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Abstract When applying learning to rank algorithms in real search applications, noise in

human labeled training data becomes an inevitable problem which will affect the perfor-

mance of the algorithms. Previous work mainly focused on studying how noise affects

ranking algorithms and how to design robust ranking algorithms. In our work, we inves-

tigate what inherent characteristics make training data robust to label noise and how to

utilize them to guide labeling. The motivation of our work comes from an interesting

observation that a same ranking algorithm may show very different sensitivities to label

noise over different data sets. We thus investigate the underlying reason for this obser-

vation based on three typical kinds of learning to rank algorithms (i.e. pointwise, pairwise

and listwise methods) and three public data sets (i.e. OHSUMED, TD2003 and MSLR-

WEB10K) with different properties. We find that when label noise increases in training

data, it is the document pair noise ratio (referred to as pNoise) rather than document noise

ratio (referred to as dNoise) that can well explain the performance degradation of a ranking

algorithm. We further identify two inherent characteristics of the training data, namely

relevance levels and label balance, that have great impact on the variation of pNoise with

respect to label noise (i.e. dNoise). According to these above results, we further discuss
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some guidelines on the labeling strategy to construct robust training data for learning to

rank algorithms in practice.

Keywords Learning to rank � Label noise � Robust data

1 Introduction

Learning to rank has gained much attention in recent years, especially in information

retrieval (Liu 2011). When applying learning to rank algorithms in real Web search ap-

plications, a collection of training data is usually constructed, where human judges assign

relevance labels to a document with respect to a query under some pre-defined relevance

judgment guideline. In real scenario, the ambiguity of query intent, the lack of domain

knowledge and the vague definition of relevance levels all make it difficult for human

judges to give reliable relevance labels to some documents. Therefore, noise in human

labeled training data becomes an inevitable issue that will affect the performance of

learning to rank algorithms.

An interesting observation is that the performance degradation of ranking algorithms

may vary largely over different data sets with the increase of label noise. On some data

sets, the performances of ranking algorithms decrease quickly, while on other data sets

they may hardly be affected with the increase of noise. This motivated us to investigate the

underlying reason why different training data sets show different sensitivities to label

noise. We try to understand the inherent characteristics of data sets related to noise sen-

sitivity, so that we can obtain some guidelines to construct robust training data for learning

to rank in real scenario. Previous work either only observed how noise in training data

affects ranking algorithms (Bailey et al. 2008; Xu et al. 2010), or focused on how to design

robust ranking algorithms to reduce the effect of label noise (Jain and Varma 2011;

Carvalho et al. 2008). So far as we know, this is the first work talking about data robustness

to label noise in learning to rank.

To investigate the underlying reasons for our observations, we conducted data analysis

in learning to rank based on three public data sets with different properties, i.e. the

OHSUMED and TD2003 data sets in LETOR3.0 (Qin et al. 2010) benchmark collection,

and the MSLR-WEB10K data set. There are multiple types of judging errors (Kazai et al.

2012) and they lead to different noise distributions (Kumar and Lease 2011; Vuurens et al.

2011), but a recent study shows that the learning performance of ranking algorithms is

dependent on label noise quantities and has little relationship with label noise distributions

(Kumar and Lease 2011). For simplicity, we randomly injected label errors (i.e. label

noise) into training data (with fixed test data) to simulate human judgment errors, and

investigated the performance variation of the same ranking algorithm over different data

sets. In this study, we mainly focus on the widely used three kinds of learning to rank

algorithms through experiments: (1) pointwise algorithms such as PRank (Crammer and

Singer 2001) and GBDT (Friedman 2000; 2) pairwise algorithms such as RankSVM

(Joachims 2002) and RankBoost (Freund et al. 2003; 3) listwise algorithms such as ListNet

(Cao et al. 2007) and AdaRank (Xu and Li 2007).

We first find that it is the document pair noise ratio (referred to as pNoise) rather than

document noise ratio (referred to as dNoise) that can well explain the performance

degradation of a ranking algorithm along with the increase of label noise. Here dNoise
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denotes the proportion of noisy documents (i.e. documents with error labels) to all the

documents, while pNoise denotes the proportion of noisy document pairs (i.e. document

pairs with wrong preference order) to all the document pairs. Note that dNoise is a natural

measure of label noise in training data since label noise is usually introduced at document

level in practice, while pNoise is an intrinsic measure of label noise according to the

mechanism of evaluation measures used in information retrieval. We show that the per-

formance degradation of ranking algorithms over different data sets is quite consistent with

respect to pNoise. It indicates that pNoise captures the intrinsic factor that determines the

performance of a ranking algorithm. We also find that the increase of pNoise with respect

to dNoise varies largely over different data sets. This explains the original observation that

the performance degradation of ranking algorithms varies largely over different data sets

with the increase of label noise.

We then study what affects the variation of pNoise with respect to label noise (i.e.

dNoise). We identify two inherent characteristics of training data that have critical impact

on the variation of pNoise with respect to dNoise, namely relevance levels and label

balance. Relevance levels refer to the graded relevance judgments one adopts for labeling

(e.g. 2-graded relevance judgments including ‘‘relevant’’ and ‘‘irrelevant’’), while label

balance refers to the balance among labeled data of different relevance levels, which can be

reflected by the proportions of labeled data over different relevance levels. We show that

for a fixed size of training data, with more relevance levels and better label balance, we can

make pNoise less affected by dNoise, i.e. the training data more robust to label noise.

These above results actually provide us some valuable guidelines on the labeling strategy

to construct robust training data for learning to rank algorithms in practice.

The rest of the paper is organized as follows. Section 2 discusses some background and

related work. Section 3 describes our experimental settings. Section 4 shows our basic

observations and introduces document pair noise for better explanation. Section 5 further

explores the two characteristics of training data that have critical impact on its robustness

to label noise, and discusses some principles on constructing robust data set. The con-

clusion is made in Sect. 6.

2 Background and related work

Noise in data has been widely studied in machine learning literature. For example, Zhu and

Wu (2003) presented a systematic evaluation on the effect of noise in machine learning.

They investigated the relationship between attribute noise and classification accuracy, the

impact of noise from different attributes, and possible noise handling solutions. Nettleton

et al. (2010) systematically compared how different degrees of noise affect four supervised

learners that belong to different paradigms. They showed that noise in the training data set

is found to give the most difficulty to the learners. To handle noise in learning, various

approaches have been integrated into existing machine learning algorithms (Abelln and

Masegosa 2010; Crammer et al. 2009; Rebbapragada and Brodley 2007) to enhance their

learning abilities in noisy environments. Besides, some other work (Jeatrakul et al. 2010;

Verbaeten and Assche 2003) concentrated on employing some preprocessing mechanisms

to handle noise before a learner is formed.

How noise affects ranking algorithms has been widely studied in previous work.

Voorhees (1998) and Bailey et al. (2008) investigated how noise affects the evaluation of

ranking algorithms. Their results showed that although considerable noise exists among
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human judgements, the relative order of ranking algorithms in terms of performance is

actually quite stable. In recent years, learning to rank has emerged as an active and

growing research area both in information retrieval and machine learning. Various learning

to rank algorithms have been proposed, such as RankSVM (Joachims 2002), RankBoost

(Freund et al. 2003), RankNet (Burges et al. 2005) and ListNet (Cao et al. 2007). Corre-

spondingly, noise in training data has also attracted much attention in this area. Xu et al.

(2010) explored the effect of training data quality on learning to rank algorithms. They

showed that judgment errors in training do affect the performance of the trained models.

There are also various approaches proposed to construct robust learning to rank algo-

rithms. For example, Carvalho et al. (2008) proposed a meta-learning algorithm, which

took any linear baseline ranker as input and used a non-convex optimization procedure to

output a more robust ranking model. Jain and Varma (2011) presented a learning to re-rank

method for image search, which cope with the label noise problem by leveraging user click

data. In Liu et al. (2011), introduced a graph-theoretical framework amenable to noise

resistant ranking to process query samples with noisy labels.

Another solution to deal with noisy data in learning to rank is to employ some pre-

processing mechanisms. For example, Geng et al. (2011) proposed the concept ‘‘pairwise

preference consistency’’ (PPC) to describe the quality of a training data collection, and

selected a subset for training by optimizing PPC measure. Xu et al. (2010) attempted to

detect and correct label errors using click-through data to improve the quality of training

data for learning to rank. Besides, other methods like repeated labeling techniques (Sheng

et al. 2008) and overlapping labeling scheme (Yang et al. 2010) have also been proposed

to improve data quality in learning to rank.

Similar to our work, there do exist a branch of studies on how to construct effective

training data in learning to rank. A comprehensive research (Aslam et al. 2009) on se-

lecting documents for learning-to-rank data sets has been conducted, and the effect of

different document selection methods on the efficiency and effectiveness of learning-to-

rank algorithms has also been investigated. Scholer et al. (2011) found that the fraction of

inconsistent judgments should be viewed as a lower bound for the measurement of assessor

errors and these assessor errors are not made by chance but there are factors contributing to

assessment mistakes, such as time between judgments and a judgment inertia in the la-

beling process. A detailed study on modeling how assessors might make errors has been

presented (Carterette and Soboroff 2010) in a low-cost large scale test collection scenario.

According to these assessor error models, they further investigated the effect of assessor

errors on the evaluation estimation and propose two possible means to adjust for errors.

Especially, Macdonald et al. (2013) made an extensive analysis of the relation between the

ranking performance and sample size. A surprising finding by Kumar and Lease (2011) is

the consistency of learning curves across different noise distributions, which indicates that

there is no need to obtain all the learning curves under all kinds of noise distributions

exhaustively. Kanoulas et al. (2011) suggested that the distribution of labels across dif-

ferent relevance grades in the training set has an effect on the performance of trained

ranking functions.

Our work also has some relation with existing works on how to construct robust training

data. In previous work, there are typically two labeling strategy, absolute judgment and

relative judgment. The absolute judgments will typically easy to introduce noise to the

training data since there are more factors to consider and the choice of label is not clear

(Burgin 1992). The relative judgments such as pairwise judgments can be viewed as a good

alternative, however, One concern of using this strategy is the complexity of judgment

since the number of document pairs is polynomial in the number of document. Recently,
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many research work attempt to reduce the complexity of relative labeling strategy to obtain

a robust training data, successful examples include top-k labeling stategy (Niu et al. 2012).

Active labeling strategies can be applied to further reduce the complexities of labeling.

Different from existing work, our work focuses on investigating the inherent charac-

teristics of training data related to noise sensitivity with the document number per query

given. By studying this problem, we aim to obtain some guidelines to construct robust

training data for leaning to rank.

3 Experimental settings

Before we conduct data analysis in learning to rank, we first introduce our experimental

settings. In this section, we will cover four aspects, including the data sets, the noise

injection method, ranking algorithms, and evaluation metrics.

3.1 Data sets

In our experiments, we use three public data sets in learning to rank, i.e. OHSUMED,

TD2003 and MSLR-WEB10K, for training and evaluation. Among the three data sets,

OHSUMED and TD2003 come from the benchmark collection LETOR3.0 (Qin et al.

2010). They are constructed based on two widely used data collections in information

retrieval, the OHSUMED collection and the ‘‘.gov’’ collection in topic distillation tasks of

TREC 2003, respectively. MSLR-WEB10K is another data set released by Microsoft

Research, where the relevance judgments are obtained from a retired labeling set of a

commercial Web search engine (i.e. Bing). The detailed statistics of three data sets are

shown in Table 1. We choose the three data sets typically for our experiments, since they

have quite different properties as follows.

Data size Both OHSUMED and TD2003 are smaller data sets as compared with MSLR-

WEB10K. There are in total 106 and 50 queries in OHSUMED and TD2003, respectively,

while 10,000 queries in MSLR-WEB10K. Besides, there are\50,000 documents in both

OHSUMED and TD2003, while more than 1:2 million documents in MSLR-WEB10K.

However, if we compare the average document number per query, there are over 900

Table 1 Detailed statistics of
three data sets

Data sets #Queries #Docs Ave. #docs/query

OHSUMED 106 16,140 152

TD2003 50 49,058 981

MSLR-WEB10K 10,000 1,200,192 120

Data sets #Features Relevance
judgments

Label proportions (%)

OHSUMED 45 0,1,2 70:16:14

TD2003 64 0,1 99.2:0.8

MSLR-
WEB10K

136 0,1,2,3,4 51.7:32.5:13.3:1.7:0.8
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labeled documents per query in TD2003, which is much larger than that in OHSUMED and

MSLR-WEB10K.

Feature space The feature spaces of OHSUMED and TD2003 are also smaller than

MSLR-WEB10K. OHSUMED and TD2003 contain 45 and 64 features, respectively, while

MSLR-WEB10K contains 136 features.

Relevance judgments The three data sets adopt different relevance judgment methods.

TD2003 takes two-graded relevance judgments, i.e. 0 (irrelevant) and 1 (relevant). In

OHSUMED, three-graded relevance judgments are used, i.e. 0 (irrelevant), 1 (partially

relevant) and 2 (definitely relevant), while in MSLR-WEB10K the relevance judgments

take 5 values from 0(irrelevant) to 4(perfectly relevant).

All the three data sets can be further divided into training set and test set with their

‘‘standard partition’’. In our experiments, all the evaluations are conducted using the 5-fold

cross validation.

3.2 Noise injection method

We take the original data sets as our ground truth (i.e. noise free data) in our experiments.

To simulate label noise in real data sets, we randomly inject label errors into training data,

with test data fixed. We follow a similar approach as proposed in previous work (Abellán

and Masegosa 2009; Abelln and Masegosa 2010; Rebbapragada and Brodley 2007; Ver-

baeten and Assche 2003; Xu et al. 2010) for noise injection, and introduce noise at the

document level. Here we define the document noise ratio as the proportion of noisy

documents (i.e. documents with error labels) to all the documents, referred to as dNoise.

Given a dNoise c, each query-document pair keeps its relevance label with probability

1� c, and changes its relevance label with probability c. For each training-test set pair, we

will randomly inject label noise into the training data under a given dNoise for 10 times to

obtain the average results.

Assume there are C relevance grades from 0 to C � 1 in the training data, and we employ

the following two noise injection methods respectively to change its relevance labels.

• Uniform noise profile: randomly change some of the relevance labels to other labels

uniformly, i.e. Pðri ! rjÞ ¼ 1
C�1

; 8rj 6¼ ri; ri; rj 2 f0; 1; � � � ;C � 1g.
• Non-uniform noise profile: In practice, the possibility of judgment errors in different

grades are not equal (Scholer et al. 2011), since the assessors are easier to label a

document as the relevance level nearer to its ground-truth label. For example, a

document with ground-truth label ri are prone to be labeled as rj with probability

Pðri ! rjÞ / jri � rjj�1
, so we define the error probability based on label differences,

i.e. Pðri ! rjÞ ¼ jri�rjj�1

PC�1

k¼0;k 6¼ri
jri�kj�1

.

3.3 Ranking algorithms

In our work, we mainly focus on the widely applied pointwise, pairwise and listwise

learning to rank algorithms. We employ two typical pointwise learning to rank algorithms,

namely PRank (Crammer and Singer 2001) and GBDT (Friedman 2000), two typical

pairwise learning to rank algorithms, namely RankSVM (Joachims 2002) and RankBoost

(Freund et al. 2003), and two typical listwise learning to rank algorithms, namely ListNet

(Cao et al. 2007) and AdaRank (Xu and Li 2007), in our experiments.
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These algorithms are chosen not only because they belong to different categories of

learning to ranking approaches (i.e. pointwise, pairwise and listwise), but also because they

adopt different kinds of ranking functions (i.e. linear and non-linear). Specifically, PRank,

RankSVM and ListNet use a linear function for scoring, which can be represented as

f ðxÞ ¼ w � x: WhileGBDT, RankBoost and AdaRank are all ensemble methods that com-

bine many weak ranking functions. Meanwhile, their non-linear ranking function can be

expressed as f ðxÞ ¼
Pn

t¼1 athtðxÞ; where htðxÞ is the chosen weak ranking function at the t-
th iteration.

3.4 Evaluation metrics

We use two metrics, i.e. Mean Average Precision (MAP) (Baeza-Yates and Ribeiro-Neto

1999) and Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen

2000), to evaluate ranking performance, which are both popular measures used in the

literature of information retrieval.

MAP for a set of queries is the mean of the Average Precision (AP) for each query,

defined as follows

MAP ¼
PQ

i¼1 APi

Q
;

where Q denotes the number of queries, and APi is the AP score of the i-th query, which

can be calculated by

APi ¼
1

ni

XNi

k¼1

P
j� k IðrðjÞ ¼ 1Þ

k
IðrðkÞ ¼ 1Þ;

where ni is the number of relevant documents for the i�th query, Ni is the total number of

documents for the i-th query, rðjÞ is the label of the j-th document in the list (e.g. rðjÞ ¼ 1 if

the j-th document is relevant and rðjÞ ¼ 0 otherwise), and Ið�Þ is the indicator function.

The calculation of NDCG@n is defined as follows

NDCG@n ¼ Zn
Xn

j¼1

2rðjÞ � 1

logðjþ 1Þ ;

where j is the position in the document list, r(j) is the label of the j-th document in the list,

and Zn is the normalization factor so that NDCG@n of the perfect list equals one.

4 Data sensitivities to label noise and the underlying reasons

In this section, we first show our basic observations on data sensitivities to label noise. We then

introduce document pair noise which captures the true noise of ranking algorithms and helps us

understand how label noise affects the performance of ranking algorithms. Finally, we explain

our basic observations through the variation of document pair noise against document label noise.

4.1 Basic observations

Here we first show our basic observations which motivates our work. Using our noise

injection methods, we run a number of experiments over the three data sets with dNoise
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changing from 0 to 0:5 with a step of 0:05, and evaluate the performance of the six trained

ranking algorithms based on the corresponding noise free test set. The results are depicted

in Fig. 1 with uniform noise profile and Fig. 2 with non-uniform noise profile.
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0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Fig. 1 Performance evaluation against dNoise (Uniform noise profile) with all three kinds of ranking
algorithms in terms of MAP and NDCG@10. a PRank; b GBDT; c RankSVM; d RankBoost; e ListNet;
f AdaRank
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From Fig. 1 we can clearly see that, the performance degradation of ranking algorithms

may vary largely over different data sets with the increase of dNoise. Taking RankSVM for

instance, from Fig. 1c we can see that, on TD2003 its performance in terms of MAP (i.e.

orange curve with up triangles) decreases quickly as dNoise increases. On OHSUMED its

performance (i.e. black curve with up triangles) keeps stable for a long range of dNoise, and
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Fig. 2 Performance evaluation against dNoise (Non-uniform noise profile) with all three kinds of ranking
algorithms in terms of MAP and NDCG@10. a PRank; b GBDT; c RankSVM; d RankBoost; e ListNet;
f AdaRank
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then drops. On MSLR-WEB10K its performance (i.e. blue curve with up triangles) is hardly

affected even though dNoise reaches 0:5. The evaluation results are consistent in terms of

NDCG@10 as shown in three curves with circles of Fig. 1a. Besides, we can also observe

very similar performance degradation behaviorwithRankBoost in Fig. 1b, ListNet in Fig. 1c,

AdaRank in Fig. 1d. In fact, similar results can also be found in Fig. 2 and previous work (Xu

et al. 2010), but such observations are not the main concern in their work.

Someone may feel that the results for pointwise algorithms such as PRank and GBDT are

quite puzzling, since as pointwise algorithms, they should be sensitive to dNoise. Actually, the

results are explainable. Though they are pointwise algorithms, the evaluation measures are

mainlybasedonpairwise orders.That is themain reasonwhy theyarenot sensitive to dNoise any

more. Tomake itmuch clearer, we plot the curve of pointwise loss used in PRank as examples to

show the trend, as shown inFig. 3.The differencesbetween thisfigure andprevious ones only lie

in the y axis. In the previous ones, the y axis stands for evaluation measures such as MAP and

NDCG, while it becomes (normalized) testing loss adopted in PRank. From the results, we

can clearly see that the pointwise loss is indeed sensitive to dNoise.

The above observations are actually contrary to the following two intuitions. (1)

Degradation Intuition: For a machine learning algorithm, its performance usually would

degrade along with the deterioration of the training data quality (i.e. increase of noise in the

training data), no matter quickly or slowly. (2) Consistency Intuition: For a same machine

learning algorithm, the performance degradation behavior against label noise usually

would be similar across the data sets. A possible reason for the above results is that the

label noise (i.e. dNoise) cannot properly characterize the deterioration of the training data

quality in learning to rank. This brings us the following question: what is the true noise that

affects the performances of ranking algorithms?

4.2 Document pair noise

To answer the above question, we need to briefly re-visit the learning to rank algorithms.

As we know, the pairwise ranking algorithms transform the ranking problem to a binary

classification problem, by constructing preference pairs of documents from human labeled

data. Specifically, given a query q and two documents di and dj, a document pair hdi; dji is
generated if di is more relevant than dj with respect to q. As we can see, document pairs

hdi; dji comprise the true training data for pairwise ranking algorithms. Thus, the quality of

the pairs should be key to the learning performances of pairwise ranking algorithms. This

also holds for listwise ranking algorithms although it is not obvious to see. The FIFA

(a) (b)

Fig. 3 Testing loss of PRank with respect to dNoise over two data sets. a Prank with uniform noise profile;
b Prank with non-uniform noise profile
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World Cup may help understand that a ranking list, a basic unit in listwise learning, is

generated by pairwise contests. More specifically, the rank of a certain team is determined

by the number of teams being beaten (Taylor et al. 2008). Thus, for both pairwise and

listwise learning, the quality of pairs turns out to be the key to the ranking algorithms. In

other words, errors (i.e. noise) in document pairs arise from the original document label

noise might be the true reason for the performance degradation of ranking algorithms.

To verify our idea, we propose to evaluate the performance of ranking algorithms

against the document pair noise. Similar to the definition of dNoise, here we define the

document pair noise ratio as the proportion of noisy document pairs (i.e. document pairs

with wrong preference order) to all the document pairs, referred to as pNoise. We would

like to check whether the performance degradation of ranking algorithms against pNoise is

consistent across the data sets. For this purpose, we first investigate how document pair

noise arises from document label noise and take a detailed look at pNoise. The document

pairs generated from a noisy training data set can be divided into three categories ac-

cording to the original relationship of the two documents in the noise free data set.

Correct-order pairs: For a document pair hdi; dji with preference order from noisy data,

document di is indeed more relevant than dj in the original noise free training data. It is

clear that the correct-order pairs do not introduce any noise since they keep the same

order as in the noise free case, even though the relevance labels of the two documents

might have been altered.

Inverse-order pairs: For a document pair hdi; dji with preference order from noisy data,

document dj is more relevant than di in the original noise free training data instead.

Obviously, the inverse-order pairs are noisy pairs since they are opposite to the true

preference order between two documents.

New-come pairs: For a document pair hdi; dji with preference order from noisy data,

document di and dj are a tie in the original noise free training data instead. It is not clear

whether the new-come pairs are noisy pairs or not, since the original labels of the two

documents in the noise free data are the same. We thus conducted some experiments to

investigate this problem.

The basic procedure is like this. We first train a ranking algorithm based on the noise free

training data. We then randomly sample a collection of document pairs (e.g. 10; 000 pairs)

with the same original relevance labels from both the training and test data, and predict the

preference orders between documents in such pairs. For a document pair hdi; dji, we denote
it as a positive pair if the predicted relevance score of di is higher than dj, otherwise

negative. The experiments are conducted over all the three data sets with all the three kinds

of ranking algorithms. The 5-fold cross validation results are shown in Table 2.

From Table 2, we can see that the proportion of positive or negative pairs is around 0:5
over all the sets. The results show that there is no strong preference order between

documents with the same original relevance label, which is quite reasonable and intuitive.

Table 2 Proportions of predicted positive document pairs with same relevance levels

PRank GBDT RankSVM RankBoost ListNet AdaRank

OHSUMED 0.49 0.45 0.49 0.45 0.48 0.44

TD2003 0.50 0.49 0.50 0.49 0.50 0.47

MSLR-WEB10K 0.50 0.49 0.50 0.49 0.49 0.44
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In this way, if two documents with the same relevance label are turned into a new-come

pair due to label noise, there would be approximately half a chance of being a noisy pair.

According to the above analysis, the pNoise of a given data set with known noisy labels

can be estimated as follows

pNoise ¼ Ninverse þ 0:5 � Nnew

Nall

where Ninverse, Nnew and Nall denote the number of inverse-order pairs, new-come pairs and

all the document pairs, respectively.

With this definition, we now apply the same noise injection method, run a number of

experiments by varying dNoise as before, and evaluate the performance of algorithms

against the pNoise. The results are depicted in Figs. 4 (uniform noise profile) and 5 (non-

uniform noise profile), where each sub-figure corresponds to performances over three data

sets (OHSUMED, TD2003, MSLR-WEB10K) using PRank, GBDT, RankSVM, Rank-

Boost, ListNet, and AdaRank, respectively.

From the results in both figures, we can observe surprisingly consistent behavior for the

performance degradation of ranking algorithms across different data sets. The perfor-

mances of ranking algorithms keep quite stable as pNoise is low. When pNoise exceeds a

certain point1 (around 0:5 as indicated in our experiment), the performances drop quickly.

Now we can see that, the results w.r.t pNoise are in accordance with the intuitions of

degradation and consistency mentioned above, which are violated in the case of dNoise.

Therefore, the results indicate that pNoise captures the intrinsic factor that determines

the performance of a ranking algorithm, and thus can well explain the consistency of

performance degradation of various ranking algorithms. Actually, it is not surprising to find

that pNoise is the intrinsic noise which affect the ranking performances for all algorithms

including pointwise, pairwise and listwise algorithms. The main reasons lie in that the

measures used for evaluation in IR (MAP, NDCG) are mainly based on pairwise orders.

Therefore, pNoise can capture the intrinsic factor, and well explain the consistency of

performance degradation.

4.3 pNoise versus dNoise

Now we know that dNoise is a natural measure of label noise in training data as label noise

is often introduced at document level in practice, while pNoise is an intrinsic measure of

noise that can reflect the true noise for ranking algorithms. Since document pair noise

usually arises from document label noise, here we explore the variation of pNoise against

dNoise across different data sets. We study the relationship between pNoise and dNoise

theoretically and practically.

Reminder that pNoise is roughly defined as the proportion of the inverse pair and new

coming pair to all the pairs, with mathematical descriptions as follows.

pNoise ¼ Ninverse þ 0:5 � Nnew

Nall

where Ninverse, Nnew and Nall denote the number of inverse-order pairs, new-come pairs and

all the document pairs, respectively.

1 There is a threshold of pNoise, after which the performance will be affected by the label noise much
heavily. This guess needs further theoretical guarantee, which are not included in our work.
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Given the labeling strategy, the detailed computation of pNoise can be further

derived from the original equation. Considering C-grades relevance levels, there are

nl documents labeled with l 2 f0; 1; . . .;C � 1g among n documents per query, and the
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Fig. 4 Performance evaluation in terms of MAP and NDCG@10 against pNoise (uniform noise profile)
with different algorithms on OHSUMED, TD2003, and MSLR-WEB10K. a PRank; b GBDT; c RankSVM;
d RankBoost; e ListNet; f AdaRank
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proportion of documents labeled with l is rl ¼ nl
n
. With c dNoise injected for

both uniform and non-uniform noise profile, the pNoise can be calculated precisely

as
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Fig. 5 Performance evaluation in terms of MAP and NDCG@10 against pNoise (non-uniform noise
profile) with different algorithms on OHSUMED, TD2003, and MSLR-WEB10K. a PRank; b GBDT;
c RankSVM; d RankBoost; e ListNet; f AdaRank
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pNoiseðfrlgC�1
l¼0 ; cÞ ¼

P1
l¼0

P1
j¼l Dðl; jÞrlrj

P1
l¼0

P1
j¼l Aðl; jÞrlrj

; ð1Þ

where A and D are upper triangle coefficient matrices, with each Dðl; jÞ; l� j stands for the

the probability that original pair generated by label l and j become inverse or new coming

pair (times 1/2 in this case) after noise injection, and each Aðl; jÞ; l� j stands for the

probability that original pair of documents labeled l and j become a real pair (with different

labels) after noise injection.

Taking C ¼ 2 with uniform noise as an example, Dð0; 0Þ stands for the probability that

original pair generated by label 0 and 0 become inverse or new coming pair (times 1/2 in

this case). Since pais with label 0 and 0 cannot become inverse since they are not real pairs

originally, therefore we only calculate the probability that they become new coming pair.

With dNoise c, the probability that they become new pair is cð1� cÞ, thus we get

Dð0; 0Þ ¼ 1
2
cð1� cÞ. Easily we can get that Dð1; 1Þ is also equal to 1

2
cð1� cÞ. While for

Dð0; 1Þ, since the original pairs generated by label 0 and 1 are real pairs, the probability

that original pair become new pair is 0, therefore Dð0; 1Þ equal to the probability that

original pair generated by label 0 and 1 become inverse. When dNoise is c, we can get that

Dð0; 1Þ ¼ c2. Similarly, we can get the value of each Aðl; jÞ.
Here we take C ¼ 2; 3; 5 for example to show the two matrices of A and D.
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(2) Non-uniform noise profile.
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(2) Non-uniform noise profile.
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A curve without markers in Fig. 6 is theoretical pNoise variation with dNoise on one data

set using one noise profile, while the curve of the same color with markers is the corre-

sponding experimental results on this data set using this noise profile. Both theoretical and

experimental curves are consistent on three data sets using both uniform and non-uniform

noise profile, so it is possible to analyze either of them.

Figure 6 shows the average pNoise with respect to dNoise over the three data sets under

our previous fivefold cross validation experimental settings. From the results we can see

that the increase of pNoise with respect to dNoise varies largely over different data sets.

This actually well explains our basic observations. As we can see, given a small dNoise

(e.g. 0.1) on TD2003, the pNoise will reach a very high value ([ 0:4). According to red

curves in Fig. 4a–f, such a pNoise has already reached the turning point of the performance

curve on TD2003. This explains why the performances of ranking algorithms on TD2003

drop quickly along with the increase of dNoise. On the contrary, on OHSUMED and

MSLR-WEB10K, the variations of pNoise with respect to dNoise are more gentle, and

correspondingly the performances of ranking algorithms are quite stable. Comparing the

two data sets, the increase of pNoise along with dNoise is faster on OHSUMED. This is

also consistent with our basic observations where the performance degradation of the same

algorithm on OHSUMED is quicker than that on MSLR-WEB10K. In fact, even when

dNoise reaches 0:5 on MSLR-WEB10K, the corresponding pNoise is still below a

threshold (In this case, the turning point is 0:4 or so), which means the pNoise has not

reached the turning point of the performance curve on MSLR-WEB10K according to blue

curves in Fig. 4a–f. This explains why the performance of a ranking algorithm is hardly

affected with respect to dNoise on MSLR-WEB10K in our basic observations. Similar

results can be found in Fig. 5a–f.
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5 How to make data robust

From the above section, we know that pNoise captures the true noise of learning to rank

algorithms. Higher pNoise leads to lower ranking performance. Furthermore, the perfor-

mance degradation of the same ranking algorithm varies largely across data sets due to the

fact that the increase of pNoise with respect to dNoise varies largely over different data

sets. Without loss of generality, faster increase of pNoise with respect to dNoise corre-

sponds to quicker performance degradation of the ranking algorithm. Now the remaining

question is what factors determine the variation of pNoise with respect to dNoise from the

data aspect. By answering this question, we are able to identify the inherent characteristics

that are related to the data robustness to label noise in learning to rank.

Considering the differences among the three data sets and how pNoise arises from

dNoise, we identify that two inherent characteristics of the training data may have impact

on the variation of pNoise with respect to dNoise, namely relevance levels and label

balance. In this section, we aim to verify whether these two data characteristics affect the

variation of pNoise against dNoise, and if yes, how?

Note that in this section, we conducted our data analysis experiments by fixing the size

of training data. There are two major reasons: (1) The labeling process is expensive and

time consuming. Therefore, it is reasonable to guide the labeling process under some

targeted labeling effort (i.e. fixed labeling size). (2) If one can afford more labeled data, it

is well believed that one may obtain better performance and robustness. Therefore, here we

aim to identify inherent characteristics related to data robustness beyond the data size.

5.1 Relevance levels

Relevance levels refer to the graded relevance judgments one adopts for labeling. For

example, TD2003 takes 2-graded relevance judgments while MSLR-WEB10K takes 5-

graded relevance judgments. We first investigate the influence of relevance levels on

pNoise theoretically for each data set with different relevance levels, then experimental

results are shown to verify similar influence on data robustness.

5.1.1 Relevance levels versus pNoise

According to the detailed computation equations of pNoise from Eqs. (1, 2, 3, 4, 5, 6), it is

easy to obtain a complete picture of any data set with any grade relevance judgments, i.e. 2,

3, 5. Here we take TD2003, OHSUMED and MSLRWEB10K for example.

(1) TD2003

• C = 2 (true): r0 ¼ 0:992, r1 ¼ 0:008;
• C = 3 (simulation): r0 ¼ 0:792, r1 ¼ 0:2, r2 ¼ 0:008;
• C = 5 (simulation): r0 ¼ 0:792, r1 ¼ 0:1, r2 ¼ 0:1, r3 ¼ 0:004, r4 ¼ 0:004.

(2) OHSUMED

• C = 2 (simulation): r0 ¼ 0:7, r1 ¼ 0:3;
• C = 3 (true): r0 ¼ 0:7, r1 ¼ 0:16, r2 ¼ 0:14;
• C = 5 (simulation): r0 ¼ 0:5, r1 ¼ 0:2, r2 ¼ 0:0:16, r3 ¼ 0:07, r4 ¼ 0:07.
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(3) MSLRWEB10K

• C = 2 (simulation): r0 ¼ 0:842, r1 ¼ 0:158;
• C = 3 (simulation): r0 ¼ 0:842, r1 ¼ 0:133, r2 ¼ 0:025;
• C = 5 (true): r0 ¼ 0:517, r1 ¼ 0:325, r2 ¼ 0:133, r3 ¼ 0:017, r4 ¼ 0:008.

Therefore the comparison results on one data set with different relevance levels is shown in

Fig. 7.

In Fig. 7 it is obvious that pNoise decrease more quickly with dNoise when there are

more relevance levels. This suggests we need more relevance levels in the labeling process

to make pNoise lower directly.

5.1.2 Relevance levels versus robustness

Here we conduct experiments to investigate whether relevance levels has an effect on the

variation of pNoise against dNoise. For this purpose, we need to obtain identical training

data with fixed size but different relevance levels. The basic idea is that we turn the training

data with multi-graded relevance judgments into that with lower graded ones, while the test

data is fixed.
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Specifically, both OHSUMED and MSLR-WEB10K data sets are leveraged in our

experiments because they adopt more than 2-graded relevance judgments (i.e. OHSUMED

takes 3-graded judgments while MSLR-WEB10K takes 5-graded). We then turn both

multi-graded relevance judgments on the training data into 2-graded ones in the following

way. On OHSUMED, we keep the relevance judgment 0 the same, while merge the

relevance judgments 1 and 2 into a single grade 1. We denote the corresponding

OHSUMED data set with 2-graded relevance judgments as OHSUMED2G. Similarly, on

MSLR-WEB10K, we merge the relevance judgments 0 and 1 into a single grade 0, and

merge the relevance judgments 2, 3, and 4 into a single grade 1. We denote the corre-

sponding MSLR-WEB10K data set with 2-graded relevance judgments as MSLR-

WEB10K2G. Note there may be other ways to turn the 5-graded relevance judgments into

lower graded ones (e.g. 3-graded ones). Here we turn it into 2-graded ones to make the

difference on relevance levels as large as possible.

We then apply the noise injection method on both the original data sets and the new

lower graded data sets, and compare the variation of pNoise against dNoise. The results are

depicted in Fig. 8, where Fig. 8a shows the comparison between OHSUMED and

OHSUMED2G, and Fig. 8b shows the comparison between MSLR-WEB10K and MSLR-

WEB10K2G. From both the results we can see, when there are less relevance levels, the

increase of pNoise with respect to dNoise will be faster. For example, given the same

dNoise 0:3, the corresponding pNoise is about 0:3 on MSLR-WEB10K, but reaches about

0:4 on MSLR-WEB10K2G. From previous analysis we know that, faster increase of

pNoise with respect to dNoise corresponds to quicker performance degradation of the

learning to rank algorithm. Therefore, we may expect that these lower graded data sets

would be more sensitive to label noise. We verified our guess by evaluating the perfor-

mance of trained ranking algorithms with respect to dNoise based on the above two groups

of data sets. Similarly, a number of experiments were conducted with dNoise changing

from 0 to 0:5 with a step of 0:05, and the performances of trained ranking algorithms were

evaluated based on the corresponding noise free test set. The 5-fold cross validation results

are depicted in Figs. 9 and 10, where Fig. 9 shows the results of the four ranking algo-

rithms on OHSUMED and OHSUMED2G evaluated by MAP and NDCG@10,
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a OHSUMED (3-graded) and OHSUMED2G (2-graded), and b MSLR-WEB10K (5-graded) and MSLR-
WEB10K2G (2-graded)
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respectively, and Fig. 10 shows the corresponding results on MSLR-WEB10K and MSLR-

WEB10K2G. Not surprisingly, under both evaluation measures, the performance of a same

ranking algorithm drops more quickly on the lower graded data set than on the corre-

sponding higher graded one. Take RankBoost as an example, given the same dNoise 0:4,
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Fig. 9 Performance evaluation against dNoise with different relevance levels on OHSUMED (3-graded)
and OHSUMED2G (2-graded). a PRank; b GBDT; c RankSVM; d RankBoost; e ListNet; f AdaRank
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the relative drop of MAP compared with noise free case is about 6% for the model trained

on OHSUMED, while the relative drop of MAP reaches about 16% for the model trained

on OHSUMED2G, as shown in Fig. 9d. Similarly, the MAP of RankBoost is hardly

affected for the model trained on MSLR-WEB10K, but drops quickly when dNoise reaches

0:4 for the model trained on MSLR-WEB10K2G, as shown in Fig. 10d.
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From the above results, we identify that relevance levels have crucial impact on the

variation of pNoise with respect to dNoise. For a fixed size of training data, with more

relevance levels, pNoise can be less affected by dNoise. Correspondingly we can make the

training data more robust to label noise.

5.2 Label balance

The above section identifies the relationship between relevance levels and data robustness,

now we turn to the label balance factor. Label balance refers to the balance among labeled

data of different relevance levels, which can be reflected by the proportions of labeled data

over different relevance levels. For example, the average proportions of labeled data over

different relevance levels are about 99:2:0:8 on TD2003 (2-graded), and about 70:16:14 on

OHSUMED (3-graded), as shown in Table 1. We first investigate the influence of label

balance on pNoise theoretically for each data set with different label balances, then ex-

perimental results are shown to verify similar influence on data robustness.

5.2.1 Label balance versus pNoise

According to the detailed computation equations of pNoise from Eqs. (1, 2, 3, 4, 5, 6), it is

easy to obtain the complete picture of label balance’s influece on pNoise. Here we take

TD2003, OHSUMED and MSLRWEB10K for example.

(1) TD2003(2-grade)

• R1 (true): r0 ¼ 0:992, r1 ¼ 0:008;
• R2 (simulation): r0 ¼ 0:7,r1 ¼ 0:3;(more balanced than R1)

• Rbest (simulation): r0 ¼ 0:5,r1 ¼ 0:5.

(2) OHSUMED (3-grade)

• R1 (simulation): r0 ¼ 0:9, r1 ¼ 0:05,r2 ¼ 0:05;
• R2 (true): r0 ¼ 0:7, r1 ¼ 0:16, r2 ¼ 0:14;(more balanced than R1)

• Rbest(simulation): r0 ¼ 1=3, r1 ¼ 1=3,r2 ¼ 1=3.

(3) MSLRWEB10K(5-grade)

• R1 (simulation): r0 ¼ 0:89,r1 ¼ 0:05,r2 ¼ 0:05,r3 ¼ 0:005,r4 ¼ 0:005;
• R2 (true): r0 ¼ 0:517,r1 ¼ 0:325,r2 ¼ 0:133,r3 ¼ 0:017, r4 ¼ 0:008;(more bal-

anced than R1)

• Rbest (simulation): r0 ¼ 0:2,r1 ¼ 0:2,r2 ¼ 0:2,r3 ¼ 0:2, r4 ¼ 0:2.

Therefore the comparison results on one data set with different relevance levels is shown in

Fig. 11.

In Fig. 11 it is obvious that pNoise decreases when the proportion becomesmore balanced

from R1, R2 to Rbest given dNoise. This suggests we need to balance the document pro-

portion of each relevance level better in the labeling process to make pNoise lower directly.

5.2.2 Label balance versus robustness

Here we conduct experiments to investigate the relationship between label balance and

data robustness. Similarly, we start from considering how label balance affects the
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variation of pNoise against dNoise. For this purpose, we need to obtain training data with a

fixed size but different label balance. The basic idea is that we can sample training data

with fixed size under different proportions over relevance levels from the original data set,

while the test data is fixed.

Specifically, we leveraged two data sets both with 2-graded relevance judgments in our

experiments. One is TD2003 and the other is MSLR-WEB10K2G which is a 2-graded

version of MSLR-WEB10K generated in the above section. We choose the two data sets

due to the following considerations. (1) We aim to sample different proportions of labeled

data over relevance levels with a fixed total size, and the difference should be sufficient for

better comparison. The small data set (e.g. OHSUMED) and the original multi-graded data

set (e.g. MSLR-WEB10K) lose the flexibility for such sampling. (2) We would like to

demonstrate the effect of label balance. Therefore, with 2-graded relevance judgments, one

can capture what corresponds to label balance more easily.

On TD2003, we sampled two training data sets, denoted as TD2003P1 and TD2003P7.

Both data sets have exactly the same number of labeled documents (i.e. 16 labeled

documents) for each query, but different proportions over the 2 relevance levels. For

TD2003P1, the ratio between relevant and irrelevant labeled data for each query is 1:1,

while for TD2003P7, the ratio is 1:7 for each query. Note that these ratios are chosen

according to the maximum number of relevant documents available per query. In order to

avoid possible bias in random sampling, such sampling process are repeated for 5 times

under each ratio. In other words, both TD2003P1 and TD2003P7 have 5 random sampled

sets.

On MSLR-WEB10K2G, we sampled two sets, denoted as MSLR-WEB10K2GP5 and

MSLR-WEEB10K2GP50, each of which has exactly the same number of labeled docu-

ments (i.e. 102 labeled documents) for each query, but different proportions. In MSLR-

WEB10K2GP5, the ratio between relevant and irrelevant labeled data for each query is 1:5,

while in MSLR-WEB10K2GP50, the ratio is 1:50 for each query. We also obtain 5

samples for each data set.

We apply the noise injection method on all the sampled data sets, and compare the

variation of pNoise with respect to dNoise. The results are depicted in Fig. 12, where

Fig. 12a shows the comparison between TD2003P1 and TD2003P7, and Fig. 12b shows

the comparison between MSLR-WEB10K2GP5 and MSLR-WEB10K2GP50. From both

results we can see, when the proportions of labeled data over different relevance levels are

less balanced, the increase of pNoise with respect to dNoise will be faster. For example,

given the same dNoise (0:1), the corresponding pNoise is about 0:16 on TD2003P1, but
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Fig. 11 Theoretical pNoise varies with dNoise over the data set with different label balances.
a OHSUMED; b TD2003; c MSLRWEB10K
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reaches about 0:39 on TD2003P7. As aforementioned, faster increase of pNoise with

respect to dNoise corresponds to quicker performance degradation of the ranking algo-

rithm. Therefore, we may also expect that these less balanced data sets would be more

sensitive to label noise.

Similar to what we have done in the previous section, we also evaluate the performance

of the trained ranking algorithms with respect to dNoise based on the above four data sets

to verify our guess. The evaluation results are depicted in Figs. 13 and 14, where Fig. 13

shows the results of the four ranking algorithms on TD2003P1 and TD2003P7 evaluated by

MAP and NDCG@10 respectively, and Fig. 14 shows the corresponding results on MSLR-

WEB10K2GP5 and MSLR-WEB10K2GP50. From the results we can see that, under both

evaluation measures, the performance of the same ranking algorithm drops more quickly

on the less balanced data set as compared with the corresponding more balanced one. Take

RankSVM as an example, given the same dNoise 0:2, the relative drop of NDCG@10 as

compared with noise free case is about 22% for the model trained on TD2003P1, while the

relative drop of MAP reaches about 55% for the model trained on TD2003P7, as shown in

Fig. 13a. Similarly, for the RankSVM trained on MSLR-WEB10K2GP5, its performance

under NDCG@10 keeps quite stable until dNoise exceeds 0:4 as shown in Fig. 14a.

However, for the same model trained on MSLR-WEB10K2GP50, its performance under

NDCG@10 drops almost linearly with the increase of dNoise.

From the above results, we identify that label balance also has crucial impact on the

variation of pNoise with respect to dNoise. For a fixed size of training data, with better

label balance, pNoise can be less affected by dNoise. Correspondingly, we can make the

training data more robust to label noise.

5.3 Guidelines for robust data construction

The above analysis tells us that for a fixed size of training data, with more relevance levels

and better label balance, we can make the training data more robust to label noise. These

results actually provide us some valuable guidelines on the labeling strategy in practice.

Firstly, the results on relevance levels provide us some guidelines on the number of

grades adopted in labeling. In the dominating multi-graded relevance judgments scenario,
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Fig. 12 Average pNoise with respect to dNoise over the data sets with different label balance, a TD2003P1
(1:1) and TD2003P7 (1:7), and b MSLR-WEB10K2GP5 (1:5) and MSLR-WEB10K2GP50 (1:50).
a TD2003; b MSLR-WEB10K
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2-graded, 3-graded, or 5-graded judgments are usually adopted. It is unclear how many

relevance grades are better. Now from the robustness perspective, we show that we can

make training data more robust to label noise if we take more relevance levels. However,

more relevance levels may lead to more effort on defining a clear relevance judgment

specification and more effort on judging for human accessors. Therefore, we cannot
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Fig. 13 Performance evaluation against dNoise(both uniform and non-uniform noise profie) with different
Label Balance on TD2003P1 (1:1) and TD2003P7 (1:7). a PRank; b GBDT; c RankSVM; d RankBoost;
e ListNet; f AdaRank
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leverage arbitrary levels in multi-graded relevance judgments. There is clearly a tradeoff

between robustness and label effort (e.g. maybe 5-graded is a good tradeoff), which is

worth further study.

Secondly, the results on label balance provide us some guidelines on gradation distri-

bution in labeling. In traditional labeling processes, one usually cares about how many

documents to label per query, but seldom addresses the label balance problem. Given the
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Fig. 14 Performance evaluation against dNoise with different label balance on MSLR-WEB10K2GP5 (1:5)
and MSLR-WEB10K2GP50 (1:50). a PRank; b GBDT; c RankSVM; d RankBoost; e ListNet; f AdaRank
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fact that there are always much more irrelevant documents than relevant ones for a query,

if we randomly sample a collection of documents for a query to label, we may very

probably obtain an unbalanced data set. One possible way is to keep a certain number of

relative relevant documents labeled.

For a multi-graded relevance judgment approach, both principles are not easy for im-

plementation in real application as indicated above. Fortunately, we find that the recently

proposed Top-k Labeling strategy (Niu et al. 2012) is a good alternative. Top-k labeling

strategy adopts the pairwise preference judgment to generate the top k ordering items from

n documents in a manner of HeapSort. The obtained ground-truth from this top-k labeling

strategy is a mixture of the total order of the top k items, and the relative preferences

between the set of top k items and the set of the rest n� k items, referred as top-k ground-

truth. Therefore, we can see that Top-k Labeling strategy naturally satisfies the above two

principles.

(1) Top-k Labeling results convey finer gradations than multi-graded relevance

judgments as they can distinguish those documents within one grade (top k

documents) in multi-graded relevance judgments (k relevance levels). It is

intrinsically a pairwise judgment method. As noted by Carterette et al.

(2008), ‘‘By collecting preferences directly, some of the noise associated with

difficulty in distinguishing between different levels of relevance may be reduced’’.

(2) Top-k Labeling results naturally satisfy the label balance requirement. The top-k

ground-truth can be viewed as k relevant documents and the another n� k irrelevant

documents, and there are k relevance levels. Therefore it keeps the label balance in k

relevance levels since each level has only one document. Someone may argue that

the number of irrelevant documents are much more than relevant documents, we

admit that it is true, however, this will not influence much to the results since the top

k items and the order between them are the key to the problem.

Additionally, the basic judgment in Top-k Labeling is in a pairwise way, which is much

easier than multi-graded relevance judgment through user studies in Carterette et al.

(2008), Niu et al. (2012) in terms of time cost per judgment. This suggests that pairwise

preference judgment methods are prone to be less noisy than multi-graded relevance

judgment methods.

To this end, we can see that pairwise preference judgment is more suitable to construct

robust training data set for learning to rank, according to our analysis. Here, we use a case

study to verify the above guidelines in real labeling process.

5.3.1 Case study

We randomly selected 5 queries out of all 50 queries from the Topic Distillation task of

TREC2003 as our query set. For each query, we then randomly sampled 50 documents

from its associated documents for judgment. In TREC topics, most of the queries have

clear intent in the form of query description. The descriptions for the chosen 5 queries are

‘‘local, state organizations and programs’’, ‘‘polygraphs, polygraph exams’’, ‘‘shipwrecks’’,

‘‘cyber crime, internet fraud’’, and ‘‘literature for children’’, respectively.

Here we take the existing binary relevance judgments (‘‘irrelevant’’, ‘‘relevant’’) for all

the query-document pairs above as noise-free ground-truth. Three labeling strategies are

adopted in our experiments, three-graded relevance judgment method M1 (‘‘irrelevant’’,

‘‘partially relevant’’, ‘‘relevant’’), five-graded relevance judgement method M2 (‘‘bad’’,
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‘‘fair’’, ‘‘good’’, ‘‘excellent’’, ‘‘perfect’’) and top-k labeling method M3 with k set to 10.

We asked three annotators to label the queries under these strategies.

To measure the degree of robustness, pNoise are computed between the existing binary

noise-free ground truth and the three kinds of noisy labeling results. From Table 3, we can

see that: (1) the pNoise generated by M2 are lower than that by M1 on all 5 queries, which

verifies our first guideline that more relevant levels is better for robust dataset construction;

(2) the pNoise generated by M3 is lower than those by both M1 and M2 for all queries

except the the second query, which verifies our guidelines that pairwise preference

judgement is more suitable to construct robust training data set as compared to multi-

graded relevance judgment approach. As for the result on the second query, we explain that

the main reason may be due to the limitation of fixed k for all the queries in the top-k

labeling strategy, considering there is only one relevant document for the the second query

in the binary ground truth.

6 Conclusions and future work

In this paper, we conducted data analysis to first address the data robustness problem in

learning to rank algorithms. In our study, we find that document pair noise captures the true

noise of ranking algorithms, and can well explain the performance degradation of ranking

algorithms. We further identify two inherent characteristics of the training data, namely

relevance levels and label balance, that have crucial impact on the variation of pNoise with

respect to dNoise. We show that for a fixed size of training data, with more relevance levels

and better label balance, we can make pNoise less affected by dNoise, i.e. the training data

more robust to label noise. With these results, we discuss some guidelines on the labeling

strategy for constructing robust training data in real scenario. We believe these guidelines

would be helpful especially for people who want to apply learning to rank algorithms in

real search systems.

As for the future work, the current noise injection methods are somehow simple and we

may further improve the injection method for better analysis. In fact, the noise ratio could be

different fromquery to query due to the different difficulty levels of queries. Besides, from the

guidelines discussed above, one interesting direction would be to design novel robust data

construction methods. For example, we may improve the existing pairwise preference la-

beling technique (as it is more finer graded and more balance) by effectively selecting

document pairs for labeling, so that we can achieve lower complexity and higher robustness.
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Table 3 Comparison of pNoise among three labeling strategies

Labeling method Query1 Query2 Query3 Query4 Query5 Average

Three-grade judgement(M1) 0.390 0.451 0.426 0.354 0.278 0.380

Five-grade judgement(M2) 0.376 0.421 0.398 0.322 0.275 0.359

Top-k labeling(M3) 0.253 0.445 0.397 0.303 0.215 0.342

Bold values indicate the best one among the three judgement methods on each query
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