �′ is strict value-closer than � at 
every scale type. Therefore, if M satisfies VOM at any scale type then: 

 which contradicts the EOM implication (36).
(f)	 It is enough to consider that, according to Lemma 1, the conditions for closeness and 

strict closeness at interval and ratio scale types are equivalent.
(g)	 The proof is by reduction to absurdity. Let us consider the following assignments: 

We note that two equal values are strictly closer than two different values for every 
scale type. Therefore, �′ ⊲�

�
� for every scale type � . Therefore, according to VOM

�
 : 

��(i) = 10(�(i)∕10000),

� = (1, 2, 3)

�� = (10, 10, 30)

� = (10, 20, 30).

(36)M(𝜎, 𝛼) > M(𝜎�, 𝛼).

M(𝜎, 𝛼) < M(𝜎�, 𝛼),

� = (1, 2, 3)

�� = (10, 20, 30)

� = (10, 20, 30).

M(𝜎�, 𝛼) < M(𝜎, 𝛼).
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On the other hand, � and �′ are equivalent at every scale type, given that the ratio per-
missible function f (x) = 10 ∗ x states f (�(i)) = ��(i) . By subsumption across scale 
types, � and �′ are equivalent at every scale type. Therefore, according to EOI

�
 at 

every scale type: 

which contradicts the previous result.
(h)	 First, we prove that in general, two equivalent assignments are strictly equivalence-

closer than two non equivalent assignments: 

This is straightforward, given that we can find a permissible transformation function 
from �′ to � but not from � to � . Therefore, the transformation of �′ is strictly value-
closer than any transformation of �.

	   Let us now consider the following assignments: 

We have that: 

Now, by reduction to absurdity, we can derive the following contradictions: 

	�  ◻

Proof of Corollary 1  The proofs are simply based on the well known property that ¬(A ∧ B) 
is the same as A ⇒ ¬B : by applying this to Lemma 2 (c), (d), (e) (g), and (h), it is immedi-
ate to obtain Formulas (17), (19), (21), (23), and (25). Conversely, (18), (20), (22), (24), 
and (26) are simply derived respectively from (17), (19), (21), (23), and (25) by contraposi-
tion (i.e., A ⇒ ¬B is the same as B ⇒ ¬A ). 	�  ◻

Proof of  Corollary 2  The corollary statement is the same as saying that satisfying both 
EOM and EOI at a certain scale type, or both VOM and VOI at certain scale type, is not 
compatible with any other combination, with the only exception of the case of VOM and 

M(��, �) = M(�, �),

𝜎� ∈ [𝛼]
𝚃
∧ 𝜎 ∉ [𝛼]

𝚃
⟹ 𝜎� ⊏𝛼

𝚃
𝜎.

�1 = (100, 10, 1)

�2 = (1, 10, 100)

�3 = (11, 21, 31)

�� = (10, 20, 30)

� = (10, 20, 30).

∀�
(
�� ∈ [�]

�

)
and

∀� ≥ �
(
�3 ∉ [�]

�

)
and ∀� ≤ �

(
�3 ∈ [�]

�

)

∀� ≥ �
(
�2 ∉ [�]

�

)
and ∀� ≤ �

(
�2 ∈ [�]

�

)

∀� ≥ �
(
�1 ∉ [�]

�

)
and ∀� ≤ �

(
�1 ∈ [�]

�

)
.

EOM
𝚁
⟹ M(𝜎�, 𝛼) > M(𝜎3, 𝛼) and ∀𝚃 ≤ 𝙸

(
EOI

𝚃
⟹ M(𝜎�, 𝛼) = M(𝜎3, 𝛼)

)

EOM
𝙸
⟹ M(𝜎�, 𝛼) > M(𝜎2, 𝛼) and ∀𝚃 ≤ 𝙾

(
EOI

𝚃
⟹ M(𝜎�, 𝛼) = M(𝜎2, 𝛼)

)

EOM
𝙾
⟹ M(𝜎�, 𝛼) > M(𝜎1, 𝛼) and ∀𝚃 ≤ 𝙽

(
EOI

𝚃
⟹ M(𝜎�, 𝛼) = M(𝜎1, 𝛼)

)
.
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VOI at ratio and interval scale types. Let us prove it by analyzing all the possible combina-
tions. First, according to Lemma 2 (g), VOM

�
 and EOI

�′
 are incompatible for any pair of 

scale types � and �′.
Therefore, value- and equivalence-oriented metrics are always incompatible definitions. 

Then, let us prove the incompatibility of metrics within the same family:

•	 Value-oriented metrics at nominal and ordinal scale types. According to Lemma 2 (c), 
satisfying VOI implies that VOM can not be satisfied at higher scale types, satisfying 
VOM implies that VOI can not be satisfied at lower scale types.

•	 Value-oriented metrics at interval or ratio scale types. According to Lemma 2 (c), sat-
isfying VOM at interval or ratio scale types implies that VOI can not be satisfied at 
nominal and ordinal scale types.

•	 Equivalence-oriented metrics. According to Lemma 2 (h), satisfying EOI implies that 
EOM can not be satisfied at lower scale types (or, satisfying EOM implies that EOI can 
not be satisfied at higher scale types).

	�  ◻

Proof of Theorem 1  The GMON axiom (Axiom 1) states that:

By comparing it with the VOM
�
 axiom (Formula (14)) we see that the consequent is the 

same, so we just need to prove that the two antecedents are equivalent, i.e., that:

By applying (6) and Lemma 1 for the nominal scale, we have that:

that is equivalent to the right hand side of (37). 	�  ◻

Proof of Theorem 2  We want to prove that the EOM axiom and the Generalized Homo-
geneity/Completeness axiom (GHC, Axiom 2) are equivalent. As in the previous proof of 
Theorem 1, this is the same as proving that the conditions for a metric score increase in the 
two axioms are equivalent. The conditions for the GHC axiom are Formulas (27) and (28); 
the condition for the EOM axiom is the antecedent in (16).

Part A

First, we prove that the conditions for the GHC axiom implies the condition for the EOM 
axiom. Using (8), the condition in EOM axiom can be rewritten as 𝜎 ⊑𝛼

�
𝜎� ∧ ¬

(
𝜎� ⊑𝛼

�
𝜎
)
 . In 

∀d ∈ D
(
𝛼(d) = 𝜎(d) ∨ 𝛼(d) ≠ 𝜎�(d)

)
∧
(
∃d ∈ D

(
𝛼(d) = 𝜎(d) ≠ 𝜎�(d)

))

⟹ M(𝜎, 𝛼) > M(𝜎�, 𝛼).

(37)
� ⊲

�
𝙽
��

⟺∀d ∈ D
(
�(d) = �(d) ∨ �(d) ≠ ��(d)

)
∧

(
∃d ∈ D

(
�(d) = �(d) ≠ ��(d)

))
.

𝜎 ⊲
𝛼
𝙽
𝜎�

⟺∀d ∈ D

(
𝜎(d) ≼

𝛼(d)

𝙽
𝜎�(d)

)
∧ ∃d ∈ D

(
𝜎(d) ≺

𝛼(d)

𝙽
𝜎�(d)

)

⟺∀d ∈ D

(
𝛼(d) ≠ 𝜎�(d) ∨ 𝛼(d) = 𝜎(d) = 𝜎�(d)

)
∧

∃d ∈ D

(
𝛼(d) = 𝜎(d) ∧ 𝛼(d) ≠ 𝜎�(d)

)
,
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Part A.1 we prove that GHC axiom conditions implies ¬
(
𝜎� ⊑𝛼

�
𝜎
)
 . In Part A.2 we prove that 

GHC conditions implies 𝜎 ⊑𝛼
�
𝜎′.

Part A.1.

First, we can state the following equivalences:

(where we have used (7), (5), and (4)).
Now, looking at Formula (28) in the GHC conditions, we can observe that it is divided into 

two or-ed terms. If the first term ( ��(d1) = ��(d2) ∧ �(d1) ≠ �(d2) ∧ �(d1) ≠ �(d2) ) is true, 
we can define an assignment �e such that

Given that ��(d1) = ��(d2) , these relationships will be preserved by any equivalent assign-
ment �′

e
 . Therefore, for at least one of the two documents d1 or d2 , �e will be strictly closer 

to � than �′
e
.

If the second term ( ��(d1) ≠ ��(d2) ∧ �(d1) = �(d2) ∧ �(d1) = �(d2) ) is true, we can 
define an assignment �e ∈ [�] such that:

Given that ��(d1) ≠ ��(d2) , again, these relationships will be preserved by any equivalent 
assignment �′

e
 . Therefore, for at least one of the two documents d1 or d2 , �e will be strictly 

closer to � than �′
e
.

Therefore, in both cases, the assertion:

is true, and therefore, using (38), ¬
(
𝜎� ⊑𝛼

�
𝜎
)
.

Part A.2.

Now we prove that the GHC conditions imply 𝜎 ⊑𝛼
�
𝜎′ , which according to (7) can be 

expressed as:

That is, we have to prove that for any assignment �′
e
 in [��] there exists an assignment �e 

in [�] such that it is value-closer to � than �′
e
 for the scale type � . To do so, we make the 

following four steps: we define an assignment �e which depends on the � , � , and �′ values 
(A.2.1); we prove that it is an assignment, i.e., it is a function that assigns a value to each 

(38)

¬
(
𝜎� ⊑𝛼

𝙽
𝜎
)
⟺ ¬

(
∀𝜎e ∈ [𝜎]

𝙽

(
∃𝜎�

e
∈ [𝜎�]

𝙽
(𝜎�

e
⊴𝛼
𝙽
𝜎e)

))

⟺ ∃𝜎e ∈ [𝜎]
𝙽
¬
(
∃𝜎�

e
∈ [𝜎�]

𝙽
(𝜎�

e
⊴𝛼
𝙽
𝜎e)

)

⟺ ∃𝜎e ∈ [𝜎]
𝙽

(
∀𝜎�

e
∈ [𝜎�]

𝙽
¬(𝜎�

e
⊴𝛼
𝙽
𝜎e)

)

⟺ ∃𝜎e ∈ [𝜎]
𝙽

(
∀𝜎�

e
∈ [𝜎�]

𝙽
¬(∀d ∈ D

(
𝜎�
e
(d) ≼

𝛼(d)

𝙽
𝜎e(d))

))

⟺ ∃𝜎e ∈ [𝜎]
𝙽

(
∀𝜎�

e
∈ [𝜎�]

𝙽
(∃d ∈ D

(
𝜎e(d) ≺

𝛼(d)

𝙽
𝜎�
e
(d))

))
.

�e(d1) = �(d1) ≠ �e(d2) = �(d2).

�e(d1) = �(d1) = �e(d2) = �(d2).

∃𝜎e ∈ [𝜎]
�

(
∀𝜎�

e
∈ [𝜎�]

�

(
∃d ∈ D

(
𝜎e(d) ≺

𝛼(d)

�
𝜎�
e
(d)

)))

𝜎 ⊑𝛼
𝙽
𝜎�

⟺ ∀𝜎�
e
∈ [𝜎�]

𝙽

(
∃𝜎e ∈ [𝜎]

𝙽

(
𝜎e ⊴

𝛼
𝙽
𝜎�
e

))
.
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item (A.2.2); we prove that �e belongs to [�] (A.2.3); and finally we prove that �e is value-
closer to � than �′ (A.2.4).

Part A.2.1. Let us define the following assignment:

This assignment assigns the correct � value to documents that are correctly assigned by 
�′
e
 , and extends this assignment to other documents, namely all those that are assigned the 

same � value as d and are correctly assigned by �′
e
 , for preserving the consistency with � , 

that is, in order to belong to [�] . In other terms, �e(d) assigns the correct value � when �′
e
 

does. In addition, �e is consistent (equivalent) with � at nominal level, given that the equal-
ity relationships are preserved in both � values and �(d) + K values. The K value is just a 
number large enough to avoid overlapping with � values (for example, if � and � assign 
values in {0, 1} , we can define K = 2).

Part A.2.2. We have to prove that �e is an assignment. It is enough to ensure that two values 
are not assigned simultaneously by �e(d) . For this, we will prove that if there exist two docu-
ments dj in Formula (39) that are assigned a value by ��

e
(d) , then these values are the same 

one. That is, if

and

then �(dj) = �(dk) . That is, we have to prove that

Here we use the GHC Axiom. According to the second part of Formula (27)

therefore:

Then:

Given that �′
e
 is equivalent to �′ , this implies that:

Therefore, two values are not assigned simultaneously by �e(d) and it is an assignment.
Part A.2.3. Now, we have to prove the assignment �e belongs to the class [�] . We know 

that at the nominal scale type, two assignments � and �e are equivalent if:

(39)�e(d) =

{
�(dj) if ∃dj

(
��
e
(dj) = �(dj) ∧ �(dj) = �(d)

)

�(d) + K otherwise.

∃dj
(
��
e
(dj) = �(dj) ∧ �(dj) = �(d)

)

∃dk
(
��
e
(dk) = �(dk) ∧ �(dk) = �(d)

)

�(dk) = �(dj) ∧ ��
e
(dj) = �(dj) ∧ ��

e
(dk) = �(dk) ⟹ �(dj) = �(dk).

(��(dj) ≠ ��(dk) ∧ �(dj) ≠ �(dk)) ⟹ �(dj) ≠ �(dk),

�(dj) = �(dk) ⟹ (��(dj) = ��(dk) ∨ �(dj) = �(dk)).

�(dk) = �(dj) ∧ ��
e
(dj) = �(dj) ∧ ��

e
(dk) = �(dk) ⟹

(��(dj) = ��(dk) ∨ �(dj) = �(dk)) ∧ ��
e
(dj) = �(dj) ∧ ��

e
(dk) = �(dk).

(��
e
(dj) = ��

e
(dk) ∨ �(dj) = �(dk)) ∧ ��

e
(dj) = �(dj) ∧ ��

e
(dk) = �(dk)

⟹ �(dj) = �(dk).
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Suppose that �(di) = �(dj) . Then, if

then

and therefore (see (39)) �e(di) = �e(dj) = �(dk) . In the other cases:

On the other hand, if �(di) ≠ �(dj) , then according to (39) the only case in which 
�e(di) = �e(dj) is if

there exist two documents dk and dl such that

and �e(di) = �e(dj) = �(dk) = �(dl) . Then, in this case:

Given that ��
e
∈ [��]:

which is not compatible with the GHC conditions.
Therefore, the proposed assignment �e belongs to the class [�].
Part A.2.4. Finally, we need to prove that �e is value-closer to � than �′

e
 for the scale type 

�:

This is solved by definition of �e.
Therefore, according to Lemma 1 we can conclude that for every document d, �e(d) is 

non strictly closer to �(d) than ��
e
(d):

Therefore, according to Definition  3, �e is non-strictly value-closer to � than �′
e
 for the 

nominal scale type:

Given that this is true for every assignment ��
e
∈ [��]

�
 , we can conclude that � is non-

strictly equivalence-closer to � than �′ for the nominal scale type:

So, the EOM condition is satisfied.

�(di) = �(dj) ⟺ �e(di) = �e(dj).

∃dk
(
��
e
(dk) = �(dk) ∧ �(dk) = �(di)

)

∃dk
(
��
e
(dk) = �(dk) ∧ �(dk) = �(dj)

)

�e(di) = �e(dj) = �(dj) + K.

∃dk
(
��
e
(dk) = �(dk) ∧ �(dk) = �(di)

)

∃dl
(
��
e
(dl) = �(dl) ∧ �(dl) = �(dj)

)
,

��
e
(dk) = ��

e
(dl) ∧ �(dk) = �(dl) ∧ �(di) ≠ �(dj).

��(dk) = ��(dl) ∧ �(dk) = �(dl) ∧ �(di) ≠ �(dj),

��
e
(d) = �(d) ⟹ �e(d) = �(d).

∀d ∈ D
(
𝜎e(d) ≼

𝛼(d) 𝜎�
e
(d)

)
.

𝜎e ⊴
𝛼
�
𝜎′
e
.

𝜎 ⊑𝛼
�
𝜎′.
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Part B

Now, we will prove that the EOM condition is enough for the GHC axiom conditions. The 
GHC conditions include Formulas (27) and (28). We will prove that they are satisfied in 
parts B.1 and B.2 respectively.

Part B.1.

The EOM condition states that, for any assignment �′
e
 in [��]

�
 we can find an assignment 

�e in [�]
�
 such that 𝜎e ⊴𝛼

�
𝜎′
e
 . Let us consider the two conditions in Formula (27). Then, if

there exists an assignment �′
e
 in the equivalence class such that:

Given that there must exist an assignment in the class [�]
�
 closer to � , then the assignments 

in [�]
�
 , including �′ , must satisfy:

Therefore, the first condition in Formula (27) in the GHC axiom is satisfied:

We can apply the same reasoning for the situation

That is, there exists an assignment �′
e
 in the equivalence class [��]

�
 such that:

Given that there must exist an assignment in the class [�]
�
 closer to � , then the assignments 

in [�]
�
 , including � , must satisfy:

Therefore, the second condition in Formula (27) in the GHC axiom is also satisfied:

Part B.2.

In addition, the conditions in Formula (28) are also necessary. Otherwise, if they were false 
then:

��(di) = ��(dj) ∧ �(di) = �(dj)

��
e
(di) = ��

e
(dj) = �(di) = �(dj).

�(di) = �(dj).

��(di) = ��(dj) ∧ �(di) = �(dj) ⟹ �(di) = �(dj).

��(di) ≠ ��(dj) ∧ �(di) ≠ �(dj).

��
e
(di) = �(di) ≠ ��

e
(dj) = �(dj).

�(di) ≠ �(dj).

��(di) ≠ ��(dj) ∧ �(di) ≠ �(dj) ⟹ �(di) ≠ �(dj).
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Therefore, being �e an assignment belonging to the class [�]
�
 , we can find an assignment �′

e
 

in [��]
�
 such that:

This assignment is:

Therefore, according to Lemma 1, we can conclude that �′
e
 is closer to � than �e:

Given that this is true for any assignment �e in the class [�]
�
 , we can conclude that:

which contradicts

Therefore, EOM and GHC axioms are equivalent. 	�  ◻

Proof of Theorem 3  We want to prove that EOM at ordinal scale type is equivalent to PRI, 
the Priority Axiom. For this, it is enough to prove that the EOM and PRI conditions are 
equivalent. On the one hand, Priority Axiom (Axiom 3) states that if two contiguous docu-
ments are swapped in concordance with the gold then the metric score increases. In other 
terms, if12 

and being � the results of swapping d1 and d2 in �′ then M(𝜎, 𝛼) > M(𝜎�, 𝛼).
Given that M(�, �) is a function which depends exclusively on the � and � assignment 

values, swapping documents in the ranking � with equal value in � does not affect M(�, �) . 
Therefore, by transitivity, we can say that the condition of the Priority Axiom (Formula 29) 
is equivalent to S(�, ��) , which denotes the fact that � can be obtained by swapping docu-
ments in the �′ ranking without contradicting �.

∀di, dj
(
¬
(
��(di) = ��(dj) ∧ �(di) ≠ �(dj) ∧ �(di) ≠ �(dj)

))

∧ ∀di, dj
(
¬
(
��(di) ≠ ��(dj) ∧ �(di) = �(dj) ∧ �(di) = �(dj)

))

⟺ ∀di, dj
((
��(di) ≠ ��(dj) ∨ �(di) = �(dj) ∨ �(di) = �(dj)

)

∧
((
��(di) = ��(dj) ∨ �(di) ≠ �(dj) ∨ �(di) ≠ �(dj)

))

⟺
(
�(di) ≠ �(dj) ∧ �(di) ≠ �(dj) ⟹ ��(di) ≠ ��(dj)

)

∧
(
�(di) = �(dj) ∧ �(di) = �(dj) ⟹ ��(di) = ��(dj)

)
.

�e(di) = �(di) ⟹ ��
e
(di) = �(di).

��
e
(d) =

{
�(d) if �e(d) = �(d)

��(d) + K otherwise.

𝜎′
e
⊴𝛼
�
𝜎e.

𝜎′ ⊑𝛼
�
𝜎

𝜎 ⊏𝛼
�
𝜎′.

rank 𝜎� (d1) = rank 𝜎� (d2) + 1 ∧ 𝛼(d1) > 𝛼(d2)

12  Note that by increasing rank ( rank 𝜎(d) < rank 𝜎(d
�) ) we decrease relevance ( 𝜎(d) > 𝜎(d�) ); see Foot-

note 12
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On the other hand, the EOM condition (the antecedent in (16)) holds when � is equiva-
lence-closer than �′ . That is, for all ordinal transformation of �′ there exists a transforma-
tion of � strictly closer to � . We will denote this condition as CEOM . Then, we need to prove 
that:

Part A

First, let us prove that:

which, by contraposition, is equivalent to:

If � = �� then  (40) is true, given that neither S(�, ��) nor CEOM hold. In the other case, 
whenever � ≠ �′ , if there does not exist any (correct) swapping sequence from �′ to � , then 
we can assert that there exist at least two documents which are correctly sorted in �′ but not 
in � . That is:

Under this condition, let us consider the permissible transformation function f�′ for the 
ordinal scale type such that

Now, by reduction to absurdity, let us assume that the EOM condition CEOM holds, i.e., 
that there exists another monotonic function f� such that it is value-closer to � for every d. 
Therefore:

Since f� is a monotonic function, we have:

But this contradicts 𝛼(d1) > 𝛼(d2) . Therefore, we can not find a transformation f� of � such 
that all values are closer to � than the f�′ transformation of �′ . Therefore, the condition of 
EOM can not be satisfied and this proves (40).

Part B

Now, let us prove that the conditions for PRI (Formula (29)) imply satisfying the condition 
of the EOM axiom. The priority axiom states that if the rankings � and �′ are equivalent 
except in the case of d1 and d2 where:

then � must achieve a higher score than �′.

CEOM ⟺ S(�, ��).

CEOM ⟹ S(�, ��)

(40)¬S(�, ��) ⟹ ¬CEOM.

𝜎(d�
1
) > 𝜎(d�

2
) ∧ 𝛼(d1) > 𝛼(d2) ∧ 𝜎(d1) < 𝜎(d2).

f�� (��(d1)) = �(d1) and f�� (��(d2)) = �(d2).

f�(�(d1)) = �(d1) ∧ f�(�(d2)) = �(d2).

f𝜎(𝜎(d1)) < f𝜎(𝜎(d2)).

(41)𝛼(d1) > 𝛼(d2) ∧ 𝜎(d1) > 𝜎(d2) ∧ 𝜎�(d1) < 𝜎�(d2),
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Let �′
e
 be any assignment in the equivalence class [��] . Then, we consider an assignment 

�e such that:

where k is a number small enough such that:

The intuition is that �e moves d2 down in the rank as much as it is needed to correctly (w.r.t. 
� ) swap it with d1 , without affecting the other relationships. Then, we can assert that �e 
belongs to the equivalence class [�] , given that: (i)  for every pair of documents different 
than d1 and d2 , � , �′ , �e and �′

e
 keep the same ordinal relationships; (ii) the relationship 

between d1 and d2 is the same in � (according to Formula (41)) and in �e (according to For-
mula (42)); and (iii) given that d1 and d2 are contiguous in �′ , �′

e
 , � and �e , the relationships 

with the rest of the documents are the same in all assignments.
Now, let us consider an assignment �′ in [�] such that ��(d1) = ��

e
(d1) = �e(d1) . Then we 

can assert that �e is value-closer to �′ than �′
e
 (i.e., 𝜎e ⊴𝛼′

�
𝜎′
e
 ): for every d ≠ d2 , �e is closer 

given that

and regarding d2 , being k small enough and knowing that 𝛼�(d1) > 𝛼�(d2) , we have that

That is, for any transformation �′
e
 of �′ we can find a transformation �e of � which is value-

closer to �′ . Therefore:

As the last step of the proof, we need to prove that equivalence-closeness is invariant under 
equivalent assignments. That is:

To prove this, it is enough to consider that equivalence-closeness at ordinal scale type is 
invariant across ordinal transformations of �1 or �2:

and that value-closeness at ordinal scale type is invariant when applying the same transfor-
mation to the three assignments:

Therefore, being f� the transformation such that f�(��) = �:

In our case, from (43) we can thus derive that:

(42)∀d ≠ d2
(
�e(d) = ��

e
(d)

)
∧ �e(d2) = ��

e
(d1) − k

𝜎(d) < 𝜎(d2) ⟹ 𝜎e(d) < 𝜎e(d2).

∀d ≠ d2
(
�e(d) = ��

e
(d)

)
,

𝜎�
e
(d2) > 𝜎�

e
(d1) − k = 𝜎e(d2) = 𝛼�(d1) − k > 𝛼�(d2).

(43)𝜎 ⊑𝛼′

�
𝜎′.

(44)∀𝛼� ∈ [𝛼]
(
𝜎1 ⊑

𝛼�

𝙾
𝜎2 ⟺ 𝜎1 ⊑

𝛼
𝙾
𝜎2
)
.

𝜎1 ⊑
𝛼�

𝙾
𝜎2 ⟺ f1(𝜎1) ⊑

𝛼�

𝙾
f2(𝜎2)

𝜎1 ⊴
𝛼�

𝙾
𝜎2 ⟺ f (𝜎1) ⊴

f (𝛼�)

𝙾
f (𝜎2).

𝜎1 ⊑
𝛼�

𝙾
𝜎2 ⟺ f𝛼(𝜎1) ⊑

f𝛼 (𝛼
�)

𝙾
f𝛼(𝜎2) ⟺ f𝛼(𝜎1) ⊑

𝛼
𝙾
f𝛼(𝜎2) ⟺ 𝜎1 ⊑

𝛼
𝙾
𝜎2.
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Finally, for a transformation �e in [�] such that �e(d1) = �(d1) and �e(d2) = �(d2) we can 
not find a transformation of �′

e
 in [��] closer to � than �e due to 𝜎�(d1) < 𝜎�(d2) . Therefore, 

we can assert that the priority axiom conditions implies:

That is, the EOM conditions for the ordinal scale type. 	�  ◻

Proof of  Theorem  4  The proof is straightforward. For the nominal scale type, applying 
a permissible transformation function (bijective function) is equivalent to changing the 
names of classes. Given that the contingency matrix is based on equalities and inequalities 
between system output and gold, modifying the class names for both the system output and 
the gold does not affect the matrix. 	�  ◻

Proof of Theorem 5  It is enough to prove that these metrics satisfy the Generalized Mono-
tonicity Axiom (GMON), which is equivalent to VOM at nominal scale according to Theo-
rem 1. GMON states that:

For Accuracy and Macro-Average Accuracy the proof is straightforward. The metric Accu-
racy directly counts how many documents are classified correctly. Therefore, the first 
assignment � will achieve always a higher accuracy than �′ under the previous conditions. 
The Macro-Average Accuracy consists of averaging Accuracy scores across classes, that is, 
values in the gold. It can be expressed as:

Under the GMON conditions, the assignment � achieves the same Accuracy as �′ over all 
values, excepting one of them in which its Accuracy is higher.

The Phi Correlation is a metric that can be applied only over two classes, that is, two 
values in both assignments. In terms of the contingency matrix, it is expressed as (TP, 
TN, FP, FN, stand for True Positive, True Negative, False Positive, and False Negative, 
respectively):

Under the GMON conditions, there are two possibilities. TP is increased at the cost of FN 
or TN is increased at the cost of FP. In the first case:

Now, if we derive the function:

𝜎 ⊑𝛼
�
𝜎′.

𝜎 ⊏𝛼
�
𝜎′.

∀d ∈ D
(
𝛼(d) = 𝜎(d) ∨ 𝛼(d) ≠ 𝜎�(d)

)
∧ ∃d ∈ D

(
𝛼(d) = 𝜎(d) ≠ 𝜎�(d)

)

⟹ M(𝜎, 𝛼) > M(𝜎�, 𝛼).

MAAC = Avg v

(
card ({d | �(d) = v ∧ �(d) = v})

card ({d | �(d) = v})

)
.

Phi =
TP ⋅ TN − FP ⋅ FN√

(TP + FN) ⋅ (TN + FP) ⋅ (TP + FP) ⋅ (TN + FN)
.

(TP + 1) ⋅ TN − FP ⋅ (FN − 1)
√
(TP + 1 + FN − 1) ⋅ (TN + FP) ⋅ (TP + 1 + FP) ⋅ (TN + FN − 1)

.
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with respect to x, we obtain a function which is positive for every x value. We can apply 
exactly the same procedure to the second case. Therefore, the function is an increasing 
monotonic function. That is, the Phi value increases under the GMON conditions. 	�  ◻

Proof of Theorem 6  The proof is straightforward. It is enough to say that the information 
given by a partition is invariant across permissible transformation functions for the nomi-
nal scale type, i.e., the bijective functions (applied to one partition or both). Therefore, any 
function that takes a partition as input is invariant and it satisfies EOI. 	�  ◻

Proof of Theorem 7  We will prove that Entropy satisfies GHC (Axiom 2), and therefore, 
according to Theorem 2, it also satisfies EOM at the nominal scale type. We can state that 
the GHC conditions (see Formulas (27) and (28)) concern two clustering outputs � and �′ 
such that the only differences are either: (i) � splits clusters of �′ into clusters containing 
items from different classes in the gold � , or (ii) � joins clusters of �′ containing items in 
the same class in � . In other terms, in case (ii), if �′ breaks the relationship between items 
from the same class in � , then �′ is producing a pair error; in case (i), if �′ joins clusters 
containing items from different classes in � , �′ is producing incorrect relationships. In both 
cases the metric value for �′ must be lower than �.

Knowing this, let us prove now that joining clusters containing items from the same 
class or splitting clusters in this way increases Entropy. Let us focus on the joining case 
(ii) first. Let c1, c2 ∈ V(��) be the two clusters containing elements from the same class 
l ∈ V(�) in the gold, and that are joined in � . The Entropy of both clusters (i.e., for �′ ) is:

(we slightly abuse the notation introduced in Sect. 7.2 by replacing assignments with clus-
ters), and Entropy after the join (i.e., for � ) is zero as well:

(where c = c1 ∪ c2 ). That is, joining these clusters does not affect Entropy. However, Class 
Entropy for the label l is (before the joining process, i.e., for �′):

Now let us remark that, for any a, b ∈ (0..1) and a + b < 1 , we have

(TP + x) ⋅ TN − FP ⋅ (FN − x)
√
(TP + x + FN − x) ⋅ (TN + FP) ⋅ (TP + x + FP) ⋅ (TN + FN − x)

E(c1, �) = −
∑

l∈V(�)

P(�(i) = l | ��(i) = c1) ⋅ logP(�(i) = l | ��(i) = c1) = 0

E(c2, �) = −
∑

l∈V(�)

P(�(i) = l | ��(i) = c2) ⋅ logP(�(i) = l | ��(i) = c2) = 0

E(c, �) = −
∑

l∈V(�)

P(�(i) = l | �(i) = c) ⋅ logP(�(i) = l | �(i) = c) = 0

(45)

CE(��, l) = −
∑

c∈V(��)

P(��(i) = c | �(i) = l) ⋅ logP(��(i) = c | �(i) = l)

= − P(��(i) = c1 | �(i) = l) ⋅ logP(��(i) = c1 | �(i) = l)

− P(��(i) = c2 | �(i) = l) ⋅ logP(��(i) = c2 | �(i) = l)

−
∑

c∈V(��)⧵{c1,c2}

P(��(i) = c | �(i) = l) ⋅ logP(��(i) = c | �(i) = l).
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and, given that a and b are positive:

Therefore:

By exploiting this property in (45) we obtain:

which corresponds with the entropy for the class l after the joining process (i.e., for � ). 
Therefore, Class Entropy decreases when joining pure clusters: being the evaluation score 
inversely correlated with the entropy values, this proves that the metric value for �′ is lower 
than �.

Now let us consider the case (i) in which one cluster in �′ is split into two clusters 
c1, c2 ∈ V(�) . When splitting two clusters c1, c2 ∈ V(�) containing items from different 
classes in the gold:

But Entropy is averaged by considering the size of clusters. Therefore, given that E(c1, �) 
and E(c2, �) are positive numbers (−P(x) log(x) ∈ (0.. +∞)):

we can say that Entropy decreases when splitting clusters with items belonging to different 
classes (from �′ to � ). In addition, Class Entropy is not affected by this splitting, given that 
the distribution of classes across clusters is not affected.

Therefore, remembering that Entropy and Class Entropy are inversely correlated with 
the evaluation metric, they satisfy GHC and thus EOM at the nominal scale type. 	�  ◻

Proof of  Theorem  8  The proof is straightforward. In our framework, system outputs are 
value assignments, that is, document relevance scores estimated by systems. Therefore, by 
definition, the resulting ranking is invariant under ordinal transformation functions of these 
scores. In other words, applying any permissible transformation function (strict monotonic 
function) over the system output does not affect the resulting ranking. That is, evaluation 

0 > log(a + b) > log(a) and 0 > log(a + b) > log(b),

a ⋅ log(a) + b ⋅ log(b) < a ⋅ log(a + b) + b ⋅ log(a + b) = (a + b) ⋅ log(a + b).

−a ⋅ log(a) − b ⋅ log(b) > −(a + b) ⋅ log(a + b).

CE(𝜎�, l) > −
(
P(𝜎�(i) = c1 | 𝛼(i) = l) + P(𝜎�(i) = c2 | 𝛼(i) = l)

)

⋅ log
(
P(𝜎�(i) = c1 | 𝛼(i) = l) + P(𝜎�(i) = c2 | 𝛼(i) = l)

)

−
∑

c∈V(𝜎�)⧵{c1,c2}

P(𝜎�(i) = c | 𝛼(i) = l) ⋅ logP(𝜎�(i) = c | 𝛼(i) = l)

E(c1 ∪ c2, �) = −
∑

l∈V(�)

P(�(i) = l | �(i) = c1) ⋅ logP(�(i) = l | �(i) = c1)

−
∑

l∈V(�)

P(�(i) = l | �(i) = c2) ⋅ logP(�(i) = l | �(i) = c2)

= E(c1, �) + E(c2, �).

|c1| ⋅ E(c1, 𝛼) + |c2| ⋅ E(c2, 𝛼)
< |c1| ⋅ (E(c1, 𝛼) + E(c2, 𝛼)) + |c2| ⋅ (E(c1, 𝛼) + E(c2, 𝛼))

= (|c1| + |c2|) ⋅ (E(c1, 𝛼) + E(c2, 𝛼)),
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metrics for ranking are invariant across equivalent assignments for the ordinal scale type. 	
� ◻

Proof of Theorem 9  For this proof, it is enough to say that (Amigó et al. 2013), proved that 
these metrics satisfy PRI, which is equivalent to EOM at ordinal scale according to Theo-
rem 3. 	�  ◻

Proof of Theorem 10  We need to prove that the Mean Absolute Error with a reference dif-
ference is a value-oriented metric for the interval scale type. VOI is satisfied, given that the 
metric is invariant across linear transformations of � and � values, as it is immediately seen 
by considering linear affine transformations like ( X� = aX + b ) and observing that:

VOM is satisfied, given that by applying (6) and Lemma 1 for the interval scale type, we 
have that

and this is equivalent to

Therefore:

	�  ◻

Proof of Theorem 11  VOI is satisfied, given that the metric is invariant across linear trans-
formation of � and � values, as it is immediately seen by considering linear transformations 
like ( X� = aX ) and observing that:.

The proof for VOM is analogous to that of previous Theorem 10:

	�  ◻

Proof of Theorem 12  We want to prove that the Pearson coefficient is an equivalence-ori-
ented metric for the interval scale type, i.e., it satisfies EOI

�
 and EOM

�
 . A first remark is 

that the invariance under interval permissible transformation functions (i.e., linear func-
tions y = a ⋅ x + b ) is a well known property of Pearson linear correlation coefficient. 
Therefore, EOI

�
 is satisfied.

|X� − Y �|
|Z� −W| =

|aX + b − aY − b|
|aZ + b − aW − b| =

|aX − aY|
|aZ − aW| =

|a(X − Y)|
|a(Z −W)| =

|X − Y|
|Z −W| .

𝜎 ⊲
𝛼
𝚃
𝜎�

⟺ ∀d ∈ D

(
𝜎(d) ≼

𝛼(d)

𝚃
𝜎�(d)

)
∧ ∃d ∈ D

(
𝜎(d) ≺

𝛼(d)

𝚃
𝜎�(d)

)
,

∀d ∈ D
(
|𝜎(d) − 𝛼(d)| ≤ |𝜎�(d) − 𝛼(d)|

)
∧ ∃d ∈ D

(
|𝜎(d) − 𝛼(d)| < |𝜎�(d) − 𝛼(d)|

)
.

Avg d∈D

(
|𝛼(d) − 𝜎(d)|
|𝛼(d0) − 𝛼(d�

0
)|

)
< Avg d∈D

(
|𝛼(d) − 𝜎�(d)|
|𝛼(d0) − 𝛼(d�

0
)|

)
.

|X� − Y �|
|Z�| =

|aX − aY|
|aZ| =

|X − Y|
|Z| .

If 𝜎 ⊲
𝛼
�
𝜎� then Avg d∈D

(
|𝛼(d) − 𝜎(d)|

|𝛼(d0)|

)
< Avg d∈D

(
|𝛼(d) − 𝜎�(d)|

|𝛼(d0)|

)
.
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Then, we need to prove that Pearson satisfies EOM at interval scale type. That is, Pear-
son correlation with a gold � increases when going from an assignment �1 to an equiva-
lence-closer to � assignment �2:

We prove it by contraposition; therefore, we need to prove:

i.e., that if CORR (�2, �) ≤ CORR (�1, �) then �2 is not equivalence-closer to � than �1.
We start by considering the normalization � of an assignment �

(where Avg (�) represents the average value and we use Dev (�) for the standard deviation, 
in order to avoid confusion with the notation of � as an assignment) that has the following 
properties:

and

Given that Pearson is invariant under interval permissible transformations, it holds that:

Then, according to (50)

Now, let us consider any linear transformation �′
2
 of the normalized assignment �2 . That is: 

��
2
(i) = a ⋅ �2(i) + b with a > 0 . Then:

According to (49):

(46)𝜎2 ⊏
𝛼
𝙸
𝜎1 ⟹ CORR (𝜎2, 𝛼) > CORR (𝜎1, 𝛼).

(47)CORR (𝜎2, 𝛼) ≤ CORR (𝜎1, 𝛼) ⟹ ¬(𝜎2 ⊏
𝛼
𝙸
𝜎1),

�(i) =
�(i) − Avg (�)

Dev (�)

(48)
∑

i∈D

�(i) = 0,

(49)
∑

i∈D

�(i)2 = 1,

(50)CORR (�, �) =
∑

i∈D

�(i)�(i).

CORR (�2, �) ≤ CORR (�1, �) ⟺ CORR (�2, �) ≤ CORR (�1, �),

(51)

CORR (�2, �) ≤ CORR (�1, �) ⟺
∑

i∈D

�2(i)�(i) ≤
∑

i∈D

�1(i)�(i)

⟺ −2
∑

i∈D

�2(i)�(i) ≥ −2
∑

i∈D

�1(i)�(i).

∑

i∈D

(��
2
(i) − �(i))2 =

∑

i∈D

(a�2(i) + b − �(i))2

=
∑

i∈D

(a2�2(i)
2 + (b − �(i))2 + 2a�2(i)(b − �(i)))

=a2
∑

i∈D

�2(i)
2 +

∑

i∈D

(b − �(i))2 + 2a
∑

i∈D

�2(i)b − 2a
∑

i∈D

�2(i)�(i).
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Then, according to  (51) and given that a > 0:

Finally, applying (48) twice to replace a zero term with another zero term:

That is, reading the equality/inequality chain, we can assert that for every value a > 0 and 
b:

Now, we will prove that this result is not compatible with 𝜎2 ⊏𝛼
�
𝜎1 , thus proving (47).

Among all the permissible transformation functions for the interval scale, let 
f ∗(�) = a∗ ⋅ � + b∗ be the transformation that minimizes 

∑
i∈D(f

∗(�2) − �(i))2 . Let us 
denote with �∗ = f ∗(�) . Then, according to (52):

Therefore, the Euclidean distance to � of the transformation of �1 (i.e., f ∗(�1) ) is smaller 
than the minimal Euclidean distance to � of �2 transformations. Now, given that two 
equivalent assignments belong to the same equivalence class ( � ≈

𝚃
��

⟹ [�] = [��] ) 
and they have the same set of permissible transformations, and given that �1 ≈

�
�1 and 

�2 ≈
�
�2 , then we can say that the Euclidean distance to � of the transformation of �1 (i.e., 

f ∗(�1) ) is lower than the minimal Euclidean distance to � of �2 transformations:

Now, we have to prove that if an assignment �2 is value-closer to � than another assign-
ment �1 , then the Euclidean distance must be lower:

According to (6):

= a2 +
∑

i∈D

(b − �(i))2 + 2a
∑

i∈D

�2(i)b − 2a
∑

i∈D

�2(i)�(i).

≥ a2 +
∑

i∈D

(b − �(i))2 + 2a
∑

i∈D

�2(i)b − 2a
∑

i∈D

�1(i)�(i).

= a2 +
∑

i∈D

(b − �(i))2 + 2a
∑

i∈D

�1(i)b − 2a
∑

i∈D

�1(i)�(i)

= a2 +
∑

i∈D

(b − �(i))2 + 2ab
∑

i∈D

�1(i) − 2a
∑

i∈D

�1(i)�(i)

= a2
∑

i∈D

�1(i)
2 +

∑

i∈D

(b − �(i))2 − 2a
∑

i∈D

�1(i)�(i)

=
∑

i∈D

(a�1(i) + b − �(i))2.

(52)
CORR (�2, �) ≤ CORR (�1, �) ⟹∑

i∈D

(a�2(i) + b − �(i))2 ≥
∑

i∈D

(a�1(i) + b − �(i))2.

∑

i∈D

(�
∗

2
(i) − �(i))2 =

∑

i∈D

(a∗�2(i) + b∗ − �(i))2

≥
∑

i∈D

(a∗�1(i) + b∗ − �(i))2 =
∑

i∈D

(�
∗

1
(i) − �(i))2.

(53)
∑

i∈D

(�∗
2
(i) − �(i))2 ≥

∑

i∈D

(�∗
1
(i) − �(i))2.

(54)𝜔2 ⊲
𝛼
𝙸
𝜔1 ⟹

∑
(𝜔2 − 𝛼)2 <

∑
(𝜔1 − 𝛼)2.
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According to Lemma 1, the consequent is equivalent to:

In addition, (54) can be also expressed as:

Therefore, considering (53) we have:

In other words, there does not exist any transformation of �2 strictly value-closer to � than 
f ∗(�1) . Therefore, �2 is not equivalence-closer to � than �1 , that is ¬(𝜎2 ⊏𝛼

�
𝜎1).

As the last step of the proof, we have to consider that

which was already proved in the proof of Theorem 3, see (44) (indeed that proof is for non-
strict closeness, but nothing changes for the strict version).

Therefore, we have proved (47) and thus (46). 	�  ◻

Proof of Theorem 13  We want to prove that the cosine is an equivalence-oriented metric 
for the ratio scale type, i.e., it satisfies EOI

�
 and EOM

�
 . The proof has the same structure 

of the previous proof of Theorem 12, but we repeat everything to make this proof self con-
tained. A first remark is that the invariance under interval permissible transformation func-
tions (i.e., ratio functions y = a ⋅ x ) is a well known property of cosine. Therefore, EOI

�
 is 

satisfied.
Then, we need to prove that cosine satisfies EOM at ratio scale type. That is, cosine 

with a gold � increases when going from an assignment �1 to an equivalence-closer to � 
assignment �2:

We prove it by contraposition; therefore, we need to prove:

i.e., that if COS (�2, �) ≤ COS (�1, �) then �2 is not equivalence-closer to � than �1.
We start by considering the normalization � of an assignment � as the ratio 

transformation:

𝜔1 ⊲
𝛼
𝙸
𝜔2 ⟺ ∀d ∈ D

(
𝜔1(d) ≼

𝛼(d)

𝚃
𝜔2(d)

)
∧ ∃d ∈ D

(
𝜔1(d) ≺

𝛼(d)

𝚃
𝜔2(d)

)
.

∀d ∈ D
(
|𝜔1(d) − 𝛼(d)| ≤ |𝜔2(d) − 𝛼(d)|

)

∧ ∃d ∈ D
(
|𝜔1(d) − 𝛼(d)| < |𝜔2(d) − 𝛼(d)|

)

⟹ ∀d ∈ D
(
(𝜔1(d) − 𝛼(d))2 ≤ (𝜔2(d) − 𝛼(d))2

)

∧ ∃d ∈ D
(
(𝜔1(d) − 𝛼(d))2 < (𝜔2(d) − 𝛼(d))2

)

⟹

∑
(𝜔2 − 𝛼)2 <

∑
(𝜔1 − 𝛼)2.

∑
(�2 − �)2 ≥

∑
(�1 − �)2 ⟹ ¬(�2 ⊲

�
𝙸
�1).

¬(�∗
2
⊲
�
�
�∗
1
).

𝜎2 ⊏
𝛼
𝙸
𝜎1 ⟺ 𝜎2 ⊏

𝛼
𝙸
𝜎1.

(55)𝜎2 ⊏
𝛼
𝚁
𝜎1 ⟹ COS (𝜎2, 𝛼) > COS (𝜎1, 𝛼).

(56)COS (𝜎2, 𝛼) ≤ COS (𝜎1, 𝛼) ⟹ ¬(𝜎2 ⊏
𝛼
𝚁
𝜎1),
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This normalization has the following properties:

and

Given that cosine is invariant under ratio permissible transformations, it holds that:

Then, according to (59)

Now, let us consider any linear transformation �′
2
 of the normalized assignment �2 . That is: 

��
2
(i) = a ⋅ �2(i) with a > 0 . Then:

According to (58):

Then, according to  (60) and given that a > 0:

That is, reading the equality/inequality chain, we can assert that for every value a > 0:

�(i) =
�(i)

√∑
i∈D �(i)2

(57)
�

i∈D

�(i) =

∑
i∈D �(i)

√∑
i∈D �(i)2

,

(58)
∑

i∈D

�(i)2 = 1,

(59)COS (�, �) =

∑
i∈D �(i)�(i)

�∑
i∈D �(i)2 ⋅

�∑
i∈D �(i)2

=
�

i∈D

�(i)�(i)

COS (�2, �) ≤ COS (�1, �) ⟺ COS (�2, �) ≤ COS (�1, �),

(60)

COS (�2, �) ≤ COS (�1, �) ⟺
∑

i∈D

�2(i)�(i) ≤
∑

i∈D

�1(i)�(i)

⟺ −2
∑

i∈D

�2(i)�(i) ≥ −2
∑

i∈D

�1(i)�(i).

∑

i∈D

(��
2
(i) − �(i))2 =

∑

i∈D

(a�2(i) − �(i))2

= a2
∑

i∈D

�2(i)
2 +

∑

i∈D

�(i)2 − 2a
∑

i∈D

�2(i)�(i).

= a2 +
∑

i∈D

�(i)2 − 2a
∑

i∈D

�2(i)�(i).

≥ a2 +
∑

i∈D

�(i)2 − 2a
∑

i∈D

�1(i)�(i)

= a2
∑

i∈D

�1(i)
2 +

∑

i∈D

�(i)2 − 2a
∑

i∈D

�1(i)�(i)

=
∑

i∈D

(a�1(i) − �(i))2.
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Now, we will prove that this result is not compatible with 𝜎2 ⊏𝛼
�
𝜎1 , thus proving (56).

Among all the permissible transformation functions for the interval scale, let 
f ∗(�) = a∗ ⋅ � be the transformation that minimizes 

∑
i∈D(f

∗(�2) − �(i))2 . Let us denote 
with �∗ = f ∗(�) . Then, according to (61):

Therefore, the Euclidean distance to � of the transformation of �1 (i.e., f ∗(�1) ) is smaller 
than the minimal Euclidean distance to � of �2 transformations. Now, given that two 
equivalent assignments belong to the same equivalence class ( � ≈

𝚃
��

⟹ [�] = [��] ) 
and they have the same set of permissible transformations, and given that �1 ≈

�
�1 and 

�2 ≈
�
�2 , then we can say that the Euclidean distance to � of the transformation of �1 (i.e., 

f ∗(�1) ) is lower than the minimal Euclidean distance to � of �2 transformations:

Now, we have to prove that if an assignment �2 is value-closer to � than another assign-
ment �1 , then the Euclidean distance must be lower:

According to (6):

According to Lemma 1 the consequent is equivalent to:

In addition, (63) can be also expressed as:

Therefore, considering (62) we have:

In other words, there does not exist any transformation of �2 strictly value-closer to � than 
f ∗(�1) . Therefore, �2 is not equivalence-closer to � than �1 , that is ¬(𝜎2 ⊏𝛼

�
𝜎1).

As the last step of the proof, we have to consider that

(61)COS (�2, �) ≤ COS (�1, �) ⟹
∑

i∈D

(a�2(i) − �(i))2 ≥
∑

i∈D

(a�1(i) − �(i))2.

∑

i∈D

(�
∗

2
(i) − �(i))2 =

∑

i∈D

(a∗�2(i) − �(i))2 ≥
∑

i∈D

(a∗�1(i) − �(i))2 =
∑

i∈D

(�
∗

1
(i) − �(i))2.

(62)
∑

i∈D

(�∗
2
(i) − �(i))2 ≥

∑

i∈D

(�∗
1
(i) − �(i))2.

(63)𝜔2 ⊲
𝛼
𝚁
𝜔1 ⟹

∑
(𝜔2 − 𝛼)2 <

∑
(𝜔1 − 𝛼)2.

𝜔1 ⊲
𝛼
𝚁
𝜔2 ⟺ ∀d ∈ D

(
𝜔1(d) ≼

𝛼(d)

𝚁
𝜔2(d)

)
∧ ∃d ∈ D

(
𝜔1(d) ≺

𝛼(d)

𝚁
𝜔2(d)

)
.

∀d ∈ D
(
|𝜔1(d) − 𝛼(d)| ≤ |𝜔2(d) − 𝛼(d)|

)

∧ ∃d ∈ D
(
|𝜔1(d) − 𝛼(d)| < |𝜔2(d) − 𝛼(d)|

)

⟹ ∀d ∈ D
(
(𝜔1(d) − 𝛼(d))2 ≤ (𝜔2(d) − 𝛼(d))2

)

∧ ∃d ∈ D
(
(𝜔1(d) − 𝛼(d))2 < (𝜔2(d) − 𝛼(d))2

)

⟹

∑
(𝜔2 − 𝛼)2 <

∑
(𝜔1 − 𝛼)2.

∑
(�2 − �)2 ≥

∑
(�1 − �)2 ⟹ ¬(�2 ⊲

�
𝚁
�1).

¬(�∗
2
⊲
�
�
�∗
1
).



385Information Retrieval Journal (2020) 23:318–386	

1 3

which was already proved in the proof of Theorem 3, see (44) (indeed that proof is for non-
strict closeness, but nothing changes for the strict version). Therefore, we have proved (56) 
and thus (55). 	�  ◻
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