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Abstract Sub-image content-based similarity search forms an important operation in

current image archives since it provides users with images that contain a query image

as their part. Such a search can conveniently be implemented using the bag-of-features

model. Its integral part is a construction of visual vocabulary. Most existing algorithms

to create a visual vocabulary suffer from high computational (e.g. k-means) or super-

visor-guidance (e.g. visual-bit classifier, or sparse coding) requirements. In this paper,

we propose a novel approach to visual vocabulary construction called metric distance

permutation vocabulary. It is based on permutations of metric distances to create

compact visual words. Its major advantage over prior techniques is time and space

efficiency of vocabulary construction and quantization process during querying, while

achieving comparable or even better effectiveness (query result quality). Moreover, this

basic concept is extended to combine more independent permutations. Both the pro-

posals are experimented on well-known real-world data-sets and compared to other

state-of-the-art techniques.
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1 Introduction

Image and especially sub-image content-based similarity search strongly depends on

how images are described and characterized. During the last decade, various image

characterization methods were introduced. Local visual features based on SIFT (Lowe

2004), its variant SURF (Bay et al. 2008) and others form the current state-of-the art.

The rotation, scale and illumination-change invariance, and noise stability properties of

SIFT descriptor are counterbalanced by its high complexity. Each SIFT descriptor is

a 128-dimensional vector, whereas SURF descriptor is of 64 dimensions. Attempts to

analyze, organize, search or index such high-dimensional spaces have to cope with the

dimensionality curse (Beyer et al. 1999). Another weakness of SIFT and similar local

descriptors is large, almost unpredictable, number of descriptors extracted from an

image. There are techniques presented in literature that aim at decreasing the number of

descriptors by using an improved local extrema detection algorithm (Chum et al. 2004)

or by aggregating and compressing them (Turcot and Lowe 2009; Chum et al. 2008;

Jégou et al. 2012; Bergamo et al. 2013). Nonetheless, it is still challenging to design an

effective system that scales up to billions of images while being acceptably efficient

(fast).

The bag-of-features (BOF) model has gained success and constitutes a state-of-the-

art principle in image categorization and retrieval. Its idea is a transformation of image

content-based retrieval problem to text retrieval problem that is efficiently implemented

by current full-text search engines. This transformation is based on preprocessing

database images by extracting local visual features and quantizing them to decrease

their variability. Thus an image is described with a list of so-called visual words. The

great advantage of such an approach is that an efficient implementation through

inverted files, e.g. Apache Lucene search engine, is available. Of course, visual words

can be weighted similarly to tf-idf scheme in text retrieval. A visual vocabulary is a set

of all visual words. Obviously, the visual vocabulary is a critical component of the

whole system. Each visual word should represent all feature descriptors that are

semantically akin. In practice, we have to choose or define a proper similarity metric

function that measures a pair of semantically-similar descriptors as close. Finally,

a technique that clusters or partitions the feature space to a moderate number of

‘‘representatives’’ (visual words) must be employed.

There are two basic applications of BOF model: (1) object categorization and recog-

nition, and (2) content-based image retrieval. The former typically requires training

a classifier for each object category along with a special visual vocabulary that emphasizes

some visual words for each of categories so a Bayes classifier, for example, can be applied.

In Winn et al. (2005), clustering is used to construct a large vocabulary that is then reduced

using pair-wise visual word merging for better categorization. In Yang et al. (2008b),

a collection of discriminative vocabularies is learned by incorporating a classifier into the

process of vocabulary creation. The latter application aims at retrieval of images that are

similar to a query image or contain it as their part (Philbin et al. 2008; Mikulik et al. 2010),

which is also the focus of this paper.

This paper is organized as follows. In the following subsections, we sketch out our

proposal and relate it to relevant existing techniques. In Sect. 2, the formal definition of the

proposed algorithm is given including complexity analysis. Section 3 presents two

extensions to this proposal. Experimental trials on widely used data-sets are given in

Sect. 4. The paper concludes in Sect. 5.
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1.1 Paper contributions

We propose a novel algorithm metric distance permutation vocabulary (MDPV) for visual

vocabulary creation for the need of generic image retrieval in large-scale image collec-

tions. Our approach is based on exploiting permutations of distances from a database/query

descriptor to preselected descriptors. These permutations are then interpreted as codes of

visual words. In other words, we select a set X of n descriptors and use them to construct a

so-called l-prefixVoronoi diagram which differs from the order-l Voronoi diagram (Au-

renhammer 1991) by exploiting not only l closest sites but also their ordering. In this

respect, each l-prefixVoronoi cell is defined as the set of points of the feature space that

have a particular sequence of l descriptors ðf1; . . .; flÞ, where fi 2 X, as their l nearest

neighbors. This sequence can be perceived as a permutation over X and it defines one

visual word.

Next, we extend this rigid principle of l-prefixVoronoi diagram to an adaptive variant

(h1::li-prefix Voronoi diagram), where only the maximum prefix l is defined. This is

convenient since Skala (2009) shows that not all Voronoi cells in a high-dimensional space

may contain any point, so we can omit ‘‘empty’’ cells. To increase stability of quantization,

several random but independent h1::li-prefix tessellations can be defined to form one

system, which is an idea similar to the random forests (Breiman 2001).

Advantages of our MDPV approach can be summarized as follows: (1) fast preparation

of the visual vocabulary—majority of vocabulary construction costs are consumed by

selecting proper feature descriptors that define the h1::li-prefix Voronoi diagram over a

carefully selected sites. However, experimental evaluations confirm that a random selec-

tion provides a good overall performance (Lu et al. 2012; 2) low memory requirements—a

small number of descriptors lead to a large number of Voronoi cells; (3) data type inde-

pendence—since our method is defined for a metric space, there is no restriction to

multidimensional feature spaces only, so other application domains may benefit from using

such a feature quantization; (4) comparison of the performance of MDPV with other state-

of-the-art techniques on real-world data-sets.

1.2 Bag-of-features model

In computer vision the bag-of-features, or bag-of-words, model is an alias for a well-known

vector-space model originating from text retrieval. It is extended to be applied to images as

follows. Each database image I is processed by an extraction algorithm that reads the

binary content of I, identifies patches and returns a set of visual local features

F ¼ ff1; . . .; fmg, where each feature symbolizes a numerical description of a patch.

Moreover, x; y coordinates and scale s defining the patch’s location in I and its importance,

can be associated with each feature. Since the feature descriptor fi is typically a high-

dimensional vector (128 for SIFT), its variability is extremal. So, a particular descriptor is

not very likely to reoccur in I or any other image, thus a direct application of vector-space

model would lead to poor quality search. A technique that reduces such variability must be

applied first. This stage converts a descriptor to a visual word. The visual word is then a

representative of several similar image patches. Finally, a set of all visual words is denoted

as a visual vocabulary. For example, k-means clustering applied to all extracted local

feature descriptors can be used to obtain k cluster centers that become the visual words.

Thus, each image patch is mapped to a visual word by the clustering and the image is

represented by a histogram of visual words.
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1.3 Related work

Local visual feature descriptors are bulky, so existing techniques usually transform them to

more compact representations. The motivation for doing so is twofold: to decrease memory

requirements so a main-memory organization can be utilized, and to use a well-known and

reliable data organization typically verified by previous successful deployment. We clas-

sify local feature compression schemes into three categories: transform coding, hashing,

and vector quantization. Besides this, we also tackle indexing techniques that do not apply

any transformation, but rather embed the data into a metric space (distance space) and use

an indexing technique for such data.

Firstly, transform coding methods are mostly adopted in audio, image and video signal

processing. They are application-specific and require deep knowledge about the data

domain in advance. Such knowledge is then used to determine information to be discarded

from the source versus information to be processed. A typical representative is the

Karhunen Lòeve Transform (KLT) (Bigun 1992; Devaux et al. 2000) that gives good

results for Gaussian data, causing the transformed coefficients to be statistically inde-

pendent. Unfortunately, the statistics for SIFT nor SURF descriptors do not exhibit

Gaussian data properties. In Chandrasekhar et al. (2009), the authors studied dimension-

ality reduction of SIFT and SURF descriptors using KLT but followed by an entropy

coding. Discrete Cosine Transform (Chadha et al. 2011; Schwerin and Paliwal 2008;

Makar et al. 2009) and Discrete Wavelet Transform (Grzegorzek et al. 2010; Lim et al.

2009) were also proposed as feature quantization methods, but they did not perform results

comparable to other state-of-the-art methods.

Secondly, various hashing transformations like locality sensitive hashing (LSH) are

applied. The main drawback of the original LSH method as described in Andoni and Indyk

(2008) is that it requires a large number of hash tables or a long time to evaluate nearest

neighbors. LSH was used to build a search engine without any intermediate visual-voca-

bulary-creation step in multi-probe LSH (Joly and Buisson 2008), kernelized-LSH (Kulis

and Grauman 2009) and LDA-Hash (Strecha et al. 2011). Kang et al. (2004) use hierarchical

and non-uniform bucket partitioning to handle non-homogeneous data-sets. In Yin et al.

(2013), multi-probe LSH was enriched with principles of Bþ trees to optimize I/O costs,

which significantly increased performance to retrieve nearest neighbors. An older, but

interesting, approach, called Randomized Locality Sensitive Vocabulary (RLSV), applying

LSH to create visual vocabulary has been proposed in Mu et al. (2010). It aggregates multiple

visual vocabularies created from random projections without clustering and training efforts.

RLSV’s final quantization is based on the consensus of all such vocabularies. Unfortunately,

the authors test this method on the problem of classification and near-duplicate detection

rather than image retrieval. RLSV is highly relevant to our approach, so we provide a

comparison with it in a near-duplicate video detection task in Sect. 4. Recently, sim-min-

hash (Zhao et al. 2013) was proposed as an extension of min-hash (Broder 1997) and

sketches (Chum et al. 2008). From the results, we can read that the speed of image retrieval

was greatly improved however at the expense of lower query effectiveness.

Thirdly, vector quantization methods split feature space into a finite set of clusters. Each

cluster consisting of many descriptors is represented by a single median computed from

them or a single centroid selected from them. To the most known such methods, we count

the k-means family of algorithms. K-means-based algorithms (Kanungo et al. 2002;

Csurka et al. 2004; Nister and Stewenius 2006; Jegou et al. 2010b) are unsupervised

methods that partition the feature space into a predefined number of clusters. A tech-

nique (Jégou et al. 2008) improves k-means quantization by additional partitioning in
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hamming space. To this end, VLAD (Jegou et al. 2010b; Jégou et al. 2012) technique can

be observed alike to our proposal, but it uses K preselected SIFT vectors as a codebook to

form one aggregated vector for all SIFTs obtained from an image. Next, dimensionality

reduction by slicing the aggregated vector is done to produce a short and compact code of

few bytes for fast nearest neighbor search (Jegou et al. 2011). VLAD is a non-probabilistic

version of fisher vector (FV) (Perronnin et al. 2010). This paper reports comparative results

of FV with power normalization in the task of image retrieval. In Amato et al. (2013),

VLAD descriptors are converted to a text representation and indexed by Lucene. Such a

conversion is done by identifying k nearest-neighbors in a preselected set of pivots to a

VLAD descriptor. So a list of ‘‘words’’ describing one image is obtained. Moreover, the

number of occurrences of these words in the list depends on their distance from the VLAD

descriptor—the closer the descriptor is, the more occurrences are in the list. This helps

Lucene better estimate tf-idf weights. There are also methods that use prior knowledge/

supervision to optimize clustering, e.g. random forests (Breiman 2001), informative

vocabulary (Yang et al. 2008a), or sparse coding (Song et al. 2013). They are primarily

used for object-recognition/classification task. Approaches to optimize visual vocabulary

are soft assignment (Philbin et al. 2008) and fine vocabulary (Mikulik et al. 2010). The

prior knowledge of domain gives a great advantage to all of the vector quantization

approaches over other methods but, on the other hand, the vector quantization approaches

usually suffer from the out-of-sample problem.

Lastly, generic metric-space-based indexing techniques (Zezula et al. 2006) can also be

used for image retrieval, e.g. the system called MUFIN (Batko et al. 2010). Approaches

relevant to our technique exhibit LSH properties and are based on distance permutations,

e.g. M-index (Novak and Batko 2009), MI-file (Amato et al. 2014), ordering permuta-

tions (Chavez et al. 2008) and permutation prefixes (Esuli 2012). Issues of LSH in metric

spaces were further studied in Kyselak et al. (2011). The ordering permutations technique

builds on top of principles of Linear AESA (Micó et al. 1992). The major difference is that

it stores a permutation of pivots in increasing order of their distances for each database

object only. Thus, it is a very condensed representation because the distances themselves

are not stored at all. The search is then done through the sequential scan over the database

objects, however in decreasing order of permutation similarity measured to the permutation

of a query, so the search can be terminated earlier to avoid full scan. Finally, this technique

uses all pivots to index each database object. On the other hand, the permutation prefixes

exploit only a subset of pivots that are the closest to a database object, so storage

requirements are further reduced.

The primal idea of our method is to exploit distance permutations too, but its deploy-

ment requirements are principally different from ones known for indexing techniques. In

particular, indexing structures define a moderate number of high-capacity buckets, but we

aim at defining a large number of low-capacity cells to comply with the properties of

a good visual vocabulary (Mikulik et al. 2010). Next, we do not need to support other than

exact match queries, so visual vocabulary can be seen as a set of equivalence classes.

2 Metric distance permutation vocabulary

In this section, we describe our proposal for visual vocabulary creation and justify it with

relevant existing techniques. We also analyze its space and time complexity to document its

efficiency. Next, we extend this technique to be adaptive to data distribution in the feature space.
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The idea of the Metric Distance Permutation Vocabulary (MDPV) is based on a

Voronoi partitioning (Aurenhammer 1991) generalized to metric spaces. The major dif-

ference from k-means-based algorithms is in the definition of Voronoi tessellation. K-

means approaches create K Voronoi cells by selecting K descriptors from the feature

space. Each cell then corresponds to one cluster. To create a visual vocabulary good at

image retrieval, the parameter K must usually be large, e.g., K ¼ 106, so the computational

time is extremely long. Hierarchical k-means pushes K down by creating a tree of cells. So

a cell is recursively divided by a new set of K 0 descriptors selected from this cell. The

parameter K 0 is much smaller than the original K, which leads to much faster computation

and a reasonably shallow tree. Its depth is logK 0K. For example, we can define K ¼ 106

cells by using K 0 ¼ 10 and a 6-level tree. On the other hand, our approach (MDPV) uses

a small number of preselected descriptors to recursively define a large number of Voronoi

cells. We call this principle l-prefixVoronoi partitioning.

2.1 Construction of l-prefixVoronoi partitioning

Initially, a set of feature descriptors, called pivots (originally sites), is selected from

descriptors extracted from database images, P ¼ fp1; . . .; pmg. The selection can be done at

random. Next, a cell of l-prefixVoronoi partitioning is formed by descriptors that have the

same sequence of pivots ðp1; . . .; plÞ as their l-nearest neighbors in P. Alternatively, an l-

prefixVoronoi partitioning can be observed as a recursive application of the common

Voronoi partitioning. All the pivots in P define initial Voronoi cells. Each of these cells is

then divided on the next level with P again, but omitting the pivot that defined this cell.

This is repeated until the maximum level l is reached. Figure 1b depicts an example of l-

prefix2 Voronoi partitioning using four pivots. A formal definition of l-prefixVoronoi

partitioning follows.

Preliminaries. Assume a metric space M¼ ðD; dÞ, where D is a domain of objects

(local image feature descriptors) and d is a total distance function d : D�D7!R satisfying

metric postulates (identity, symmetry and triangle inequality), a fixed set P of n preselected

descriptors (pivots) p1; p2; . . .; pn from D and a descriptor (object) f 2 D, let

ð�Þf : h1; ni7!h1; ni ð1Þ

be a permutation such that 8i; j 2 h1; ni :

ðiÞf \ðjÞf , dðpðiÞf ; f Þ\dðpðjÞf ; f Þ
_ ½ dðpðiÞf ; f Þ ¼ dðpðjÞf ; f Þ ^ i\j �:

ð2Þ

In other words, the pivots are ordered with respect to distances from f , so a sequence

pð1Þf ; pð2Þf ; . . .; pðnÞf is obtained.

Visual word creation. MDPV divides space M into n � ðn� 1Þ � � � � � ðn� lþ 1Þ cells

by applying Voronoi partitioning recursively, where l is the maximum partitioning level

(1� l� n). For the first level, each feature descriptor f is assigned to its closest pivot pi, so

a cell Ci is formed. For the second level, each cell Ci from the previous level is re-

partitioned with the pivots P n fpig ¼ fp1; . . .; pi�1; piþ1; . . .; png. It results in creating cells

Ci;j, where j is the index of the second closest pivot. This partitioning process is repeated

until the level l is reached. See Fig. 1 for illustration.

For each feature descriptor f 2 D, MDPV is defined as the function mdpvl : D7!R and

assigns an integer to f using the formula:
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mdpvlðf Þ ¼
Xl

i¼1

½ðiÞf � 1� � nðl�iÞ: ð3Þ

The function mdpvlðf Þ identifies a cell at level l to which the feature descriptor f passed in

the argument belongs. This number is equal to the number i1. . .il in the base n, so it falls

into the decimal interval ½0; nl�.

2.2 Complexity analysis

Even though MDPV is generic and applicable to any metric space, we assume the

feature space is a vector space with the Euclidean distance here. We use SIFT descriptors

to compare MDPV with other state-of-the-art vocabulary-based methods, namely

RLSV (Mu et al. 2010), ERCF (Moosmann et al. 2008), hierarchical k-means (hk-means)

and standard k-means. The comparison is done in terms of theoretical space and time

complexity to construct a vocabulary and to transform a feature to a visual word.

Table 1 presents the complexities, where D stands for feature-space dimensionality

(D ¼ 128 for SIFTs), K is the number of visual words created, N denotes the database size

in the number of features, i is the number of iterations in k-means, and K 0 stands for the

number of clusters created in each node of hierarchical k-means. To make the complexities

comparable, we use K as the basis for stating all complexities. This implies that we have to

estimate the number of non-empty/valid cells in an l-prefixVoronoi partitioning. Since it is

still an open problem (Aurenhammer 1991), we estimate that
ffiffiffiffi
Ks
p

pivots are needed in a l-

prefix6 Voronoi partitioning to form K cells, where s is a constant in ð2; 3Þ. This is based

on our experimental observation, see Fig. 4a for details, and holds for moderate number of

pivots (from 10 up to 150) and the partitioning level l up to 6. By analogy, RLSV uses

a constant c 2 ð1; 2Þ to handle trimming empty buckets.

MDPV is very space efficient since it stores only the pivots that define the tessellation. The

construction time isOð
ffiffiffiffi
Ks
p
Þ, which covers that the pivots are selected at random without any

Fig. 1 An example of two l-prefixVoronoi partitionings in 2-D Euclidean space over the same four pivots.
a l-prefix1 Voronoi partitioning is identical to the original Voronoi partitioning. b In l-prefix2 Voronoi
partitioning each cell from l-prefix1 partitioning is split by the remaining three pivots (dashed lines). The
resulting cells are denoted by C subscripted with the sequence of indexes of one and two closest pivots,
respectively
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additional checks. From a particular setting point of view, this complexity is constant because

the number of visual words K is fixed. The cost to transform a feature descriptor to visual word

is formed by locating l closest pivots to a feature descriptor to quantize. Currently, we apply a

naı̈ve solution to l-nearest neighbor search that compares the query descriptor with all pivots

and keeps l closest (insertion sorting algorithm is used). However, any specialized technique

such as compact codes (Jegou et al. 2011) or randomized k-d forests can be applied to speed

this process up in case of vector feature spaces. As a result, MDPV is comparable to ERCF or

even better than RLSV at transformation time. For example, if one-million-word visual

vocabulary is used (K ¼ 106), ERCF’s transformation cost is D � 20, whereas 80-pivot

MDPV’s transformation cost is D � 80þ 6 � 80, respectively. The extension of MDPV with

dynamic prefixes is described in the following section.

3 Extending MDPV

MDPV, as has been described, creates a space and time efficient visual vocabulary, however

it still exhibits two inconveniences. Firstly, the definition of Voronoi partitioning is, in

a sense, rigidly defined by the set of pivots and the parameter l determining the prefix length.

This often leads to improper clustering—some clusters are not identified as separate even

though a clustering/quantization objective function would split them. To handle it, we pro-

pose a dynamic prefix partitioning. Secondly, it has been experimentally verified that

organizing computer vision databases by quantization requires a large visual vocabu-

lary (Mikulik et al. 2010). So, we propose combining more independent MDPVs in Sect. 3.2.

It offers much larger vocabularies without the need to use a large number of pivots.

3.1 Dynamic prefix partitioning

In principle, dynamic l-prefixVoronoi partitioning allows using a varying number of

nearest pivots to define each cell. So, a clustering objective function can be better modeled,

which results to higher-quality visual vocabulary (Mikulik et al. 2010). In particular, to

obtain good visual words, it is necessary to keep tracking the extent of cells during

recursive re-partitioning to next levels. Compact cells with very close descriptors should

not be split, so they use fewer pivots than l. To implement this, we maintain a prefix tree

Table 1 Comparison of MDPV with other state-of-the-art methods in vocabulary occupation, vocabulary
construction and transformation to visual word time, respectively

Alg. Space Construction Time Transformation Time

MDPV OðD
ffiffiffiffi
Ks
p
Þ Oð

ffiffiffiffi
Ks
p
Þ OðD

ffiffiffiffi
Ks
p
þ l

ffiffiffiffi
Ks
p
Þ

MDPV (dynamic prefix) OðD
ffiffiffiffi
Ks
p
þ KÞ OðDN

ffiffiffiffi
Ks
p
Þ OðD

ffiffiffiffi
Ks
p
þ l

ffiffiffiffi
Ks
p
Þ

RLSV (Mu et al. 2010) OðD logc KÞ OðD logc KÞ OðD logc KÞ
ERCF (Mu et al. 2010) OðDKÞ Oð

ffiffiffiffi
D
p

N log2 KÞ OðD log2 KÞ
hk-means OðDKÞ OðiDNK 0 logK0 KÞ OðDK 0 logK0 KÞ
k-means OðDKÞ OðiDNKÞ OðDKÞ

D, feature space dimensionality; K, number of visual words;
ffiffiffiffi
Ks
p

, number of pivots; N, number of features
or training set cardinality; i, iterations of k-means to find local extremes; K 0, number of seeds used on each
level in hierarchical k-means; l, maximum Voronoi partitioning level; c, a constant for eliminating empty
buckets
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that stores the maximum prefix length for each cell. This does not imply any major increase

of memory requirements neither computational complexity, because it can be organized

efficiently as a hashed associative array. The prefix tree has another important advantage

since it allows dynamic expansion of the whole partitioning schema when some cells

become overpopulated or clustering objective function has been refined, so it results in

dynamic visual vocabulary. The prefix tree is initialized by monitoring cell extent during

partitioning a training data-set T . The cost of this phase is linear to the training set size. So

the construction time complexity is updated to OðD jT j
ffiffiffiffi
Ks
p
Þ and the space complexity to

OðD
ffiffiffiffi
Ks
p
þ KÞ. The transformation complexity stays obviously the same—this cost is

increased by traversing the shallow prefix tree, thus it can be ignored. Such a tree traversal

cost is ignored in complexity for the hierarchical k-means too. Please refer back to Table 1

for summary.

3.2 Combining MDPVs

We have identified the main weaknesses of MDPV as (1) the random selection of pivots to

define Voronoi partitioning and (2) the limited number of cells that can contain any

descriptor (Skala 2009). They both influence retrieval results negatively. Firstly, bad pivot

selection may lead to some cells staying indivisible even by the full prefix length l.

Secondly, the total number of cells in an l-prefix partitioning, theoretically stated as the

number of permutations of l elements out of n (l! � Cn
l ), is impossible to reach (Skala 2009).

In the following, we define a combination of independent MDPVs to diminish these

negative effects. This principle is also used in ERCF (Moosmann et al. 2008) and

RLSV (Mu et al. 2010).

Assume k different and independent sets of n pivots defining k l-prefixMDPVs, we

define their combination as the function k- mdpvl : D7!R
k :

k- mdpvlðf Þ ¼ ðmdpv1
l ðf Þ; . . .;mdpvk

l ðf ÞÞ: ð4Þ

Thus, a vector of visual words is obtained. Figure 2 examples a combination of two l-

prefix1 MDPVs of four pivots each, i.e. 2- mdpv1ð�Þ function.

From the figure, we can see that some cells in the combination cannot contain any

descriptor. So even here in 2-D, four cells out of 16 possible combinations cannot contain

any data: C0;2, C1;3, C2;1 and C3;1. This geometrical property of Voronoi partitioning is also

discussed in Skala (2009), but combinations of independent partitionings create many more

non-empty cells compared to a single l-prefixpartitioning with many pivots, which is also

our practical experience. To ensure independence of pivots among MDPVs, a more

sophisticated method for choosing pivots than the random selection can be

adopted (Figueroa and Paredes 2014). Experiments we have undertaken show that even the

random selection provides a good trade-off.

The vector obtained by k-MDPV can be interpreted in various ways: it can become

a new visual word by simple concatenation of vector components; or a quorum can be

defined on the number of MDPVs returning the same result for a pair of two descriptors.

Such a voting scheme would provide similar effects as the soft assignment tech-

nique (Philbin et al. 2008). In the following, we take the whole vector as a new visual

word. The rationale behind it is that an image database can be directly organized in an

inverted file after quantization through these visual words.
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4 Experimental evaluation

The proposed MDPV approach was validated in two retrieval tasks on four well-known

data-sets. We primarily focus on the performance in terms of retrieval accuracy, but we

also include wall-clock time to construct a vocabulary and to transform a feature to a visual

word.

Firstly, we analyze properties of MDPV-based vocabularies. Secondly, MDPV in image

retrieval task is evaluated and compared with many state-of-the-art approaches that may

not necessarily be based on visual vocabularies exclusively. Lastly, we present results in a

near-duplicate video retrieval.

4.1 Evaluation protocol

We used the following image data-sets for the purpose of evaluation and comparison. They

are typically shipped with SIFT descriptors extracted. If it is not the case, we used VLFeat

library1 to extract them.

Kentucky object recognition benchmark data-set2 (denoted as UKBench) (Nister and

Stewenius 2006) consists of 2,550 quadruples, each depicting the same object from four

Fig. 2 Example of 2- mdpv1—a combination of two l-prefix1 MDPVs with 4 pivots each. Dashed lines
separate cells of the first MDPV, while solid lines the cells of the second MDPV. Cells resulting from the
combination are denoted as Cx;y, where x and y are the evaluations of the first and the second MDPV,
respectively

1 http://www.vlfeat.org/.
2 http://www.vis.uky.edu/*stewe/ukbench/.
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different angles. Thus, the ground truth is trivially defined. Each image’s resolution is 640

by 480 pixels and we extracted about 13 million SIFT descriptors out of all 10,200 images.

Oxford Buildings data-set3 (denoted as Oxford) (Philbin et al. 2007) is formed by 5,062

images downloaded from Flickr and expose several landmarks of Oxford. The authors

provide five queries for each of 11 selected landmarks and list correct answers. There are

15,877,710 SIFT descriptors available.

Belga Logos data-set4 (denoted as Belga) (Joly and Buisson 2009) is composed of

10,000 images covering all aspects of life and current affairs. Maximum width of each

image is 800 pixels. This data-set has 26 queries containing company logos. Ground-truth

in the form of a list of images containing a particular logo is available. We extracted 19.5

million SIFT descriptors in total.

INRIA Holidays data-set5 (denoted as Holidays) (Jégou et al. 2008) contains 1,491

personal holiday photos, where 500 of them are queries and the remaining 991 are cor-

responding relevant images. Ground-truth is again available. The data-sets is shipped with

4,455,091 SIFT descriptors.

CCWebVideo data-set6 was used in near-duplicate retrieval task. It contains 12,790

short video clips (up to 10 min) collected from YouTube, Google Video, and Yahoo!

Video by issuing 24 textual queries (Wu et al. 2007, 2009). Ground-truth files defining

near-duplicate videos are available. The authors also provide key-frames corresponding to

shot boundaries. We used HSV color histograms as descriptors here. In particular, a 24-

dimensional HSV color histogram was obtained each key-frame.

To compare our approach with other approaches, we use the mean average precision

(mAP) and the results presented were typically obtained as averages over five independent

runs of MDPV. A prototype of MDPV was implemented in Java 7 and experiments were

done on a common PC with a dual-core 3 GHz CPU and 4 GB RAM.

4.2 Basic analysis

In this part, we study different parameters and properties of MDPV in a number of

experimental trials. We focus namely on adjusting the prefix length parameter, which

inherently influences vocabulary size, its memory requirements, time to build the vocab-

ulary, and time to quantize a feature.

Maximum prefix length. Firstly, we would like to state the maximum value of l to be

used to define an l-prefixVoronoi partitioning. A sub-set of five million SIFT descriptors

was taken from the Oxford data-set and used to initialize a prefix tree for various number of

pivots. We observed the number of non-empty cells on each level. The objective function

used to trigger splitting a cell was set to the cell occupation in the number of data objects—

1,024 SIFT descriptors in each cell at maximum. Figure 3 shows the relative number of

non-empty cells for each level of prefix tree and for varying number of pivots that define

the partitioning. The presented values are averages over five runs. The outcome of this

experiment is that the maximum prefix length l ¼ 6 is sufficient for constructing visual

vocabularies, since the majority of cells ( [ 80 %) are created on the third and fourth level

for 40 and more pivots and the number of cells to be split on the sixth level is marginal.

3 http://www.robots.ox.ac.uk/*vgg/data/oxbuildings/.
4 http://www-sop.inria.fr/members/Alexis.Joly/BelgaLogos/BelgaLogos.html.
5 http://lear.inrialpes.fr/*jegou/data.php.
6 http://vireo.cs.cityu.edu.hk/webvideo/.
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Vocabulary size. We compare MDPV to the standard solution of k-means-based visual

vocabulary. We tested various hierarchical k-means algorithms described in Kanungo et al.

(2002) to build Vocabulary Tree. The EZ-hybrid method exhibited best results, so we

adopted this technique and denote it simply as ‘‘k-means’’ in results. Figure 4 reports on

the number of non-empty cells (i.e., valid visual words) in MDPV and k-means algorithms

for the UKBench and Oxford data-sets separately. A sample of five million descriptors was

taken to set up k-means and prefix tree of MDPV.

Vocabulary tree (hierarchical k-means) of six levels and ten cells in each node was used

to build a visual vocabulary with one million words maximally. In the figure, the reader

may observe that it is not always possible to obtain full vocabulary tree on a data sample

since some nodes (clusters) may become empty earlier than on the sixth level.

MDPV was compared in both basic and dynamic variants. In the former, the full prefix

of l ¼ 6 was used and no initialization with sample data was done, so the number of non-

empty cells corresponds to the number of unique visual words created by quantizing the

whole sample set. The later variant results to comparatively much fewer non-empty cells.

However, each cell corresponds to many more descriptors (up to 1,024) here, so their

visual similarity is better handled. Figure 4b details the number of visual words created by

the dynamic variant of MDPV on Oxford and UKBench data-sets. The pivots were taken at

random in all cases.

This group of experiments gave an overview of visual vocabulary size and comparison

among various settings of MDPV and k-means. Even though the dynamic prefix parti-

tioning produces a small number of cells, we will show its good results in retrieval.

Memory requirements. Table 2 summarizes MDPV’s memory occupation in bytes. The

basic variant of MDPV requires to store pivots only, whereas the dynamic one adds an

associative array of valid visual words implemented as HashSet organizing Long
integers. Our implementation in 64-bit Java 7 requires 290 bytes per SIFT descriptor

(pivot) and approximately 56 bytes per visual word. These results are in compliance with

MDPV’s space complexity stated in Table 1. The largest MDPV configuration requires

3 MiB only, which is in a sharp contrast of 241 MiB required by hierarchical k-means to

define its 879,569 visual words. For up-to-date server configurations, memory occupation

of several tens of megabytes may not be an issue. However, if we accept an image search
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engine can also become part of an application in smart-phones in the future, the com-

pactness of individual techniques will become important.

Building requirements. We used a C?? optimized implementation of hierarchical k-

means to prepare a vocabulary on 5 million sample of Oxford data-set and it took 178 h to

get the visual words. Whereas, the dynamic variant of MDPV (in Java) over 150 pivots and

the same sample was initialized in 2 h, so MDPV was 89 times faster. Since the limit on

the assignment/update loop in k-means was set to 100 (the variable i), such results cor-

respond to the complexities stated in Table 1.

Transformation time. Since the transformation of a feature descriptor to a visual word is

rather a trivial operation in MDPV that uses few pivots, we have implemented the search

for l nearest neighbors as full scan and we do not include any experimental results here. On

the other hand, this is certainly an issue for large vocabularies created by k-means, where

the lookup for one nearest neighbor in a collection of one million centroids cannot be done

efficiently by full scan. Approximate nearest-neighbor search with k-d forest as is
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implemented in the FLANN library (Muja and Lowe 2009), is then a suitable solution. If

the hierarchical k-means is used to prepare a large vocabulary, a shallow tree with few

centroids in each node is a typical representation. For example, 6 levels and 10 pivots in

each node creates 1 million visual words, but the transformation to a visual word requires

60 distance evaluation only.

4.3 Variants of MDPV

This section is devoted to comparison of basic and dynamic variants of MDPV in image

retrieval effectiveness. In particular, we aim at showing the positive influence of extensions to

the basic MDPV design proposed in Sect. 3. Please recall, the extensions are the dynamic

prefix Voronoi partitioning and the combination of more independent partitionings.

Retrieval effectiveness is justified by evaluating queries on UKBench data-set and

measuring mAP. Figure 5a exposes the combinations of 1, 3, and 5 dynamic prefix MDPVs

(k- mdpv6 for k ¼ 1; 3; 5). We can directly observe a positive effect on 3- mdpv6 over

1- mdpv6. The visual vocabulary of 3- mdpv6 is fine-grained enough to filter out false

positives. On the other hand, 5- mdpv6 vocabulary is too fine for this kind of image-

retrieval. It is competitive with small number of pivots only (from 15 to 20). Combinations

of more MDPVs have also a positive effect on the stability of results, where the values of

mAP are quite stable for k-MDPV with at least 40 pivots.

We also studied the influence of pivot selection. In particular, Fig. 5b depicts the

influence of source of pivots used to prepare prefix trees in 3-MDPV. We compared results

for pivots taken from the data-set itself (UKBench), pivots selected from Oxford, and

synthetically generated pivots (random sample from uniformly distributed vectors gener-

ated in ½ 0; 255 �128
Euclidean space). Synthetic pivots lead to unsatisfactory results which

are even worse than the results achieved by the basic design of MDPV (full-length prefix).

MDPV initialized with pivots picked from Oxford data-set exhibit only slightly worse

results in retrieval of UKBench images than the configuration with pivots from UKBench

data-set itself.

The outcome of this group of experiments is that 3-MDPV with 40–80 pivots provides a

good solution to create visual vocabulary. Behavior similar to the results on UKBench was

experienced on the INRIA Holidays and Belga Logos data-sets. So, MDPV can be per-

ceived as a general purpose technique for image retrieval, since these three data-sets

represent instances of different image retrieval tasks. Please recall UKBench verifies

performance of object retrieval with respect to rotation invariance. INRIA Holidays data-

set stands for search in general holiday photographs, while Belga Logos tests quality of

sub-image retrieval. It has also been shown that MDPV initialized using a set of real-life

pivots from a different data-set can be successfully used, so MDPV does not suffer from

the so-called out-of-sample problem.

Table 2 Comparison of MDPV memory requirements with hierarchical k-means on Oxford data-set

Alg. Number of pivots

10 40 60 100 150

MDPV (basic) 2,904 B 11,544 B 17,304 B 28,824 B 43,224 B

MDPV (dynamic prefix) 193,808 B 1,467,544 B 1,818,992 B 2,528,888 B 3,122,104 B

k-means 253,315,896 B (241 MiB)
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4.4 Comparison with others in image retrieval

In this section, we present performance comparison of MDPV with several state-of-the-

art methods in image retrieval task on UKBench, Belga and Holidays data-sets. Namely,

we compare our results with Vocabulary Tree (Nister and Stewenius 2006), RLSV (Mu

et al. 2010), min-hash (Chum et al. 2008), sim-min-hash (Zhao et al. 2013), weighted

Hamming Embeddings with multiple assignment (Jégou et al. 2010a), contextual

weighting of local features (Wang et al. 2011), and VLAD (Jégou et al. 2012). As for the

vocabulary tree, we took the recommended configuration of tree—ten elements in each

node and six levels. This leads to a tree representing up to one million visual words. In

Wang et al. (2011), even larger vocabulary tree (107 words) is used and contextual

weighting of local descriptors is added. We use 3-mdpv6 with dynamic prefix tree prepared

on pivots selected at random from the same data-set as the descriptors to be quantized.
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Figure 6 shows results on UKBench and Holidays data-sets for varying the number of

pivots used to define MDPV. Moreover, it contains results for the following state-of-the-art

k-means-based methods: original vocabulary tree (VT) (Nister and Stewenius 2006),

vocabulary tree with descriptor and spatial contextual weighting (VT?DCW?SCW) (Wang

et al. 2011), and hierarchical k-means with weighted Hamming embedding and multiple

assignment (k-means?HE?MA) (Jégou et al. 2010a). From the results, the combination of

three MDPVs is by far better than simple vocabulary tree and it reaches the performance of

VT with several improvements. Only VT with contextual weighting extension

(VT?DCW?SCW) is better by 10 % on both the data-sets.

In Table 3, we present the results for all comparable methods on UKBench, Holidays

and Belga data-sets. On UKBench, MDPV is outperformed by methods extending

vocabulary tree with descriptor and spatial contextual weighting (DCW?SCW) (Wang

et al. 2011) and with Hamming embedding and multiple assignment (Jégou et al. 2010a).

On Holidays data-set, only the DCW?SCW method with 107 visual words provides higher

accuracy in comparison to MDPV. On Belga data-set, MDPV clearly outperformed all
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methods. Here, RVP approach (Jiang et al. 2012) was tested on a subset of 6 queries only,

so we present results for all queries and the subset.

To sum up, a combination of three MDPVs, each defined on about 50 pivots, is a very

competitive configuration on any data-set, especially if we judge MDPV’s definition is

based purely on permutation of close pivots without any additional statistical enhance-

ments. The results of VT?DCW?SCW method are counterbalanced by the following

negatives. Firstly, the time spent in both contextual weightings (DCW?SCW) during the

vocabulary preparation and descriptor quantization time (transformation time) is not

marginal. Secondly, memory requirements are increased because visual words stored in

vocabulary tree are enriched with this weighting information. Finally, due to the statistical

principles of these weightings, the out-of-sample problem arises when previously unseen

Table 3 Comparison of MDPV with state-of-the-art methods

Algorithm mAP Top 4

Data-set UKBench

VT ? DCW ? SCW (k ¼ 107) (Wang et al. 2011) 0.911 3.56

VT ? DCW ? SCW (k ¼ 106) (Wang et al. 2011) 0.897 3.46

k-means ? weighted HE ? MA (Jégou et al. 2010a) 0.878 3.42

Fisher vector (K ¼ 64;D0 ¼ 4096) (Jégou et al. 2012) – 3.35

VLAD (K ¼ 64;D0 ¼ 4096) (Jégou et al. 2012) – 3.28

min-hash (Chum et al. 2008) – 3.17

3-MDPV (3- mdpv6ð�Þ, 19 pivots) 0.834 3.14

VT (Jegou et al. 2009) 0.771 2.95

sim-min-hash (Zhao et al. 2013) – 2.70

VT, normal 0.420 2.54

Data-set holidays

VT?DCW?SCW (k ¼ 107) (Wang et al. 2011) 0.780

3-MDPV (3- mdpv6ð�Þ, 60 pivots) 0.761

VT?DCW?SCW (k ¼ 106) (Wang et al. 2011) 0.744

k-means ? weighted HE?MA (Jégou et al. 2010a) 0.735

VLAD with LCS, RN (K ¼ 64) (Delhumeau et al. 2013) 0.658

Fisher vector (K ¼ 64;D0 ¼ 4096) (Jégou et al. 2012) 0.595

VT (Jegou et al. 2009) 0.469

Data-set Belga mAP mAP
Full data-set Subset

3-MDPV (3- mdpv6ð�Þ, 19 pivots) 0.342 0.661

Joly (Joly and Buisson 2009) 0.257 0.563

VT (k ¼ 105) 0.263 0.309

RVP (Jiang et al. 2012) – 0.295

VT (k ¼ 106) 0.176 0.192

Results are sorted descendingly by mAP values

VT vocabulary tree, k is the number of visual words, HE Hamming embedding, MA multiple assignment,
DCW descriptor contextual weighting, SCW spatial contextual weighting, VLAD vector of aggregated local
descriptors, RVP random visual phrases
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images are to be stored in the database. Nonetheless, we plan to employ contextual

weighting enhancements to boost MDPV’s performance further.

4.5 Near-duplicate video retrieval

Lastly, we demonstrate MDPV in the task of near-duplicate video retrieval on the

CCWebVideo data-set. Each video is described by a sequence of descriptors extracted

from video key-frames. Descriptors are 24-dimensional HSV color histograms extracted by

the procedure described in Mu et al. (2010). To measure similarity between a query video

sequence and a database sequence, we applied a global sequence alignment algorithm

(namely, Needleman-Wunsch), which is a different approach from the trials in previous

sections. This similarity was used to rank all database sequence according to a query and

mAP was computed against the data-set’s ground-truth. MDPV was used to quantize the

feature descriptors to visual words to speed up evaluations of the similarity function.

Combinations of up to six MDPVs were tested and the results for selected combinations

are exposed in Fig. 7. To compare with RLSV, we included the best average mAP value

obtained by a hierarchical method of RLSV (Mu et al. 2010). In this type of retrieval,

a combination of more independent MDPVs leads to a fine-grained visual vocabulary that

can effectively filter out replicas. Best results were obtained for 6- mdpv6 with at least 30

pivots. Table 4 summarizes also the performance indicators captured during trials’ eval-

uation. The results confirm the MDPV’s outstanding speed and effectiveness over the other

state-of-the-art methods.
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Table 4 Comparison of 6- mdvp6 over 30 pivots with RLSV and k-means on CCWebVideo

Algorithm mAP Construction time (s) Conversion to visual word (s)

6-MDPV 0.9669 \1 9 10-6 5.0 9 10-6

RLSV 0.9411 2.29 9 10-4 3.4 9 10-3

k-means 0.9280 7.76 1.85 9 10-2
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5 Conclusion

We have introduced a novel approach to quantization of high-dimensional vectors in

image feature spaces called Metric Distance Permutation Vocabulary (MDPV). It is based

on an l-prefix Voronoi tessellation defined in metric spaces. The advantages over existing

techniques for visual vocabulary construction are very low memory requirements, no

expensive training/learning phase, and very efficient transformation of a feature descriptor

to a visual word. Our method has been validated in two computer vision tasks: image

retrieval and near-duplicate video retrieval. MDPV shows very good accuracy and effi-

ciency in comparison to state-of-the-art methods such as Randomized Locality Sensitive

Vocabulary, Vocabulary Tree, k-means with hamming embedding and min-hash. We have

also proposed an extension that tunes granularity of Voronoi partitioning to a particular

data-set to further improve performance. A recommended configuration is a combination

of three MDPVs each built over about 50 pivots for the task of image retrieval and six

independent MDPVs over the same number of pivots for near-replica detection task. Pivots

can be picked at random from a real-life data-set that may not be the same as the data-set to

organize but similar in its nature. This is another advantage—higher resistance to out-of-

sample problem that methods creating visual vocabularies usually suffer from.

Our hypothesis that the visual words created by MDPV are good is based not only on

the result we have presented but also on the results of other researchers. As it was shown

and analyzed in Chavez et al. (2008); Esuli (2012), the sequence of identifications of the

closest pivots that describes a database object, is precise enough to substitute the original

distance function directly. In this paper, we exploited this outcome by taking only a prefix

of the whole permutation to define a feature quantization technique for the bag-of-features

model.

For the future work, we would like to focus on the issue of comparing vectors resulting

from a combination of MDPVs. A perspective solution would be a voting schema, where

only a certain quorum of complying MDPV components has to be reached. Secondly, we

will analyze possibilities to employ various contextual information (Wang et al. 2011) in

MDPV design. Finally, we would like to focus on other issues of sub-image retrieval task,

such as pattern re-occurrence.
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Delhumeau, J., Gosselin, P. H., Jégou, H., & Pérez, P. (2013). Revisiting the vlad image representation. In
Proceedings of the 21st ACM international conference on multimedia, MM ’13 (pp. 653–656). ACM,
New York, NY, USA. doi:10.1145/2502081.2502171.

Devaux, J. C., Gouton, P., & Truchete, F. (2000) Aerial colour image segmentation by Karhunen–Loeve
transform. In Proceedings of the 15th international conference on pattern recognition, 2000 (vol. 1,
pp. 309–312).

Esuli, A. (2012). Use of permutation prefixes for efficient and scalable approximate similarity search.
Information Processing and Management, 48(5):889–902; large-Scale and Distributed Systems for
Information Retrieval.

Figueroa, K., & Paredes, R. (2014). An effective permutant selection heuristic for proximity searching in
metric spaces. In Proceedings of Mexican conference on pattern recognition (MCPR), Lecture Notes in
Computer Science (pp. 1–10). Berlin: Springer.

Grzegorzek, M., Sav, S., O’Connor, N. E., & Izquierdo, E. (2010). Local wavelet features for statistical
object classification and localization. IEEE MultiMedia, 17(1), 118–128.

Jégou, H., Douze, M., & Schmid, C. (2008). Hamming embedding and weak geometric consistency for large
scale image search. In D. Forsyth, A. Z. Philip Torr (Eds.), European conference on computer vision,
LNCS (vol. I, pp. 304–317). Berlin: Springer.

Jegou, H., Douze, M., & Schmid, C. (2009). On the burstiness of visual elements. In IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 1169–1176).

Jégou, H., Douze, M., & Schmid, C. (2010a). Improving bag-of-features for large scale image search.
International Journal of Computer Vision, 87(3), 316–336.

Jegou, H., Douze, M., Schmid, C., Perez, P. (2010b). Aggregating local descriptors into a compact image
representation. In 2010 IEEE computer society conference on computer vision and pattern recognition
(pp. 3304–3311), IEEE.

Jegou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(1), 117–128.

Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., & Schmid, C. (2012). Aggregating local image
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