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Abstract
Evaluation measures are the basis for quantifying the performance of IR systems and the 
way in which their values can be processed to perform statistical analyses depends on the 
scales on which these measures are defined. For example, mean and variance should be 
computed only when relying on interval scales. In our previous work we defined a theory 
of IR evaluation measures, based on the representational theory of measurement, which 
allowed us to determine whether and when IR measures are interval scales. We found that 
common set-based retrieval measures—namely precision, recall, and F-measure—always 
are interval scales in the case of binary relevance while this does not happen in the multi-
graded relevance case. In the case of rank-based retrieval measures—namely AP, gRBP, 
DCG, and ERR—only gRBP is an interval scale when we choose a specific value of the 
parameter p and define a specific total order among systems while all the other IR measures 
are not interval scales. In this work, we build on our previous findings and we carry out an 
extensive evaluation, based on standard TREC collections, to study how our theoretical 
findings impact on the experimental ones. In particular, we conduct a correlation analysis 
to study the relationship among the above-mentioned state-of-the-art evaluation measures 
and their scales. We study how the scales of evaluation measures impact on non parametric 
and parametric statistical tests for multiple comparisons of IR system performance. Finally, 
we analyse how incomplete information and pool downsampling affect different scales and 
evaluation measures.
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1  Introduction

Information Retrieval (IR) faces an extremely challenging task, i.e., ranking typically het-
erogeneous and very diverse information sources with respect to often vague user informa-
tion needs for tasks which are more and more demanding and complex. Therefore, even 
if laying solid foundations has always been a goal of the discipline, the development of 
formal theories has been always partnered with very systematic and thorough experimenta-
tion, needed to assess the performance of IR systems and understand their behaviour.

Recently, there has been a return and a new raise of interest for developing and apply-
ing axiomatic methods to IR (Amigó et al. 2017, 2018a) by focusing, for example, on the 
definition of ranking functions based on axiomatic constraints and on the development 
of frameworks to model IR evaluation measures. This renewed interest is motivated not 
only by the push to strengthen the field and lay more rigorous foundations, but also, and 
mostly, by the need to face new and hard challenges, such as the possibility of predict-
ing the performance of IR systems before developing and experimenting with them (Allan 
et al. 2018a; Ferro et al. 2018), which calls for better theoretical foundations in the field.

In this context, we have recently developed a general theory of offline IR evaluation 
measures (Ferrante et al. 2019), which is based on the representational theory of measure-
ment adopted in physics (Krantz et al. 1971). Measurement scales are central notion in the 
representational theory of measurement and Stevens (1946) identifies four major types of 
scales with increasing properties: (1) the nominal scale consists of discrete unordered val-
ues, i.e. categories; (2) the ordinal scale introduces a natural order among the values; (3) 
the interval scale preserves the equality of intervals or differences; and, (4) the ratio scale 
preserves the equality of ratios. Measurement scales are important, since they determine 
the operations that can be performed with the measured values and, as a consequence, the 
statistical analyses that can be applied; for example, mean and variance should be com-
puted only if your measurement is an interval scale.

Our theory provides us with a constructive way to define interval scales, in the case of 
both set-based and rank-based evaluation measures, accommodating both binary and multi-
graded relevance judgements. It allows us to formally determine the scale of an evaluation 
measure and it also introduces new evaluation measures which guarantee to be interval 
scales.

In this paper, we move a step forward and complement our theory of offline evalua-
tion measures with a thorough experimentation whose overall goal is to explore the effects 
of meeting or not the assumptions of the scales behind evaluation measures. In particu-
lar, we consider several state-of-the-art offline evaluation measures—namely precision, 
recall, F-measure, AP, RBP, DCG, and ERR—and we compare them to the behaviour of 
our interval scale measures, namely SBTO in the set-based retrieval case and RBTO in 
the rank-based retrieval case. We rely on standard TREC collections with both binary and 
multi-graded relevance judgements to break down our overall goal into the following three 
research questions: 

RQ1	� what is the relationship between the different evaluation measures and how are 
these affected by their scales?

RQ2	� what is the impact of violating the scale assumptions behind statistical significance 
tests for comparing IR systems?

RQ3	� how much do less and less complete pools affect evaluation measures and to what 
extent do the used scales play a role in this?
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To the best of our knowledge, this paper represents the first experimental study aimed at 
quantifying the impact of the scale assumptions behind evaluation measures. Moreover, it also 
represents the first attempt to turn the findings of a formal theory of IR evaluation measures 
into an actual experimental validation.

The paper is organized as follows. Section 2 discusses the related works; Sect. 3 reports 
some background information about set theory and the representational theory of measure-
ment; Sect. 4 briefly summarizes the main points of our theory of IR evaluation measures, 
only those relevant to the subsequent experimentation; Sect.  5 introduces our experiments 
and discusses the experimental findings; finally, Sect. 6 wraps up the discussion and outlooks 
some future work.

2 � Related work

The relation between the representational theory of measurements and IR evaluation meas-
ures has been early investigated by van Rijsbergen (1974, 1979) in the context of set-based 
IR measures. In particular, van Rijsbergen (1974) exploited conjoint structures (Krantz et al. 
1971) to study Precision and Recall.

Bollmann and Cherniavsky (1980) introduced the MZ-metric and, following the example 
of van Rijsbergen , they defined a conjoint structure on the contingency table relevant/not rel-
evant and retrieved/not retrieved in order to determine under which transformations the MZ-
metric was on an interval scale. Bollmann (1984) studied set-based measures by showing that 
measures complying with a monotonicity and an Archimedean axiom are a linear combination 
of the number of relevant retrieved documents and the number of not relevant not retrieved 
documents.

Amigó et al. (2009, 2013) and Moffat (2013) studied the properties of rank-based IR meas-
ures, in a formal and numeric way respectively, defining, e.g., how an IR measure should 
behave when a relevant document is added or removed from a system run. Recently, Amigó 
et al. (2018b) extended this approach to diversity-oriented evaluation measures.

Busin and Mizzaro (2013) and Maddalena and Mizzaro (2014) used the notion of scale and 
mapping among scales to model different kinds of similarity and to introduce constraints over 
them.

We developed our theory of evaluation measures starting from the exploration of ordinal 
scales (Ferrante et al. 2015) and then we moved to interval scales in the binary relevance case 
(Ferrante et al. 2017b). Finally, we consolidated our findings into a single coherent framework 
and we generalized it to consider also multi-graded relevance and different types of orders 
among runs (Ferrante et al. 2019). We also started to explore whether it is possible to define 
semi-interval scales (Ferrante et al. 2017a) and to accommodate IR evaluation measures over 
them. This paper complements our previous work with the first experimental investigation 
ever on assessing the impact of scale assumptions and quantifying it from different points of 
view, i.e. the three research questions. Moreover, it is the first experimental study on eval-
uation measures motivated and backed by the findings of a formal theory of IR evaluation 
measures.
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3 � Background

In this section we summarize some background information about poset, measurement 
scales, and how to proceed to define interval scales for IR.

3.1 � Poset, totally ordered sets, intervals and their length

A partially ordered set P, poset for short, is a set with a partial order ⪯ defined on it (Stan-
ley 2012). A partial order ⪯ is a binary relation over P which is reflexive, antisymmetric 
and transitive. Given s, t ∈ P , we say that s and t are comparable if s ⪯ t or t ⪯ s , otherwise 
they are incomparable. P is called bounded if it has a maximum and a minimum element, 
namely 1̂, 0̂ ∈ P such that for every s ∈ P , s ⪯ 1̂ and 0̂ ⪯ s.

A total order over a poset P is a partial order where every pair of elements are 
comparable.

A closed interval is a subset of a poset P defined as [s, t] ∶= {u ∈ P ∶ s ⪯ u ⪯ t} , where 
s, t ∈ P and s ⪯ t . Moreover, we say that t covers s if s ⪯ t and [s, t] = {s, t} , which means 
that there is no u ∈ P such that s ≺ u ≺ t.

A subset C of a poset P is a chain if any two elements of C are comparable: a chain is 
a totally ordered subset of a poset. If C is a finite chain, the length of C, �(C) , is defined 
by �(C) = |C| − 1 . A maximal chain of P is a chain that is not a proper subset of any other 
chain of P. If the order is total, the unique maximal chain is the whole set P.

If every maximal chain of P has the same length n, we say that the poset P is graded of 
rank n; in particular there exists a unique function � ∶ P → {0, 1,… , n} , called the rank 
function, such that �(s) = 0 , if s is a minimal element of P, and �(t) = �(s) + 1 , if t covers s.

Finally, since any interval on a graded poset is graded, the length of an interval [s, t] is 
given by �(s, t) ∶= �([s, t]) = �(t) − �(s).

3.2 � Representational theory of measurement

The representational theory of measurement (Krantz et al. 1971) sees measurement as the 
process of assigning numbers to entities in the real world conforming to some property 
under examination. According to this framework, the key point is to understand how real 
world objects are related to each other since measure properties are then derived from these 
relations.

Moving to the IR context, being an interval scale is not just a numeric property of an 
evaluation measure, but firstly we need to understand how system runs are ordered among 
themselves, then what intervals of system runs are, and finally how these intervals are 
ordered too. Only at this point, we can verify whether an evaluation measure complies with 
these notions and determine whether it is an interval scale.

More precisely, a relational structure (Krantz et al. 1971; Rossi 2014) is an ordered pair 
� =

⟨
X,RX

⟩
 of a domain set X and a set of relations RX on X, where the relations in RX 

may have different arities, i.e. they can be unary, binary, ternary relations and so on. Given 
two relational structures � and � , a homomorphism � ∶ � → � from � to � is a mapping 
� =

⟨
M,MR

⟩
 where: (1) M is a function that maps X into M(X) ⊆ Y  , i.e., for each element 

of the domain set there exists one corresponding image element; (2) MR is a function that 
maps RX into MR(RX) ⊆ RY such that ∀r ∈ RX , r and MR(r) have the same arity, i.e., for 
each relation on the domain set there exists one (and it is usually, and often implicitly, 
assumed) and only one corresponding image relation; (3) ∀r ∈ RX ,∀xi ∈ X , if r(x1,… , xn) 
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then MR(r)
(
M(x1),… ,M(xn)

)
 , i.e., if a relation holds for some elements of the domain set 

then the image relation must hold for the image elements.
A relational structure � is called empirical if its domain set E spans over entities in 

the real world, i.e. system runs in our case; a relational structure � is called symbolic if its 
domain set S spans over a given set of numbers. A measurement (scale) is the homomor-
phism � =

⟨
M,MR

⟩
 from the real world to the symbolic world and a measure is the num-

ber assigned to an entity by this mapping.

3.3 � Measurement scales

There are four major types of measurement scales (Stevens 1946) which can be ordered by 
their increasing properties and allow for different computations: nominal scales allow us 
to compute the number of cases and the mode; in addition, ordinal scales allow us to com-
pute median and percentiles; interval scales add the possibility to compute mean, variance, 
product-moment correlation and rank correlation; finally, ratio scales add the capability to 
compute the coefficient of variation. Over the years, there has been debate (Velleman and 
Wilkinson 1993) on whether these rules are too strict or not but they are applied widely.

If we already know that on an empirical structure there is an interval scale M , 
the uniqueness theorem—see e.g. Theorem  3.18 in (Rossi 2014)—ensures that any 
other measurement M′ on that structure is a linear positive transformation of M , that is 
M� = �M + �, �, � ∈ ℝ and 𝛼 > 0.

However, in the case of IR evaluation measures, we lacked a known interval scale M 
to be used to compare all the other IR measures against. Actually, the core issue was even 
more severe: we lacked any notion of order on the empirical set E of the IR system runs, 
thus we also lacked the notion of interval of system runs and, consequently, it was not pos-
sible to define an interval scale M too.

In our theory of IR evaluation measures (Ferrante et al. 2019), we overcame these issues 
by relying on the notion of difference structure (Krantz et al. 1971; Rossi 2014) to intro-
duce a definition of interval among system runs and to ensure the existence of an interval 
scale.

Given E, a weakly ordered empirical structure is a pair (E,⪯) where, for every a, b, c ∈ E,

•	 a ⪯ b or b ⪯ a;
•	 a ⪯ b and b ⪯ c ⇒ a ⪯ c (transitivity).

Note that if a, b ∈ E are such that a ⪯ b and b ⪯ a , then we write a ∼ b and we say that 
a and b are equivalent elements of E for ⪯ . This does not necessarily mean that a and b are 
equal, i.e. a = b , since they might be two distinct objects. When the antisymmetric rela-
tion holds, that is when a ⪯ b and b ⪯ a implies that a and b are the same element (namely 
a = b ), we talk about a total order.

An interval on the empirical structure is an element (a, b) ∈ E × E and we introduce a 
notion of difference �ab over intervals, to act as a signed distance we exploit to compare 
intervals. Once we have a notion of difference �ab , we can define a weak order ⪯d between 
the �ab differences and, consequently, among intervals. We can proceed as follows: if two 
elements a, b ∈ E are such that a ∼ b , then the interval [a, b] is null and, consequently, 
we set �ab ∼d �ba ; if a ≺ b we agree upon choosing 𝛥aa ≺d 𝛥ab which, in turn implies that 
𝛥aa ≻d 𝛥ba , that is there exist a kind of “zero” and the inverse with respect to this “zero”.
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The following notion of difference structure allows us to verify whether a measurement is 
an interval scale or not.

Definition 1  Let E be a finite (not empty) set of objects. Let ⪯d be a binary relation on 
E × E that satisfies, for each a, b, c, d, a�, b�, c� ∈ E , the following axioms:

1.	 ⪯d is weak order;
2.	 if �ab ⪯d �cd , then �dc ⪯d �ba;

3.	 Weak Monotonicity: if �ab ⪯d �a�b� and �bc ⪯d �b�c� then �ac ⪯d �a�c� ;

4.	 Solvability Condition: if �aa ⪯d �cd ⪯d �ab, then there exists d�, d�� ∈ R such that 
�ad� ∼d �cd ∼d �d��b.

Then (E,⪯d) is a difference structure.
The first condition defines an ordering among intervals while the second one sets a sign 

for differences. The Weak Monotonicity condition gives us a rule to compose adjacent inter-
vals; among other things, it tells us that adding a non-null interval to an interval produces a 
greater interval. The Solvability Condition ensures the existence of an equally spaced grada-
tion between the elements of E, indispensable to construct an interval scale measurement.

The representation theorem for difference structures states:

Theorem  1  Let E be a finite (not empty) set of objects and let (E,⪯d) be a difference 
structure. Then, there exist an interval scale measurement M ∶ E → ℝ such that for every 
a, b, c, d ∈ E

This theorem ensures us that, if there is a difference structure on the empirical set E, then 
there exists an interval scale M over it.

Therefore, to study whether IR measures are interval scales or not, Ferrante et al. (2019) 
proceeded as follows:

1.	 Define a total ordering among system runs, which allows us also to introduce the notion 
of interval among runs;

2.	 Since this set is graded of a given rank n, there exists a unique rank function � which 
assigns a natural number to each run;

3.	 D e f i n e  t h e  l e n g t h  o f  a n  i n t e r va l  a s  t h e  n a t u r a l  d i s t a n c e 
�ab ∶= �(a, b) ∶= �([a, b]) = �(b) − �(a);

4.	 Check whether the set with the above natural length is a difference structure or not;
5.	 In this case we have a difference structure and we can define an interval scale M as the 

rank function � itself;
6.	 We can eventually check whether IR measures are a linear positive transformation of 

this interval scale M and determine whether they are an interval scale.

4 � Formal framework

We summarize here a part of our theory for IR evaluation measures (Ferrante et al. 2019) 
in order to give the reader an idea of how it works and to better understand the founda-
tions which the subsequent experimental part and research questions are built on. Details, 

�ab ⪯d �cd ⇔ M(b) −M(a) ≤ M(d) −M(c).
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examples, and proofs are omitted for space reasons and can be found in Ferrante et  al. 
(2019).

We also introduce several state-of-the-art IR evaluation measures, which will be then 
investigated in the experimentation, to show how they can be expressed within our frame-
work and how you can determine the scales they use.

4.1 � Basic formalism

Let (REL, ⪯ ) be a finite and totally ordered set of relevance degrees. We set 
REL = {�0,�1,… ,�c} with �i ≺ �i+1 for all i ∈ {0,… , c − 1} ; REL has a minimum �0 , 
called the “not relevant” relevance degree.

Let us consider a finite set of documents D and a set of topics T. For each pair 
(t, d) ∈ T × D , the ground-truth GT is a map which assigns a relevance degree rel ∈ REL to 
a document d with respect to a topic t.

Let N be a positive natural number called the length of the run. We assume that all the 
runs have same length N, since this is what typically happens in real evaluation settings 
when you compare IR systems.

We define D(N) as the set of all the possible N retrieved documents.
A run r ∶ T → D(N) retrieves N documents belonging to D(N) in response to a topic 

t ∈ T .
Let R(N) be the set of N judged documents, that is the set of all the N possible combina-

tions of relevance degrees.
We call judged run of length N the function r̂ from T × D(N) into R(N) which assigns 

a relevance degree to each retrieved document, i.e. a judged run r̂ is the application of the 
ground-truth GT function to each element of the run r.

We define the gain function g ∶ REL → ℝ+ as the map that assigns a positive real num-
ber to any relevance degree. We set, without loss of generality, g(�0) = 0 and we require g 
to be strictly increasing.

We define the indicator function for the relevance degrees as �
�
(�j) = j ∀j ∈ {0,… , c} . 

Note that �
�

 is a particular gain function.
Given the gain function g, the recall base RB ∶ T → ℝ+ is the map defined as 

RB(t) =
∑�D�

j=1
g(GT(t, dj)) . In the binary relevance case when c = 1 and REL = {�0,�1} , 

the gain function usually is g(�1) = �
�
(�1) = 1 and RB counts the total number of rel-

evant documents for a topic.
An evaluation measure is a function M ∶ R(N) → ℝ+ which maps a judged run r̂ into 

a positive real number which quantifies its effectiveness. Note that most of the evaluation 
measures are normalized and thus the co-domain is the [0, 1] interval.

In the following, we specialize the above definitions to the case of both set-based and 
rank-based retrieval.

4.1.1 � Set‑based retrieval

The set of all the possible unordered N retrieved documents is 
D(N) =

{
{d1,… , dN} ∶ di ∈ D

}
 . A run r is given by r = {d1,… , dN} . We denote by rj the 

jth element of the set r, i.e. rj = dj.
A multiset (or bag) is a set which may contain the same element sev-

eral times (Knuth 1981). The set of judged documents is a multiset (REL,   
m) = {�1,�1,�0,… ,�c,�2,�c,…} , where m is a function from REL into ℕ0 
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representing the multiplicity of every relevance degree �j (Miyamoto 2004); if the multi-
plicity is 0, a given relevance degree is not present in the multiset. Let M be the set of all 
the possible multiplicity functions m, then REL(M) ∶=

⋃
m∈M(REL,m) is the universe set 

of judged documents, i.e. the set of all the possible sets of judged documents (REL, m). We 
can define the set of N judged documents as R(N) ∶= {r̂ ∈ REL(M) ∶ |r̂| = N}.

Note that, since each judged run in R(N) is an unordered set of N relevance degrees, 
R(N) consists of all the N combinations of c + 1 = |REL| objects with repetition.

We now introduce the definitions of generalized precision and recall (Kekäläinen and 
Järvelin 2002), which extend precision and recall to the multi-graded relevance case, and 
of F-measure.

Generalized Precision (gP) is defined as

while Generalized Recall (gR) as

where 1∕g(�c) is needed to normalize the gain function and RB is recall base. Note that 
gP coincides with Precision (P) and gR coincides with Recall (R) when binary relevance 
( c = 1 ) is considered.

The F-measure works with binary relevance when REL = {�0,�1} and is the harmonic 
mean of Precision (P) and Recall (R) given by

4.1.2 � Rank‑based retrieval

The set of all the possible ordered list of N retrieved documents is 
D(N) = {(d1,… , dN) ∶ di ∈ D, di ≠ dj for any i ≠ j}, i.e.  a set of ranked lists of 
retrieved documents without duplicates. A run r is the vector r = (d1,… , dN) and 
we denote by r[j] its jth element, i.e.  r[j] = dj . Similarly, a judged run is the vector 
r̂ =

(
GT(t, d1),… ,GT(t, dN)

)
 , i.e. an ordered list of relevance degrees, where we denote by 

r̂[j] its jth element, i.e. r̂[j] = GT(t, dj).
Let us introduce the definitions of some of the most popular rank-based measures:

•	 Average Precision (AP) (Buckley and Voorhees 2005) is a binary measure given by 

 where g(�1) = 1 and RB is the recall base.
•	 Defined p ∈ (0, 1) the persistence parameter, Graded Rank-Biased Precision (gRBP) 

(Moffat and Zobel 2008; Sakai and Kando 2008) is a multi-graded relevance measure 
given by 

gP(r̂) =
1

N

N∑

i=1

g(r̂i)

g(�c)
,

gR(r̂) =
1

RB

N∑

i=1

g(r̂i)

g(�c)
,

F(r̂) = 2
P(r̂) ⋅ R(r̂)

P(r̂) + R(r̂)
.

AP(r̂) =
1

RB

N∑

i=1

(
1

i

i∑

j=1

g(r̂[j])

)
g(r̂t[i]),
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 Typical values of p are 0.5 for a very impatient user, 0.8 for a relatively patient user, 
and 0.95 for a user very persistent in deeply scanning the result list. gRBP coincides 
with Rank-Biased Precision (RBP) when binary judgments ( c = 1 ) are considered and 
g(�1) = 1.

•	 Discounted Cumulated Gain (DCG) (Järvelin and Kekäläinen 2002) is a multi-graded rel-
evance measure given by 

 where base b of the logarithm is typically equal to 2 for an impatient user and to 10 for 
a patient user.

•	 Expected Reciprocal Rank (ERR) (Chapelle et al. 2009) is a cascaded multi-graded rel-
evance measure, given by 

 with the convention that 
∏0

i=1
= 1 and xk represents the probability that a user leaves 

their search after considering the document at position k. Here we adopt the typical set-
ting xk = (2g(r̂[k]) − 1)∕2g(�c).

4.2 � Set‑based measures

Let us start by introducing an order relation ⪯ on the set of judged runs. Let r̂, ŝ ∈ R(N) such 
that r̂ ≠ ŝ , and let k be the biggest relevance degree at which the two runs differ for the first 
time, i.e. k = max{j ≤ c ∶ ||{i ∶ r̂i = �j}

|| ≠ ||{i ∶ ŝi = �j}
||} . We strictly order any pair of 

distinct system runs as follows

R(N) is a totally ordered set with respect to the ordering ⪯ defined by (1). As for any totally 
order set, R(N) is a poset consisting of only one maximal chain (the whole set); therefore it 

is graded of rank |R(N)| − 1 , where ||R(N)|| =
(
N + c

N

)
 since it consists of all the N combi-

nations of c + 1 = |REL| objects with repetition. Since R(N) is graded of rank |R(N)| − 1 , 
there exists a unique rank function 𝜌(r̂) ∶ R(N) ⟶ ℕ such that 𝜌(0̂) = 0 and 𝜌(ŝ) = 𝜌(r̂) + 1 
if ŝ covers r̂:

where r̂ = {r̂1,… , r̂N} ∈ R(N) with r̂i ⪯ r̂i+1 for any i < N.

gRBP(r̂) =
(1 − p)

g(�c)

N∑

i=1

pi−1g(r̂[i]).

DCGb(r̂) =

N∑

i=1

g(r̂[i])

max{1, logb i}
,

ERR(r̂) =

N∑

i=1

1

i
xi

i−1∏

j=1

(1 − xj),

(1)r̂ ≺ ŝ ⇔ ||{i ∶ r̂i = �k}
|| < ||{i ∶ ŝi = �k}

|| .

(2)𝜌(r̂) =

N∑

j=1

(
𝛿
�
(r̂j) + N − j

N − j + 1

)
,
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The natural distance is then given by �(r̂, ŝ) = 𝜌(ŝ) − 𝜌(r̂) , for r̂, ŝ ∈ R(N) such that r̂ ⪯ ŝ, 
and we can define the difference as 𝛥r̂ŝ = �(r̂, ŝ) if r̂ ⪯ ŝ , otherwise 𝛥r̂ŝ = −�(ŝ, r̂) . (R(N),⪯d) 
is a difference structure. Thus the rank function is an interval scale and we are able to define a 
new measure that follows:

Definition 2  The Set-based total order (SBTO) measure on (R(N),⪯d) is:

This measure satisfies the condition imposed by Theorem  1. Thus, SBTO is an interval 
scale on (R(N),⪯d).

Let us explore more deeply how the SBTO measure works. The first relevance degree 
immediately above not relevant, i.e. �1 , always gives a constant contribution, independently 
from how many �1 documents are retrieved, since:

However, when we consider higher relevance degrees, i.e. �k with k > 1 , the binomial 
coefficient strictly depends and changes on the basis of how many of them are retrieved. 
Indeed, �

�
(�k) is constant for all the documents with the same relevance degree �k , but 

the term N − j decreases as the number of �k retrieved documents increases due to N being 
constant and j increasing, i.e. the binomial coefficient is decreasing in the number of �k 
retrieved documents. In other terms, each additional �k retrieved document gives a con-
tribution smaller than the previously retrieved ones by a discount factor j. This somehow 
recalls the idea that relevance is a dynamic notion which changes as far as more relevant 
documents are inspected, see e.g. (Mizzaro 1997). It can also be considered as a conse-
quence of the submodularity principle studied by Chapelle et al. (2011). As a consequence, 
given r̂, ŝ ∈ R(N) , a replacement in r̂ may have a different effect than the same replacement 
in ŝ , if the relevance degree of the new document is greater than �1.

4.2.1 � Binary relevance case

When c = 1 , i.e. in the binary relevance case, the ordering (1) just orders judged runs by how 
many relevant documents they retrieve, i.e. by their total mass of relevance:

since there is only one relevant relevance degree �1.
Therefore the rank function becomes

This follows easily from (3), using the fact that 𝛿
�
(r̂i) ∈ {0, 1} for any i ≤ N when c = 1.

(3)SBTO(r̂) = 𝜌(r̂) =

N∑

j=1

(
𝛿
�
(r̂j) + N − j

N − j + 1

)
.

(
�
�
(�1) + N − j

N − j + 1

)
=

(
1 + N − j

N − j + 1

)
= 1 .

r̂ ⪯ ŝ ⇔

N∑

i=1

𝛿
�
(r̂i) ≤

N∑

i=1

𝛿
�
(ŝi) ,

𝜌(r̂) =

N∑

i=1

𝛿
�
(r̂i) = M(r̂) .



299Information Retrieval Journal (2020) 23:289–317	

1 3

Let now g be the gain function, and let us consider Precision

since g(�0) = 0 = �
�
(�0) and c = 1 . Thus Precision is an interval scale, as it is a linear 

positive transformation of M.
Similarly, Recall

is an interval scale.
The F-measure, that is the harmonic mean of Precision and Recall,

is an interval scale as well.

4.2.2 � Multi‑graded relevance case

Neither Generalized Precision nor Generalized Recall are a positive linear transforma-
tion of M defined in  (3). Indeed, in these measures, the individual contribution of each 
retrieved document r̂j is independent from the contribution of any other retrieved document 
r̂k . However, the previous discussion on the measure defined in  (3) pointed out that, for 
each relevance degree �k with k > 1 , the individual contribution of an �k retrieved docu-
ment depends on how many �k retrieved documents there are in the run. Therefore neither 
gP nor gR are an interval scale, since they cannot be a linear transformation of M.

Moreover they are not even an ordinal scale which, again, implies they cannot be an 
interval scale too. Indeed, a measure M′ is an ordinal scale on R(N) if, for every r̂, ŝ ∈ R(N) , 
the following statement is true:

Let us consider r̂ = {�1,… ,�1} and ŝ = {�2,�0,… ,�0} , two runs of length N. We have 
r̂ ≺ ŝ . Moreover, since gR and gP are both proportional to G(v̂) ∶=

∑N

i=1
g(v̂i)∕g(�c) , for 

any v̂ ∈ R(N) , we can prove that G(⋅) is not on an ordinal scale with respect to the order (1). 
Since g(�0) = 0 , G(r̂) = Ng(�1)∕g(�c) while G(ŝ) = g(�2)∕g(�c) . From the fact that the 
gain function g is a positive strictly increasing function and it is defined independently 
from the length N of the runs, by choosing a N big enough we can have G(r̂) > G(ŝ).

4.3 � Rank‑based measures

Top-heaviness is a central property in IR, stating that the higher a system ranks relevant 
documents the better it is. If we apply this property at each rank position and we take to 
extremes the importance of having a relevant document ranked higher, we can define a 
strong top-heaviness property which, in turn, will induce a total ordering among runs.

P(r̂) =
1

N

N∑

i=1

g(r̂i)

g(�1)
=

1

N

N∑

i=1

𝛿
�
(r̂i) =

M(r̂)

N
,

R(r̂) =
1

RB

N∑

i=1

g(r̂i)

g(�1)
=

1

RB

N∑

i=1

𝛿
�
(r̂i) =

M(r̂)

RB

F(r̂) = 2
P(r̂) ⋅ R(r̂)

P(r̂) + R(r̂)
=

2

N + RB

N∑

i=1

𝛿
𝒶
(r̂i) =

2M(r̂)

N + RB

r̂ ⪯ ŝ ⇔ M�(r̂) ≤ M�(ŝ).
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Let r̂, ŝ ∈ R(N) such that r̂ ≠ ŝ , then there exists k = min{j ≤ N ∶ r̂[j] ≠ ŝ[j]} < ∞ , 
and we order system runs as follows

This ordering prefers a single relevant document ranked higher to any number of relevant 
documents, with the same relevance degree or higher, ranked just below it; more formally,

for any 1 ≤ j ≤ c, for any length N ∈ ℕ and any m ∈ {0, 1,… ,N − 1} . This is why we call 
it strong top-heaviness.

R(N) is totally ordered with respect to ⪯ and is graded of rank (c + 1)N − 1 . Therefore, 
there is a unique rank function � ∶ R(N) ⟶ {0, 1,… , (c + 1)N − 1} which is given by:

where �
�

 is the indicator function.
Let us set 𝛿

�
𝛿
�𝛿�(r̂) = (𝛿

�
(r̂[1]),… , 𝛿

�
(r̂[N])) . If we look at 𝛿

�
𝛿
�𝛿�(r̂) as a string, the rank 

function is exactly the conversion in base 10 of the number in base c + 1 identified by 
𝛿
�
𝛿
�𝛿�(r̂) and the ordering among runs ⪯ corresponds to the ordering ≤ among numbers in 

base c + 1.
The natural distance is then given by �(r̂, ŝ) = 𝜌(ŝ) − 𝜌(r̂) , for r̂, ŝ ∈ R(N) such that 

r̂ ⪯ ŝ, and we can define the difference as 𝛥r̂ŝ = �(r̂, ŝ) if r̂ ⪯ ŝ , otherwise 𝛥r̂ŝ = −�(ŝ, r̂). 
(R(N),⪯d) is a difference structure. As done before in the set-based case, an interval 
scale measure on (R(N),⪯d) is given by the rank function itself.

Definition 3  The Rank-Based Total Order (RBTO) measure on (R(N),⪯d) is:

This measure satisfies the condition imposed by Theorem  1. Thus, RBTO is an interval 
scale on (R(N),⪯d).

Let G = minj∈{1,…,c}(g(�j) − g(�j−1))∕g(�c) > 0 be the normalized smallest gap 
between the gain of two consecutive relevance degrees.

gRBPp with p > G∕(G + 1) and other IR measures—namely AP, DCG, 
and ERR—are not even an ordinal scale on R(N), as the following exam-
ple shows. Let r̂ = (�1,�0,�2,�0,�1) and ŝ = (�1,�1,�0,�0,�0) be two 
runs on R(5) with c = 2 and let us use the indicator function � as gain function 
g. We have r̂ ⪯ ŝ . Then DCG2(r̂) = 1 + 2∕ log2 3 + 1∕ log2 5 > 1 + 1 = DCG2(ŝ) ; 
ERR(r̂) = 1∕4 + 3∕16 + 3∕320 > 1∕4 + 3∕32 = ERR(ŝ) ; finally, since 
g(�2) = �

�
(�2) = 2 , 2gRBPp(r̂) = (1 − p)(1 + 2p2 + p4) > (1 − p)(1 + p) = 2gRBP(ŝ) 

for p ≳ 0.454 , and such an example can be found for any other values of p > G∕(G + 1), 
where G = 1∕2 . AP is a binary measure and, just to stay with the same data above, 
we adopt a lenient mapping of multi-graded to binary relevance degrees setting 
g(�1) = g(�2) = 1 and thus RB⋅AP(r̂) = 1 + 2∕3 + 3∕5 > 1 + 1 = RB⋅AP(ŝ) , where RB is 
the recall base.

(4)r̂ ≺ ŝ ⇔ r̂[k] ≺ ŝ[k] .

(û[1],… , û[m],�0,�c,… ,�c),≺ (û[1],… , û[m],�j,�0,… ,�0),

(5)𝜌(r̂) =

N∑

i=1

𝛿
�
(r̂[i])(c + 1)N−i,

(6)RBTO(r̂) = 𝜌(r̂) =

N∑

i=1

𝛿
�
(r̂[i])(c + 1)N−i
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As a consequence, being not an ordinal scale, gRBPp with p > G∕(G + 1) , AP, DCG, 
and ERR cannot be an interval scale too, since an interval scale measure is also an ordinal 
scale.

gRBPp with p ≤ G∕(G + 1) is interval if and only if p = G∕(1 + G) = (c + 1)−1 and the 
gain function is equal to g(�i) = K�

�
(�i), for any i ∈ {0,… ,ℕ} and for any K > 0 fixed.

4.3.1 � Summary of main findings and discussion

We summarize here the main findings of our framework:

•	 set-based evaluation measures:

•	 binary relevance: precision, recall, F-measure are interval scales;
•	 multi-graded relevance: gP and gR are neither ordinal nor interval scales;

•	 rank-based evaluation measures:

•	 binary relevance: RBP is an interval scale only for p = 1∕2 and it is an ordinal scale 
for p < 1∕2 ; RBP for p > 1∕2 and AP are neither ordinal nor interval scales;

•	 multi-graded relevance: gRBP is an interval scale only for p = G∕(G + 1) and 
when the gain function is equal to g(�i) = K�

�
(�i) ; gRBP is an ordinal scale when 

p < G∕(G + 1) ; gRBP for p > G∕(G + 1) , DCG, and ERR are neither ordinal nor 
interval scales.

Note that the relevance degrees are requested to be an ordinal scale and, being the gain 
function a monotone transformation of them, it is at least an ordinal scale. The above 
results ensure that measures are interval scales (or not) independently from additional 
properties of the gain function (provided it is at least an ordinal scale).

Carterette (2011) has shown how evaluation measures can be framed in terms of 
a browsing model, a document utility model (i.e. the gain function in our context), and 
a utility accumulation model. Moreover, he has shown how evaluation measures can be 
expressed as expectations of these utility models. Therefore, to reconcile our framework 
with the one by Carterette (2011) and to compute such expectations, it would be required 
that the gain function is an interval scale as well.

As a final remark, in the part of our framework (Ferrante et al. 2019) not reported in this 
paper, we formally identify conditions when the gain function must be a ratio scale (thus 
also an interval scale) in order to ensure that an evaluation measure can be on an interval 
scale. Therefore, these other cases can be used to determine when the gain function needs 
to be an interval scale in the Carterette (2011) sense.

5 � Experiments

5.1 � Experimental setup

We used the following Text REtrieval Conference (TREC) collections:

•	 Adhoc track T08 (Voorhees and Harman 1999): 528,155 documents of the TIPSTER 
disks 4–5 corpus minus congressional record; T08 provides 50 topics, each with binary 
relevance judgments and a pool depth of 100; 129 system runs were submitted to it;
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•	 Core track T26 (Allan et  al. 2018b): 1,855,658 documents of the New York Times 
from 1987 to 2007; T26 provides 50 topics, each with ternary relevance judgments and 
a pool depth up to 100, using both top-k and multi-armed bandits pooling techniques; 
75 system runs were submitted to it.

T08 is used for binary relevance measures in both the set-based and rank-based cases 
while T26 is used for multi-graded relevance measures in both the set-based and rank-
based cases. We have trimmed the length of the runs to 250 documents, since the definition 
of RBTO in Eq. (3) involves the power of the number of relevance degrees to the length of 
the run and this may cause overflow in some of the follow-up analyses when the length of 
the run is high. We have however validated this choice by comparing the measure scores 
with those of runs of length 100, 500, and 1000 and we found they are consistent with 
those of runs of length 250.

For SBTO and RBTO, in the multi-graded relevance case, we used the relevance 
weights W1 = [0, 1, 2] for not relevant, relevant, and highly relevant documents which cor-
respond to the indicator function �

�
(�i) ; in the case of RBTO we also experimented with 

two alternatives, one multiple of the indicator function W2 = [0, 2, 4] = 2W1 and the other 
not equi-spaced W3 = [0, 1, 3] ; note that SBTO in Eq.  (2) depends only on the indicator 
function and so you cannot use alternative weighting schemes.

We used measures for both binary and multi-graded relevance measures:

•	 Binary relevance:

•	 set-based measures: precision, recall, F-measure;
•	 rank-based measures: Average Precision (AP) (Buckley and Voorhees 2005) and 

Rank-Biased Precision (RBP) (Moffat and Zobel 2008);

•	 Multi-graded relevance:

•	 set-based measures: Generalized Precision (gP) and Generalized Recall (gR) 
(Kekäläinen and Järvelin 2002); we used the weights W1 = [0, 1, 2] , which corre-
spond to the indicator function.

•	 rank-based measures: Graded Rank-Biased Precision (gRBP) (Moffat and Zobel 
2008; Sakai and Kando 2008), Discounted Cumulated Gain (DCG) (Järvelin and 
Kekäläinen 2002), and Expected Reciprocal Rank (ERR) (Chapelle et al. 2009). For 
gRBP we used the weights W1 = [0, 1, 2] , which correspond to the indicator func-
tion, but we experimented also with weights W3 = [0, 1, 3] . For DCG and ERR we 
use their standard weights [0, 5, 10]1; for DCG, we use a log10 discounting function, 
which accounts for a reasonably persistent user.

Note that when we do not indicate it explicitly, we intend that the weights W1 = [0, 1, 2] 
are used.

We considered a confidence level � = 0.05 to determine if a factor is statistically 
significant.

We conducted three different types of analyses:

1  We also experimented with the weights W1 = [0, 1, 2] to use exactly the same as those used in the case of 
RBTO and this produced very close experimental results, which are omitted for space reasons, preferring to 
use their standard weights for DCG and ERR.
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•	 correlation analysis, reported in Sect. 5.2, is aimed at understanding the relationship 
among the different evaluation measures and how these are affected by their scales;

•	 multiple comparison analysis, reported in Sect.  5.3, is aimed at understanding the 
impact of violating or not the scale assumptions behind statistical tests for comparing 
IR systems;

•	 incomplete information analysis, reported in Sect. 5.4, is aimed at understanding how 
much less and less complete pools affect evaluation measures and to what extent the 
used scales play a role in this.

To ease the reproducibility of the experiments, the source code for running them is 
available at https​://bitbu​cket.org/frrnc​l/irj20​19-ffl/.

5.2 � RQ1: What is the relationship between the different evaluation measures 
and how are these affected by their scales?

In order to address RQ1, we employ correlation analysis  (Voorhees 1998), one of the most 
widely used tools to study properties and relationships among evaluation measures. The 
most used correlation coefficients are the Kendall’s tau correlation � (Kendall 1948) and 
the AP correlation �AP (Yilmaz et al. 2008). Ferro (2017) has shown that, when it comes to 
study evaluation measures, � and �AP produce different absolute values yet ranking evalua-
tion measures in the same way and, therefore, they lead to a consistent assessment. Thus, in 
the following, we report only Kendall’s �.

Given two rankings X and Y, their Kendall’s � correlation is given by

where P is the total number of concordant pairs (pairs that are ranked in the same order 
in both vectors), Q the total number of discordant pairs (pairs that are ranked in opposite 
order in the two vectors), T and U are the number of ties, respectively, in the first and in the 
second ranking.

� ∈ [− 1, 1] where � = 1 indicates two perfectly concordant rankings, i.e. in the same 
order, � = −1 indicates two fully discordant rankings, i.e. in opposite order, and � = 0 
means that 50% of the pairs are concordant and 50% discordant.

The typical way of performing correlation analysis is as follows: let m1 and m2 be two 
evaluation measures; for example, let m1 be AP. Let M1 and M2 be two T × S matrices 
where each cell contains the performances on topic i of system j according to measures 
m1 and m2 , respectively. Therefore, M1 and M2 represent the performances of S different 
systems (columns) over T topics (rows); for example, M1 contains the AP score of each 
system on each topic. Let M1 and M2 be the column-wise averages of the two matrices; for 
example, M1 is a vector where each element is the Mean Average Precision (MAP) of a sys-
tem. If you sort systems by their score in M1 and M2 , you obtain two Rankings of Systems 
(RoS) corresponding to m1 and m2 , respectively. The Kendall’s � is then used to quantify 
how “close” these two RoS are. We call this approach overall since it first computes the 
average performance across the topics and then it computes the correlation among evalua-
tion measures.

Note that the framework introduced in Sects. 4.2 and 4.3 holds topic-by-topic, e.g. two 
interval scale measures will order systems in the same way on the same topic and their 

(7)�
(
X, Y

)
=

P − Q
√(

P + Q + T
)(
P + Q + U

)

https://bitbucket.org/frrncl/irj2019-ffl/
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correlation will be 1.0. However, this may be no more true, if you first average perfor-
mance across all the topics. Moreover, strictly speaking, measures which are not on an 
interval scale should be not averaged and this is exactly the first step in the computation of 
the overall correlation.

Therefore, we introduce a topic-by-topic way of computing correlation, which suits bet-
ter with our framework. In this approach, for each topic i we consider the RoS on that topic 
corresponding to m1 and m2 , i.e. we consider the ith rows of M1 and M2 , respectively; we 
then compute the Kendall’s � correlation among the two RoS on that topic. Therefore, we 
end-up with a set of T correlation coefficients, one of each topic, which are then summa-
rized considering their mean2.

5.2.1 � Set‑based measures

Table 1 reports the correlation analysis in the case of set-based evaluation measures for 
both binary and multi-graded relevance.

As expected, in the binary case, the topic-by-topic correlation among precision, recall, 
F-measure, and SBTO is 1.00, since they are all on the same interval scale and they are just 
linear transformations one of the other. However, it is interesting to note how the overall 
correlation among precision and SBTO is 0.99 (it would be 1.00 but due to small approxi-
mations it is slightly different), while the one between recall and SBTO is 0.8591. This is 
due to the fact that, being precision and SBTO independent from the recall base, they basi-
cally order systems in a consistent way across the topics and this is reflected in the fact that 

Table 1   Kendall’s � correlation analysis among set-based evaluation measures. The topic-by-topic score is 
the average across the topics

Binary relevance—T08

Measure pair Topic-by-topic Overall

Precision versus SBTO 1.0000 0.9998
Recall versus SBTO 1.0000 0.8591
F-measure versus SBTO 1.0000 0.9670
Precision versus recall 1.0000 0.8588
SBTO versus RBTO 0.4358 0.7410

Multi-graded relevance—T26

Measure pair Topic-by-topic Overall

Generalized precision versus SBTO 0.7325 0.9175
Generalized recall versus SBTO 0.7325 0.8453
Generalized precision versus generalized recall 1.0000 0.9003
SBTO versus RBTO 0.3895 0.7352

2  Note that averaging Kendall’s � values implicitly assumes them to be on an interval scale and determin-
ing whether Kendall’s � is or not an interval scale goes beyond the scope of this paper. In the following, we 
consider the averaged Kendall’s � value more as a proxy to know whether all the topic-by-topic values are 
1, i.e. whether we have an interval scale, or not.
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the overall correlation is 1.0 in both cases. On the other hand, recall heavily depends on 
the recall base which changes for each topic and it is used to normalize the score for each 
topic; therefore, in a sense, recall on each topic changes the way it orders system and this is 
reflected in the overall correlation dropping to 0.85. F-measure, being the harmonic mean 
of precision and recall, falls somehow in-between and this effect is smoothed leading to an 
overall correlation of 0.96. Finally, we can note how the correlation among precision and 
recall behaves exactly in the same way as the correlation among them and SBTO, which is 
a sort of litmus test since precision and SBTO are substantially interchangeable.

These observations should also make us think about the way in which we typically 
interpret Kendall’s � overall correlation scores. The rule-of-thumb (Voorhees 1998, 2000) 
is that an overall correlation above 0.9 means that two evaluation measures are practically 
equivalent, an overall correlation between 0.8 and 0.9 means that two measures are similar, 
while dropping below 0.8 indicates that measures are departing more and more. However, 
these indications have been drawn analysing the problem of inter-assessor agreement and 
how much the same measure computed over the pools of different assessors agrees with 
itself. The analyses in Table 1 show that, in the case of precision, recall, and SBTO, we 
obtain an overall correlation of just 0.85 even if we know that they actually are on the same 
interval scale and thus we would have expected a higher overall correlation score, well 
above 0.9. Moreover, this marked difference in the overall correlation among them is not 
due to any considerable difference in the way they look at and order systems, but just to the 
way in which they normalize (or not) across topics. Leaving apart the debate on how evalu-
ation measures heavily depending on the recall base are appropriate, whose value is at best 
a very rough estimation, these considerations may suggest that the topic-by-topic correla-
tion analysis could be a good companion tool to adopt to study the behaviour of different 
evaluation measures, since the overall correlation may be affected by factors other than the 
user models behind evaluation measures and how they order systems.

More as a curiosity, the topic-by-topic correlation between SBTO and RBTO is 0.43, 
while the overall one is 0.74. This gives us a feeling of how big is the impact of passing 
from a set-based to a rank-based viewpoint. This difference between the set-based and rank-
based viewpoints produces a fairly low topic-by-topic correlation, which is a bit higher in 
the case of the overall correlation, still being in the area of quite diverse measures.

In the case of multi-graded relevance, as expected, the topic-by-topic correlation among 
gP, gR and SBTO is low, since gP and gR are not an interval scale, and actually they are 
not even an ordinal scale. When it comes to the overall correlation, we can observe the 
same phenomenon due to the normalization (or not) by the recall base, since the overall 
correlation is higher between gP and SBTO than between gR and SBTO. In particular, the 
overall correlation between gP and SBTO is 0.91, which, according to the above rule-of-
thumb, would lead us to consider the two measures practically equivalent. However, we 
know that SBTO and gP are substantially different and this underlines once more the issue 
on how we should interpret overall correlation scores.

On the other hand, we can observe as the topic-by-topic correlation between gP and gR 
is 1.00, indicating that they order systems in the same way and in accordance with the fact 
that they are just a linear transformation of one into the other. When it comes to the overall 
correlation, we can spot again the effect of the normalization (or not) by the recall base, 
since it drops to 0.90.

Finally, the topic-by-topic correlation between SBTO and RBTO, i.e. a proxy of the 
difference between the set-based and rank-based viewpoints, is 0.38, more than 12% lower 
than in the binary case. This is probably due to the additional complexity of the multi-
graded case which substantially injects an additional type of ranking, i.e. the order among 
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relevance degrees, which amplifies the differences. We can note how the overall correlation 
is less sensitive, changing just 0.8% with respect to the binary case and, again, this leads to 
the question whether it is the most appropriate tool for this kind of analyses.

5.2.2 � Rank‑based measures

Table 2 reports the correlation analysis in the case of rank-based evaluation measures for 
both binary and multi-graded relevance.

As expected, in the binary relevance case, the correlation between RBP with p =
1

2
 and 

RBTO is 1.00 since they are on the same interval scale and they are a linear transforma-
tion one of the other. Moreover, the correlation is 1.00 for both overall and topic-by-topic 
correlation because of the same line of reasoning on what kind of normalization is applied 
(or not) across topics, as discussed in the previous section. The topic-by-topic correlation 
between RBP with p = 0.2 and RBTO is 0.99, which is actually a small approximation for 
1.00. Indeed, RBP with p = 0.2 is no more an interval scale, but it is still on ordinal scale 
and both RBP with p = 0.2 and RBTO keep ordering the systems in the same way, since 
RBTO is an ordinal scale too. The overall correlation drops to 0.92, being more affected 
by the difference in the scales, probably because in the case of the ordinal scale RBP with 
p = 0.2 you should not average the values, which is the preliminary step of the overall 
correlation. If we consider RBP with p = 0.8 , which is not even an ordinal scale, the topic-
by-topic correlation drops to 0.85. Overall, this shows how departing from an interval scale 
lowers more and more the correlation. In addition, in the case of RBP with p = 0.8 the 
overall correlation is 0.90, possibly suggesting a similarity between the measures bigger 
than what it actually is, since one is an interval scale while the other is not even an ordinal 
one; again, this raises the question on how to appropriately interpret overall correlation 
values.

Table 2   Correlation analysis among rank-based evaluation measures. The topic-by-topic score is the aver-
age across the topics

Binary relevance—T08

Measure pair Topic-by-topic Overall

RBP p = 1∕2 versus RBTO 1.0000 1.0000
RBP p = 0.2 versus RBTO 0.9985 0.9225
RBP p = 0.8 versus RBTO 0.8553 0.9043
AP versus RBTO 0.6099 0.7439

Multi-graded relevance—T26

Measure pair Topic-by-topic Overall

gRBP p = 1∕3 versus RBTO 1.0000 1.0000
gRBP p = 1∕3 , W3 = [0, 1, 3] versus RBTO 0.9867 0.9618
gRBP p = 0.2 versus RBTO 0.9996 0.9755
gRBP p = 0.8 versus RBTO 0.7420 0.9026
DCG versus RBTO 0.3774 0.6984
ERR versus RBTO 0.9468 0.9502
RBTO W1 = [0, 1, 2] versus RBTO W2 = [0, 2, 4] 1.0000 1.0000
RBTO W1 = [0, 1, 2] versus RBTO W3 = [0, 1, 3] 0.9866 0.9618
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Finally, the topic-by-topic correlation between AP and RBTO is 0.60 and this can be 
due to several factors: first, AP is not even an ordinal scale; then, AP normalizes scores 
across topics by the recall base; and, finally, the user models of AP and RBTO are different.

When it comes to multi-graded relevance, as expected, the correlation, both topic-by-
topic and overall, between gRBP with p = 1∕3 and RBTO is 1.00 since they are both 
interval scales and they are one the transformation of the other. However, as explained in 
Sect. 4.3 gRBP with p = 1∕3 is an interval scale only when g(�i) = K�

�
(�i) ; therefore, 

we experimented with the alternative set of weights W3 = [0, 1, 3] which does not comply 
with this constraint. We can accordingly observe that the topic-by-topic correlation drops 
to 0.98 and the overall one to 0.96, which is a somehow moderate effect due to the small 
departure from this assumption. As it happened in the binary case, the topic-by-topic cor-
relation with gRBP with p = 0.2 , which is an ordinal scale, is 0.99, again a small approxi-
mation for 1.00, since gRBP with p = 0.2 and RBTO keep ordering systems in the same 
way. Finally, the topic-by-topic correlation with gRBP with p = 0.8 , which is not even an 
ordinal scale, is 0.74, while the overall one is 0.90. Therefore, we observe a behaviour in 
the multi-graded case consistent with the one of the binary case and similar considerations 
hold.

The topic-by-topic correlation between DCG and RBTO is 0.37 and the overall one 
0.69, which is quite low as well. Beyond the fact that DCG is not even an ordinal scale, this 
is probably due to a remarkable difference in the user models of DCG and RBTO.

The correlation between ERR and RBTO is quite high—topic-by-topic correlation is 
0.94 and overall correlation is 0.95—despite the fact that ERR is not even an ordinal scale. 
This is probably due to the fact that both RBTO and ERR are quite top-heavy evaluation 
measures and this characteristic may prevail over the violation of the scales.

Finally, we considered two alternative sets of weights for RBTO and compared them to 
the weighting scheme of the indicator function. W2 = [0, 2, 4] is just a multiple of the indi-
cator function and, as expected, the correlation between RBTO W1 = [0, 1, 2] and RBTO 
W2 = [0, 2, 4] is 1.00, since they are both the same interval scale, apart from a transfor-
mation by a multiplicative constant. On the other hand, the correlation between RBTO 
W1 = [0, 1, 2] and RBTO W3 = [0, 1, 3] slightly drops – topic-by-topic correlation is 0.98 
and overall correlation is 0.96—and this is due to the fact that they are both interval scales, 
but now slightly different interval scales and no more just a transformation of the same 
scale.

5.3 � RQ2: What is the impact of violating the scale assumptions behind statistical 
significance tests for comparing IR systems?

As previously explained, the type of scale determines the kind of operations you can per-
form with the obtained values: ordinal scales allow for computation of ranks and median, 
while interval scales allow also for mean and variance. One of the most common task in IR 
evaluation is to compare IR systems to understand which ones are significantly better.

We consider two types of statistical tests:

•	 the Kruskal–Wallis test (Kruskal and Wallis 1952), a non-parametric test that compares 
the medians of the groups of data to determine if the samples come from the same 
population by using the ranks of the data, rather than numeric values, to compute the 
test statistics. This type of analysis is thus suitable for both ordinal and interval scales;



308	 Information Retrieval Journal (2020) 23:289–317

1 3

•	 the ANalysis Of VAriance (ANOVA) (Rutherford 2011), a parametric test which tests 
the hypothesis that all group means are equal. This type of analysis is thus suitable for 
interval scales only.

Being a parametric test, ANOVA is more powerful than the Kruskal–Wallis test and, 
generally speaking, it is able to spot more differences among the compared systems.

We consider how many significantly different system pairs these two tests are able to 
detect among all the possible pairs of systems under examination and we study how these 
figures change across evaluation measures and their scales. However, when performing 
multiple comparisons, the probability of committing a Type I error increases with the num-
ber of comparisons, i.e. it is more probable to detect significantly different pairs when they 
should not be detected (Fuhr 2017). Therefore, we keep this controlled by applying the 
Tukey Honestly Significant Difference (HSD) test (Hochberg and Tamhane 1987; Tukey 
1949). Tukey’s method is used in both Kruskal–Wallis test and ANOVA to create confi-
dence intervals for all pairwise differences, while controlling the family error rate. For a 
deeper discussion of the assumptions behind ANOVA on other significance tests, the effect 
sizes, the power, and multiple comparisons, please refer to Carterette (2012).

5.3.1 � Set‑based measures

Table 3 reports the results of the Tukey HSD test and the number of significantly different 
pairs detected for both the Kruskal–Wallis test and ANOVA in the case of set-based evalu-
ation measures.

In the case of binary relevance, all the set-based measures are on an interval scale and 
so they are suitable for being used with both the Kruskal–Wallis test and ANOVA. We can 
observe that, as expected, they all detect a comparable number of significantly different 
pairs and that this number increases when ANOVA is used, since it is a more powerful test 

Table 3   Tukey HSD test for set-based evaluation measures using the Kruskal–Wallis test and ANOVA. 
Each cell contains the number of significantly different pairs detected and, within parenthesis, the ratio with 
respect to the total number of system pairs

Binary relevance—T08, 8256 system pairs compared

Measure pair Significantly different pairs

Kruskal–Wallis test ANOVA

Precision 1566 (18.97%) 2785 (33.73%)
Recall 1748 (21.17%) 3259 (39.47%)
F-measure 1721 (20.85%) 3081 (37.32%)
SBTO 1566 (18.97%) 2785 (33.73%)

Multi-graded relevance—T26, 2775 system pairs compared

Measure pair Significantly different pairs

Kruskal–Wallis test ANOVA

Generalized precision 438 (15.78%) 1242 (44.76%)
Generalized recall 527 (18.99%) 1327 (47.82%)
SBTO 354 (12.76%) 938 (33.80%)
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than Kruskal–Wallis. We can also note that recall and F-measure detect a slightly higher 
number of different pairs and this is probably due to the use of the recall base for normal-
izing across topics.

In the case of multi-graded relevance, where gP and gR are neither ordinal nor interval 
scales, we can observe how they detect a higher number of significantly different pairs than 
RBTO. While there might be also other motivations such as the power of the tests (Carter-
ette 2012) or the discriminative power of the measures (Sakai 2006), we can consider this 
as a tendency also due to an overestimation of the number of significantly different pairs, 
since both gP and gR violate the scale assumptions behind both the Kruskal–Wallis test 
and ANOVA.

5.3.2 � Rank‑based measures

Table 4 reports the results of the Tukey HSD test and the number of significantly differ-
ent pairs detected for both the Kruskal–Wallis test and ANOVA in the case of rank-based 
evaluation measures.

In the binary relevance case, RBTO and RBP with p = 1∕2 are interval scales and 
they match the scale assumptions behind both the Kruskal–Wallis test and ANOVA. RBP 
with p = 0.2 is an ordinal scale and, therefore, it matches the scale assumptions for the 
Kruskal–Wallis test, but not for ANOVA. We can note how, in the case of the Kruskal–Wal-
lis test, it detects more or less the same number of significantly different pairs while for 
ANOVA, being provided with a less powerful scale than the one assumed, it detects less 

Table 4   Tukey HSD test for rank-based evaluation measures using the Kruskal–Wallis test and ANOVA. 
Each cell contains the number of significantly different pairs detected and, within parenthesis, the ratio with 
respect to the total number of system pairs

Binary relevance—T08, 8256 system pairs compared

Measure pair Significantly different pairs

Kruskal–Wallis test ANOVA

RBP p = 1∕2 1677 (20.31%) 2861 (34.65%)
RBP p = 0.2 1675 (20.29%) 2198 (26.62%)
RBP p = 0.8 1783 (21.60%) 3476 (42.10%)
AP 1824 (22.09%) 3320 (40.21%)
RBTO 1677 (20.31%) 2861 (34.65%)

Multi-graded relevance—T26, 2775 system pairs compared

Measure pair Significantly different pairs

Kruskal–Wallis test ANOVA

gRBP p = 1∕3 254 (9.15%) 551 (19.86%)
gRBP p = 0.2 254 (9.15%) 471 (16.97%)
gRBP p = 0.8 301 (10.85%) 885 (31.89%)
DCG 426 (15.35%) 1,274 (45.91%)
ERR 248 (8.94%) 566 (20.40%)
RBTO 254 (9.15%) 551 (19.86%)
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significantly different pairs. As before, on top of other factors as the power of the test and 
the discriminative power of an evaluation measure, this might suggest that violating the 
scale assumptions somehow leads to an underestimation of the number of significantly dif-
ferent pairs.

When it comes to RBP with p = 0.8 and AP, they are neither ordinal nor interval scales 
and we can observe a phenomenon we have seen also in the case of the set-based evalua-
tion measures: they detect a higher number of significantly different pairs and, under the 
previous caveats, we may consider this as a sort of overestimation.

The multi-graded relevance case behaves in a consistent way as well. gRBP with p = 0.2 
is an ordinal scale and, using the Kruskal–Wallis test, it detects the same number of sig-
nificantly different pairs as gRBP with p = 1∕3 and RBTO, which are interval scales. On 
the other hand, it detects less significantly different pairs when using ANOVA, something 
which we may consider as an underestimation, with the limitations discussed above, due to 
the fact that it violates the ANOVA scale assumptions and it relies on a less powerful scale.

Finally, gRBP with p = 0.8 , DCG, and ERR are neither ordinal nor interval scales and, 
as it happened before, they tend to detect a higher number of significantly different pairs, 
something we may consider as an overestimation, again considering the above caveats.

5.4 � RQ3: How much do less and less complete pools affect evaluation measures 
and to what extent do the used scales play a role in this?

The downsampling pools allow us to investigate the behavior of evaluation measures as 
relevance judgments become less and less complete. We explore two pool sampling 
approaches:

•	 stratified random sampling (Buckley and Voorhees 2004): for each topic, a separate list 
of documents at each relevance grade (not relevant, relevant, highly relevant) is created 
from the original pool; for each sampling ratio P% , we select X = P% × D documents 
at the given relevance level, ensuring that at least 1 somehow relevant document and 
at least 10 not relevant documents are selected; the first max(1,X) documents from the 
random list at each relevant level have then been selected to constitute the new reduced 
pool; each smaller pool is a subset of each larger pool since we always select from the 
top of the lists. We used P% = [90, 70, 50, 30, 10, 5].

•	 uniform random sampling (Yilmaz and Aslam 2006): for each sampling ratio P% , 
we uniformly select at random X = P% × D documents from the pool, regard-
less of their relevance degree; if the random sample does not contain any relevant 
document, it is thrown away and another one is drawn. Also in this case, we used 
P% = [90, 70, 50, 30, 10, 5].

The plots in the following figures show the Kendall’s � correlations between the RoS pro-
duced using progressively down-sampled pools from 100% (complete pool) to 5%. Each 
line shows the behavior of a measure; the flatter (and closer to 1.0) the line, the more a 
measure ranks systems in the same relative order with different levels of relevance judg-
ments incompleteness.
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5.4.1 � Set‑based measures

Figure  1 show the self Kendall’s � correlation at the different pool samples for the set-
based evaluation measures for both binary and multi-graded relevance; on the left, there is 
the stratified random sampling and on the right there is the uniform random sampling.

In the case of binary relevance, we can observe as SBTO and precision behave in the 
same way, while recall has a slightly lower self-correlation; this is probably due to the 
estimation of the recall base which gets worse and worse as the sample size is reduced. 
F-measure performs in-between precision and recall. These trends are consistent among 
the two pool sampling strategies.

In the case of multi-graded relevance, SBTO, gP and gR behave in a very close way, 
even if for different reasons, since gP and gR are not on an interval scale. As in the binary 
case, gR has a slightly lower self-correlation and this is probably due to the estimate of the 
recall base, which becomes less and less accurate as the sample size is reduced.

Figure 1 also shows the self-correlation of RBTO, so that it is possible to get a feeling of 
what is the impact of passing from a set-based to a rank-based viewpoint, still remaining on 
an interval scale. We can see how the self-correlation of RBTO is substantially lower than 
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Fig. 1   Self Kendall’s � correlation at pool samples for set-based measures
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the one of SBTO, even more in the case of stratified random sampling. This behaviour is 
consistent in both the binary and multi-graded cases.

When you downsample the pool, you are basically reducing the number of relevant doc-
uments while keeping the length of the run the same; as a consequence, you are reducing 
the number of relevant documents that can appear in a run, increasing the number of not 
relevant ones. The total order behind SBTO and RBTO basically orders in an equi-spaced 
way the set of all the possible runs with a given number of relevant documents; when you 
reduce the number of relevant documents you also decrease the number of all the possible 
runs of a given length and this decrease is much more pronounced in the case of rank-based 
than set-based evaluation measures since, with the same number of relevant documents, the 
rank-based case originates a much bigger number of possible cases.

As a consequence, the same set of real runs submitted to a track is mapped to a space 
of possible runs which gets smaller and smaller as the sample size is reduced and this 
decrease is much sharper in the case of rank-based retrieval. Therefore, the same set of real 
runs is “conflated” to smaller spaces of possible runs and this may, for example, originate 
more ties and undistinguishable runs. Thus, this prevents, more and more, an interval scale 
measure to rank systems in the same way as on the full pool. Since this phenomenon is 
much more pronounced in the case of rank-based evaluation measures than of set-based 
ones, it happens out that the self-correlation decreases more for RBTO than for SBTO.

5.4.2 � Rank‑based measures

Figure 2 shows the self Kendall’s � correlation at the different pool samples for the rank-
based evaluation measures for both binary and multi-graded relevance; on the left, there is 
the stratified random sampling and on the right there is the uniform random sampling.

As expected, RBTO and RBP with p = 1∕2 in the binary case and gRBP with p = 1∕3 
in the multi-graded case behave in the same way, since they are on the same interval scale. 
We can also observe as both RBP with p = 0.2 and gRBP with p = 0.2 have a slightly 
lower self-correlation than RBTO and this can be explained by them being on an ordinal 
scale rather than an interval one. On the other hand, RBP with p = 0.8 and gRBP with 
p = 0.8 , which are both neither interval nor ordinal scales, have a higher self-correlation 
than RBTO. This may be due to the “conflation” mechanism described above, which is 
less marked for RBP and gRBP with p = 0.8 . This phenomenon is even more evident in 
the case of AP and DCG, which exhibit even higher self-correlations; it is a little bit less 
pronounced in the case of ERR since its strong top-heaviness makes it more sensible to a 
reduction in the pool. What do AP, DCG, and ERR see as actual space of the possible runs 
and how this space conflates or not, as pools are reduced, remain open questions whose 
answers may provide us with some additional insights on why they have higher self-corre-
lation scores.

6 � Conclusions and future work

In this paper, we stepped from our theory of IR evaluation measures and its definition of 
measurement scales to conduct an experimental study, based on standard TREC collec-
tions, aimed at assessing the impact of our theoretical findings with respect to state-of-
the-art evaluation measures and some of the most common types of conducted analyses. 
Indeed, our formal framework allowed us to determine whether and when set-based and 
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rank-based IR measures are interval scales and this is a fundamental question since the 
validity of the descriptive statistics, such as mean and variance, and the statistical sig-
nificance tests we daily use to compare IR systems depend on its answer.

We addressed RQ1 by conducting a correlation analysis to understand the relation-
ship among evaluation measures and their scales. We found out that, as expected, when 
evaluation measures are on the same interval scale, their correlation is 1.00; this holds 
also in the case of the relationship between measures on interval and ordinal scales, 
whose correlation is still 1.00 because they keep ordering the systems in the same way. 
We have also shown how much the correlation drops when you compare measures 
which are on an interval scale to measures which are neither ordinal nor interval scales: 
this drop is not only due to differences in the user models embedded in the evaluation 
measures, but also due to the violation of the scale assumptions.

On a methodological side, we noted how the usual way of computing the correlation 
among evaluation measures, that we called overall correlation, may not be the most suit-
able one for studying scale properties, since its preliminary averaging operation may 
introduce biases, especially when used with measures which are neither ordinal nor 
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Fig. 2   Self Kendall’s � correlation at pool samples for rank-based measures
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interval scales. Therefore, we introduced a topic-by-topic correlation analysis to more 
appropriately study scale properties.

We addressed RQ2 by performing a multiple comparison test analysis, which is typi-
cally used to compare IR systems and detect which are significantly different. We con-
sidered the Kruskal–Wallis test, which is a non parametric test comparing medians and 
suitable for ordinal (and interval) scales, and ANOVA, which is a parametric test com-
paring means and suitable for interval scales only. We found that, as expected, both ordi-
nal and interval scale measures behave in a similar way when using the Kruskal–Wallis 
test, for which both of them are appropriate. On the other hand, when you violate the 
scale assumptions behind statistical significance tests, provided that other factors, such 
as the power of the test and the discriminative power of the evaluation measures, may 
play an important role, you can observe variations in the number of detected signifi-
cantly different pairs, which may be due also to the lack of compliance with the scale 
assumptions. In particular, when you perform ANOVA using ordinal scale measures, 
they tend to somehow underestimate the number of significantly different pairs, since 
ordinal scales are less powerful than interval ones expected for ANOVA. Finally, when 
you use measures which are neither ordinal nor interval scales, they tend to overestimate 
the number of significantly different pairs, in the case of both the Kruskal–Wallis test 
and ANOVA.

Finally, we addressed RQ3 by performing an analysis with respect to incomplete infor-
mation, i.e. when you downsample pools. We found that measures on the same interval 
scale behave in a similar way and that measures on ordinal scales tend to be more sensitive 
to incomplete information. Moreover, incomplete information impacts more rank-based 
than set-based measures on interval scales because the former ones suffer from a sharpest 
“conflation” in the space of the possible runs to be totally ordered. This may also be an 
explanation why rank-based evaluation measures, which are neither ordinal nor interval 
scales, are much less sensitive to pool downsampling than interval scale measures.

In this paper, we actually used only a part of our theory of IR evaluation measures, 
namely the one based on a total order among system runs. Indeed, this total order guaran-
tees to work for any possible set of real runs, as the T08 and T26 runs are, independently 
from how sparse this sample of real runs is with respect to the set of all the possible runs 
of a given length. On the other hand, our theory contains also interval scales which are 
developed starting from a partial ordering among system runs. This means that only a sub-
set of runs can be ordered together, i.e. we are working with posets, and that ordered runs 
in a poset are not comparable to ordered runs in another poset. This is challenging from an 
experimental point of view because a set of real runs is a very small sample of all the pos-
sible runs of a given length and you may end up having runs that belong to many different 
posets, at the extreme one run per poset, and these runs would not be directly comparable. 
Therefore, it would turn out to be practically very difficult to conduct an analysis similar to 
the one we did in this paper. As future work, we will thus investigate how actual runs are 
distributed across posets, trying to find out a viable way of analysing them; an option could 
be also to use a mix between real and simulated runs to avoid having too sparse data.

Finally, even if our work is focused on offline evaluation measures, the concordance of 
offline measures with user feelings (satisfaction, preference, etc.) and with online meas-
ures (e.g., number of clicks in a session, page click-through rate, number of clicks divided 
by the position of the lowest click, mean reciprocal ranks of the clicks) is a very relevant 
research area. Therefore, our future work will also consider the possibility of extending our 
framework to online measures as well as studying how our interval-based offline measures 
relate to online ones, using for example the approach adopted by Chen et al. (2017).
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