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Abstract Recently direct optimization of information retrieval (IR) measures has become
a new trend in learning to rank. In this paper, we propose a general framework for direct
optimization of IR measures, which enjoys several theoretical advantages. The general
framework, which can be used to optimize most IR measures, addresses the task by
approximating the IR measures and optimizing the approximated surrogate functions.
Theoretical analysis shows that a high approximation accuracy can be achieved by the
framework. We take average precision (AP) and normalized discounted cumulated gains
(NDCG) as examples to demonstrate how to realize the proposed framework. Experiments
on benchmark datasets show that the algorithms deduced from our framework are very
effective when compared to existing methods. The empirical results also agree well with
the theoretical results obtained in the paper.

Keywords Learning to rank - Direct optimization of IR measures -
Position function approximation - Truncation function approximation -
Accuracy analysis

1 Introduction

In this paper, we consider the direction optimization of IR measures in learning to rank.
This has been regarded as one of the most important directions for the area (Xu et al.
2008).

Several methods that directly optimize IR measures have been developed. In general,
they can be grouped into two categories. The methods in the first category introduce upper
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bounds of the IR measures and try to optimize the upper bounds as surrogate objective
functions (Chapelle et al. 2007; Xu and Li 2007; Yue et al. 2007). The methods in the
other category approximate the IR measures using some smooth functions and conduct
optimization on the surrogate objective functions (Guiver and Snelson 2008; Taylor et al.
2008).

Previous studies have shown that the approach of directly optimizing IR measures can
achieve high performances when compared to the other approaches (Chapelle et al. 2007;
Taylor et al. 2008; Xu and Li 2007; Xu et al. 2008; Yue et al. 2007). This is mainly
because IR measures are explicitly considered in the direct optimization approach. How-
ever, there are still some open problems regarding the approach, as shown below.

First, although there seems to be some relationship between the surrogate functions and
the corresponding IR measures, the relationship has not been sufficiently studied. This is a
critical issue, because it is necessary to know whether optimizing the surrogate functions
can indeed optimize the corresponding IR measures.

Second, some of the proposed surrogate functions are not easy to optimize. Complicated
techniques have to be employed for the optimization. For example, both SVM™“” (Yue
et al. 2007) and SVM"?¢ (Chapelle et al. 2007) use Structured SVM to optimize the
surrogate objective functions. However, the optimization technologies (e.g., the con-
struction of the joint feature map and the way of finding the most violated constraints) are
measure-specific, and thus it is not trivial to extend them to new measures.

In this work, we propose a general direct optimization framework, which can effectively
address the aforementioned problems. The framework can accurately approximate any
position-based IR measure, and then transform the optimization of an IR measure to that of
an approximated surrogate function.

The key idea of our proposed framework is as follows. The difficulty in directly opti-
mizing IR measures lies in that the measures are position based, and thus non-continuous
and non-differentiable with respect to the score outputted by the ranking function. If we
can accurately approximate the positions of documents by a continuous and differentiable
function of the scores of the documents, then we will be able to approximate any position
based IR measure. Our theoretical analysis demonstrates that highly accurate approxi-
mation of a position based IR measure can be obtained and thus high test performance in
ranking can be achieved.

Taking average precision (AP) and normalized discounted cumulated gains (NDCG) as
examples, we show that it is easy to derive learning algorithms (ApproxAP and Approx-
NDCG) to optimize the surrogate functions in the proposed framework. Experimental
results show that the derived algorithms can outperform existing algorithms.

The main contributions of this work include two aspects:

1. We set up a general framework for direct optimization, which is applicable to any
position based IR measure, theoretically justifiable, and empirically effective;

2. We show that it is easy to derive algorithms to optimize position based IR measures
within the framework. Two effective algorithms are proposed as examples to optimize
two popular IR measures, AP and NDCG.

The remainder of this paper is as follows. We start with a review on existing methods in
Sect. 2. Section 3 sets up a general framework to approximate and optimize IR measures,
and shows two examples of using this framework. Theoretical analysis on approximation
accuracy is given in Sect. 4. Experimental results are presented in Sect. 5. We conclude the
paper and discuss future directions in the last section.
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2 Related work
2.1 Learning to rank for information retrieval

The key problem for document retrieval is ranking, specifically, how to create the ranking
model (function) that can sort documents based on their relevance to the given query. It is a
common practice in IR to tune the parameters of a ranking model using some labeled data
and a performance measure. For example, the state-of- the-art methods of BM25 (Rob-
ertson and Hull 2000) and LMIR (Language Models for Information Retrieval) (Zhai and
Lafferty 2001) all have parameters to tune. As the ranking models become more sophis-
ticated (more features are used) and more labeled data become available, how to tune or
train ranking models turns out to be a challenging issue.

The learning to rank technology can successfully leverage multiple features for ranking,
and can automatically tune the parameters in ranking models based on a large volume of
training data. This technology has been gaining increasing attention from both the research
community and the industry in the past several years. The setting of learning to rank, when
applied to document retrieval and web search, is as follows. Assume that there is a corpus
of documents. In training, a number of queries are provided; each query is associated with
a set of documents with relevance judgments. Each query-document pair is represented by
a feature vector. A ranking function is then created using the training data, such that the
model can precisely predict the ranked lists in the training data by appropriately combing
the features. In retrieval (i.e., testing), given a new query, the ranking function is used to
create a ranked list for the documents associated with the query.

Many learning to rank methods have been proposed and applied to different IR
applications.

One approach in previous work takes document pairs as instances and reduces the
problem of ranking to that of classification on the orders of document pairs. It then applies
existing classification techniques to ranking. The methods include Ranking SVM (Herbrich
et al. 1999; Joachims 2002), RankBoost (Freund et al. 2003), RankNet (Burges et al.
2005). Ranking SVM solves the problem of pairwise classification using Support Vector
Machines, RankBoost using the boosting techniques, and RankNet using Neural Networks.
See also Tsai et al. (2007), Zheng et al. (2007) for other pairwise methods.

Another approach regards ranking lists as instances and conducts learning on the lists of
documents. For instance, Cao et al. proposed using a permutation probability model in the
rank learning and employing a listwise ranking algorithm called ListNet (Cao et al. 2007).
In their recent work (Xia et al. 2008), they further studied the properties of the related
algorithms and derived a new algorithm based on Maximum Likelihood Estimation called
ListMLE. See also Qin et al. (2008c), Volkovs and Zemel (2009) for other listwise
methods.

2.2 Direct optimization of IR measures

Recently, a new approach, direct optimization of IR measures, has attracted much attention
in learning to rank. The basic idea of the direct optimization approach is to find an optimal
ranking function by directly maximizing some IR measures such as AP (Voorhees and
Harman 2005) and NDCG (Jérvelin and Kekéldinen 2002) on the training set. This new
approach seems more straightforward and appealing, because what is used in evaluation is
exactly an IR measure. There are two major categories of algorithms for direct optimi-
zation of IR measures.
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One group of algorithms tries to optimize objective functions that are bounds of the IR
measures. For example, SVM"? (Yue et al. 2007) optimizes an upper bound of (1 — AP)
in the predicted rankings. Specifically, a joint feature map is constructed for each possible
ranking, and Structured SVM is used to iteratively optimize the most violated constraint
(the way of finding the most violated constraint depends on the property of AP). The idea
of SVM™ is further extended to optimize other IR evaluation measures, and the corre-
sponding algorithms include SVM"¥¢ (Chapelle et al. 2007) and SVM™" (Chakrabarti
et al. 2008). In these new algorithms, different joint feature maps and different ways of
finding the most-violated constraints are proposed. AdaRank (Xu and Li 2007) minimizes
an exponential loss function which can upper bound either (1 — AP) or (1 — NDCG)
using boosting methods. It repeatedly constructs weak rankers on the basis of re-weighted
training queries and finally linearly combines the weak rankers for making ranking pre-
dictions. Two sub methods have been proposed in (Xu and Li 2007). AdaRank.MAP
utilizes AP to measure the goodness of a weak ranker, and AdaRank.NDCG utilizes NDCG
to measure the goodness of a weak ranker.

Another group of algorithms manages to smooth the IR measures with easy-to-optimize
functions. For example, SoftRank (Guiver and Snelson 2008; Taylor et al. 2008) intro-
duces randomness to the ranking scores of the documents, so as to smooth NDCG. It
assumes the ranking score of a document to be governed by a Gaussian distribution, and
then derives a rank distribution of the document in an iterative manner. Based on the rank
distributions of all the documents associated with a query, SoftRank computes the
expectation of NDCG as the objective function for learning to rank. The gradient descent
method is used to learn the ranking function.

According to previous studies, direct optimization algorithms can achieve higher per-
formances when compared to the other approaches (Chapelle et al. 2007; Taylor et al.
2008; Xu and Li 2007; Xu et al. 2008; Yue et al. 2007). However, there are still some open
issues as shown below.

1. The relationships between the surrogate functions and the corresponding IR measures
have not been sufficiently studied. Therefore, it is unknown whether optimizing the
surrogate functions can indeed optimize the corresponding IR measures.

2. Some of the proposed surrogate functions are not easy to optimize. Existing methods
(e.g., the Structured SVM series) have to employ complicated, measure-specific
techniques in the optimization. It is not trivial to extend them to new measures.

3 A general approximation framework

In this section, we propose a general framework for direct optimization of IR measures.
The framework is applicable to any position based IR measure, and is theoretically
justifiable.

In the framework, we take the approach of approximating the IR measures. The
framework consists of four steps:

1. Reformulating an IR measure from ‘indexed by positions’ to ‘indexed by documents’.
The newly formulated IR measure then contains a position function and optionally a
truncation function. Both functions are non-continuous and non-differentiable.

2. Approximating the position function with a logistic function of ranking scores of
documents.
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3. Approximating the truncation function with a logistic function of positions of
documents.

4. Applying a global optimization technique to optimize the approximated measure
(surrogate function).

For ease of description, we give some notations here. Suppose that X’ is a set of
documents associated with a query, and x is an element in X’ . A ranking model f outputs a
score s, for each x:

Sx :f(x;9)7 xedX

where 0 denotes the parameter of f. A ranked list 7 can be obtained by sorting the documents
in the descending order of their scores. We use m(x) to denote the position of document x in
the ranked list 7. Given the relevance label r(x) of each document x, an IR measure can be
used to evaluate the goodness of 7. Note that different f’s will generate different 7’s and
thus achieve different ranking performances in terms of the IR measure. Further, we use
1{A} to denote an indicator function: 1{A} = 1 if A is true, and 1{A} = O for other cases.
We first give a brief introduction to several popular IR measures used in learning to rank,
and then take some measures as examples to introduce the four steps of the framework.

3.1 Review on IR measures

To evaluate the effectiveness of a ranking model, many IR measures have been proposed.
Here we give a brief introduction to several popular ones which are widely used in learning
to rank. See also (Moffat and Zobel 2008) for other measures.

Precision@k (Voorhees et al. 2005) is a measure for evaluating top k positions of a
ranked list using two levels (relevant and irrelevant) of relevance judgment:

1 &
Pre@k:z;rj, (1)

where k denotes the truncation position, r; equals one if the document in the jth position is
relevant and zero otherwise.
Average Precision (AP) (Voorhees et al. 2005) is defined on the basis of Precision:

1
AP =—) r; x Pre@j, (2)
D | Z !

where [D | denotes the number of relevant documents with respect to the query. Given the
ranked list for a query, we can compute an AP for this query. Then MAP is defined as the
mean of AP over a set of queries.

While Precision@k and AP consider only two levels of relevance judgments, Nor-
malized Discounted Cumulated Gain (NDCG) (Jérvelin and Kekéldinen2002) is designed
for multiple levels of relevance judgments. NDCG @k evaluates top k positions of a ranked
list using multiple levels (labels) of relevance judgment. It is defined as below,

Looon—1

NDCG@k = N ' ) -
j=1

o)) ®)

where N, is a constant depending on a query to make the maximum value of NDCG@k of
the query is 1.
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By considering all the n documents associated with a query, we can attain NDCG@n,
which is referred to as NDCG for short in this paper if without confusion.

n

2rr - 1
NDCG = NDCG@n = N ! Z g, (4)

3.2 Step 1: Measure reformulation

Most of the IR measures, for example, Precision@k, AP and NDCG are position based.
Specifically, the summations in the definitions of IR measures are taken over positions, as
can be seen in (1)—(4). Unfortunately, the position of a document may change during the
training process, which makes the optimization of the IR measures difficult. To deal with
the problem, we reformulate IR measures using the indexes of documents.

When indexed by documents, Precision@*k in (1) can be re-written as below,

Prek — %Z FO)1{m(x) <, (5)
xeX

where r(x) equals one for relevant documents and zero for irrelevant documents, and
1{n(x) < k} is a truncation function indicating whether document x is ranked at top k

positions.
With documents as indexes, AP in (2) can be re-written as follows,
1
AP = —Z r(y) X Pre@Qn(y). (6)
‘D+| yex
Combining (5) and (6) yields
1 1
AP =——> r(y)x—= > r(x)l{n(x)<n(y)}
D2 2
> ( Y i MR =m0 <”(”}> !
|D+|}€X XEX xy ﬂ(y)

where 1{n(x) < m(y)} is also a truncation function indicating whether document x is
ranked before document y.
Similarly, when indexed by documents, (3) of NDCG@k can be re-written as the
following,
2r(x)

NDCG@k = N;! Z

EXMI{“(X) <k} (3)

Here r(x) is an integer. For example, (x) = 0 means that document x is irrelevant to the
query, and r(x) = 4 means that the document is highly relevant to the query.
Note that NDCG (more accurately NDCG@n) does not need a truncation function,

2rx) _ 1

NDCG =N, ') (9)

SFlogy(1+m(x))

The reformulated IR measures [e.g., (5), (7)—(9)] contain two kinds of functions:
position function 7m(x) and truncation functions 1{n(x) < n(y)} and 1{n(x) < k}. Both of
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them are non-continuous and non-differentiable. We will discuss how to approximate them
separately in the next two subsections.

3.3 Step 2: Position function approximation

The position function can be represented as a function of ranking scores,

n(x) =1+ Y 1{s;, <0}, (10)

YEX y#x

where s, , = 5, — 5.
That is, positions can be regarded as outputs of functions of ranking scores. Due to the
indicator function in it, the position function is non-continuous and non-differentiable.
We propose approximating the indicator function 1{s,, < 0} using a logistic function
(which is continuous and differentiable):

exp(—osyy) (n
1+ exp(—osyy)’

where o > 0 is a scaling constant.
In this way, the position function is correspondingly approximated and becomes con-
tinuous and differentiable (denoted as 7(x)), as shown below.

W) =1+ 3 TRl "

Table 1 shows an example of the above position approximation process. We can see
that the approximation is very accurate in this case.

Now we can obtain the approximation of NDCG by simply replacing n(x) in (9) with
t(x),

27 1

NﬁEG :N_l T
" R logy (1 + 7i(x))

(13)

3.4 Step 3: Truncation function approximation

As can be seen in Sect. 3.2, some measures have truncation functions in their definitions,
such as Precision@k, AP, and NDCG@k. These measures need further approximations on
the truncation functions. We will introduce in this subsection how it can be achieved. Some
other measures including NDCG do not have truncation functions; In this case, the tech-
niques introduced below can be skipped.

Table 1 Examples of position

approximation Document Sy 7(x) 7i(x) (o = 100)
X1 4.20074 2 2.00118
X 3.12378 4 4.00000
X3 4.40918 1 1.00000
Xy 1.55258 5 5.00000
Xs 4.13330 3 2.99882
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To approximate the truncation function 1{n(x) < n(y)} in (7), a simple way is to use the
logistic function once again,

exp(B((y) — 7(x)) 1)

1{n(x)<ﬂ.'( )} 14+ exp(ﬂ( ( ; (X))

in which f# > 0 is a scaling constant.
Thus, we obtain the approximation of AP as follows,

D) N~ exp(B(AG) — 7))
|D+|Z< 7 2 76) 1+€Xp(ﬁ(ﬁ(y)—fr(X))))' 1)

x£y

Similarly, we can also approximate the truncation function 1{n(x) < k} in (8) as

1~ exp(B(k + 0.5 — 7(x))) (16)
1 +exp(f(k+0.5—@(x)))"
Here we add 0.5 to change < to <. Note that we use 0.5 instead of other values such as 0.1

and 0.8 because 0.5 is in the middle of range [0, 1] and it will achieve the smallest
approximation error in the worse case. That is,

_— argmin{max exp(Bk +7 — ff(X)))))‘} s,

Hn(x) <k} = 1{r(x) <k

Ha(x) <k} — (17)

) 1 +exp(Blk+7 — (x)

With (16), one can approximate measures like Precision@k and NDCG@*k. Here we
omit the details.

3.5 Step 4: Surrogate function optimization

With the aforementioned approximation technique, the surrogate objective functions (e.g.,
AP and NDCG) become continuous and differentiable with respect to the parameter 6 in
the ranking model, and many optimization algorithms can be used to maximize them.
Measure specific optimization techniques are no longer needed.

However, considering that the original IR measures contain a lot of local optima, the
approximations of them will also contain local optima. Therefore, one should better choose
those global optimization methods such as random restart (Hu et al. 1994) and simulated
annealing (Kirkpatrick et al. 1983) in order to avoid being trapped to local optima. Note
that there are also some alternative ways of dealing with the issue of local optimum. For
example, one can use a robust but likely less effective learning to rank method (e.g.,
Ranking SVM) to obtain an initial guess of the ranking model. Then use it as the starting
point for the optimization of the approximated IR measure.

In this work, we choose to use the random restart technology (Hu et al. 1994) as an
example. That is, we first use a gradient descent method to find a local optimum of the
objective function given a certain initial value of the ranking model, and then we
randomly re-initialize the model parameters and do another round of optimization. We
repeat this for several times. Finally we regard the best local optimum as a global
optimum.

Since AP and NDCG are widely used for evaluation in learning to rank, we take them as
examples to show how to perform the optimization, and call the corresponding algorithms
ApproxAP and ApproxNDCG respectively. The details about the derivation of gradients of
AP and NDCG can be found in Appendix sections “Gradient of ApproxNDCG” and
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“Gradient of ApproxAP”. According to the derivations, the complexity of computing the
gradient is O(n®), where n is the number of documents associated with a query. The
training process is shown in Algorithm 1.

Algorithm 1. ApproxAP (ApproxNDCG)

Input:

1: m training queries, their associated documents and relevance judgments.
2: Number of random restarts K;

3: Stop threshold d;

4: Learning rate .

Training:

5: Set iteration number ¢t = 0;

6: For k = 1: K Do {

7:  Randomly initialize the parameter 0, of the ranking model f(x;0)

8: Do {

9: Set 0 = 0,;

10: Shuffle the m training queries;

11: Fori=1tomDo {

12: Feed i-th training query (after shuffle) to the learning system;

13: Compute the gradient A of AP (N/DEG) with respect to 0 using (38) [using (35)];
14: Update parameter = 0 + n x A0,

15: }

16: Settr=1t+1, 0,:0.

17: } While (10, — 0,411 > 0)

18:  Setwy =0,

19: }

Output:

20: Compute the objectives (@ or NBEG) of the K parameters {w;, w,...,00k}.
21: Output the parameter w; with the maximal objective.

3.6 Comparison with previous methods

SoftRank (Taylor et al. 2008) also approximates the IR measure using a smooth function.
When comparing the proposed framework to SoftRank, we can find the following
differences.

1. Our framework approximates IR measures by approximating document positions,
while SoftRank smooths NDCG by smoothing the document scores.

2. The gradient of our approach can be computed in a complexity of O(n*) while a
complexity of O(n?) is needed for SoftRank, where 7 is the number of documents for a
query. That is, the computation complexity of our approach is much lower than that of
SoftRank. In our experiments, we observed that our method took less than 0.5 second
to compute the gradients of all the training queries on the OHSUMED dataset and
SoftRank took about 10 seconds.
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3. We propose a general framework, which can be used to optimize any position based
measures, while SoftRank only focuses on NDCG, and some extensive efforts are
needed to generalize it to other measures.

4. Our approach has a solid theoretical justification on the accuracy of the approximation
(see next section), while there is not yet such justification for SoftRank.

4 Theoretical analysis of the framework

As mentioned in Sect. 1, the relationships between the surrogate objective functions and
the corresponding IR measures are not clear for the previous methods. In contrast, the
relation between the surrogate functions obtained by our framework and the IR measures
can be well justified. In this section, we will study this issue.

4.1 Accuracy of position function approximation

The approximation of positions is a basic component in our framework. In order to
approximate an IR measure, we need to approximate positions first; in order to analyze the
accuracy of approximation of IR measures, we need to analyze the accuracy of approxi-
mation of positions first.

Note that if 5., = 0 (i.e., document x and y have the same score), there will be no
unique ranked list by sorting. This would bring uncertainty to IR measures. For the sake of
clarity, in this paper, we assume that

0= xﬁyg}ég?éy |sey| >0 (18)

The following theorem shows that the position approximation in (12) can achieve very

high accuracy. The proof can be found in the appendix.

Theorem 1 Given a document collection X with n documents in it, for Yo > 0, (12) can
approximate the true position with the following accuracy,
|7(x) — m(x)| <

n—1

xp(5.0) + 1 v

where 0y = Milyey yzy |Sxy|-

This theorem tells us that when J, and o are large, the approximation will be very
accurate. For example,

lim #(x) = n(x).
0x0—00

A corollary of Theorem 1 is given below:

Corollary 1 Given a document collection X with n documents in it, for Vo > 0, (12) can
approximate the true position with an accuracy as below.

n—1

(20)

2 Z(x) — L
TR [7(x) = =)l < exp(do) + 1
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For the example in Table 1, we have an accurate approximation:

5.1
0.00118 = &< ~ 0.00471. 21
= exp(0.06744 + 100) + 1 1)

One may argue that the bounds in (19) and (20) are not very meaningful when » is large.
Note that the denominator is in the exponential order of parameter « and the numerator is
in the linear order of n. Due to this difference in the orders, for a given n, by selecting a
not-too-large o, one can always make the bound tight enough. For example in (21), if n
increases from 5 to 1000, we can still get a very tight bound by simply increasing « from
100 to 200:

1000 — 1
exp(0.06744 % 200) + 1

~ 0.001386.

4.2 Accuracy of IR measure approximation
The following theorems quantify the errors in the approximations of MAP and NDCG. The
proof can be found in the Appendix.

Theorem 2 [f the error ¢ of position approximation in (20) is smaller than 0.5, then we
have

D, D,
AP — AP| < 22
| | 1+exp 2.5)21: 21: (i—e) (22)

The theorem indicates that when ¢ is small and f is large, the approximation of AP can
be very accurate. In the extreme case, we have lim, g 4o AP = AP. For the example in
Table 1, if setting = 100, ID,| = 1, we have |AP — AP|<0.0024. That is, the AP
approximation is very accurate in this case.

Theorem 3 The approximation error of NDCG can be bounded as

INDCG — NDCG| < ~—— (23)

21 2’
This theorem indicates that when ¢ is small, the Emaroximation of NDCG can be very
accurate. In the extreme case, we have lim,_,o NDCG = NDCG. For the example in
Table 1, we have |NDCG NDCG| < ~ 0.00085. That is, the NDCG approximation
is very accurate in this case.
From these two examples (AP and NDCG), one can see that the surrogate functions

obtained by the proposed framework can be very accurate approximations to the IR
measures.

21n2

4.3 Justification of accurate approximation

As shown in the previous subsection, the surrogate objective function we obtained can be
very close to the original IR measure. One may argue whether such an accurate approx-
imation really has benefit for learning the ranking model. To answer such questions, we
have the following discussions.
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If an algorithm can directly optimize an IR measure on the training set, then the learned
ranking model will definitely be the optimal model in terms of the IR measure on the
training set. Note that in statistical machine learning, the training performance is computed
as an average on the training set, while the test performance is measured as an expectation
on the entire instance space (Vapnik 1998). If the training set is extremely large, the
training performance will converge to the test performance (i.e., the average will converge
to the expectation when the number of samples is infinite). Therefore, directly optimizing
the IR measure on a extremely large training set can guarantee the optimal test perfor-
mance in terms of the same IR measure.

Furthermore, it is easy to understand that if the surrogate measures are very close to the
IR measures (i.e., the approximations are very accurate), the optimization of the surrogate
measures will also lead to high performances of IR measures on training set. Again, if the
training set is very large, the optimization of the surrogate measures will also have high test
performances. This intuitively justifies the necessity of accurately approximating the IR
measures.

One possible issue with regards to the accurate approximation of IR measures is that the
more accurate the approximation is, the more complex the surrogate function will be. This
is because the IR measure itself is very complex (as a function of the ranking model), and
contains a lot of local optima. In this case, the optimization of the surrogate function is
likely to be trapped into some local optimum and the model learned may not have the
desired good performance. This is why we propose using global optimization techniques in
our framework.

Due to space restrictions, we have only given some high level discussions here. More
details can be found in Qin et al. (2008a).

5 Experimental results
We conducted a set of experiments to test the effectiveness of the proposed framework.
5.1 Datasets

We used LETOR datasets (Liu et al. 2007) in our experiments. LETOR is a benchmark
collection for the research on learning to rank for information retrieval. It has been widely
used in research community for research on learning to rank (Duh and kirchhoff 2008;
Guiver and Snelson 2008; Qin et al. 2008b; Xu et al. 2008; Zhou et al. 2008). The first
version of LETOR was released in April 2007 and used in the SIGIR 2007 workshop on
learning to rank for information retrieval (http://www.research.microsoft.com/users
/LR4IR-2007/). At the end of 2007, the second version of LETOR was released, which
was later used in the SIGIR 2008 workshop on learning to rank for IR (http://www.
research.microsoft.com/users/LR4IR-2008/). The third version of LETOR, namely LETOR
3.0, was released in December 2008.!

We used three datasets in LETOR 3.0 to test our algorithms: TD2003, TD2004 and
OHSUMED. The statistics of the three datasets are shown in Table 2. The datasets can be
downloaded from LEOTR website (http://www.research.microsoft.com/~ letor). The
TD2003 and TD2004 datasets were used to test ApproxAP and the OHSUMED dataset was

! The latest version when the paper was submitted.
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Table 2 Datasets

Datasets # Query Relevance levels # (Docs per query)
TD2003 50 2 ~1,000

TD2004 75 2 ~1,000
OHSUMED 106 3 ~150

used to test ApproxNDCG, since the first two datasets contain two-level relevance judg-
ments and the third one contains three-level relevance judgments.

We note that most baseline algorithms in LETOR used linear ranking models. For fair
comparison, we also used linear ranking model for ApproxAP and ApproxNDCG in the
experiments, although our algorithms can also make use of other kinds of ranking models.

5.2 On the approximation of IR measures

We first evaluated the accuracy of the approximations of AP and NDCG.

As seen in Sect. 3.4, there are two parameters in AP, o and . We first fixed f = 10 and
set three different values for «. Then, we applied the ApproxAP algorithm to the TD2004
dataset with these three different parameters. Figure 1a shows the error p in the training
process defined as

0.06 +
—
g ——0=10 —W—0=50 —A—0=100
o
,5 0.04 +
S
£
5 0024
St
S
S ::.f—\—l——I—l—=l——'—l=l=l
<

0 | | | | : : : | | |
10 30 50 70 90 110 130 150 170 190
Iterations
(@) =10

0.012 T+
St
8
5
g 0.009 +
= ———— o a
£ 0.006 1
=
2
£ 0.003 + [ ——p=10 —=—p=100 |
<

0 } : } } : : } } : :
10 30 50 70 90 110 130 150 170 190
Iterations
(b) a =100

Fig. 1 Accuracy of AP approximation on TD2004 dataset. This is training curve over fold 1. The x-axis is
the number of iterations ¢ in Algorithm 1. a f = 10, b o = 100
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LS &b (g) - AP(q)),

p =1
0] 2

in which @(q) and AP(g) mean the values of AP and AP respectively over a query ¢, Q is
the training query set, and QI is the number of queries in the training set.

We can see that for all the three o values, the approximation accuracy is very high,
which is more than 95%. Furthermore, as the increase of «, the approximation becomes
more accurate: the accuracy is higher than 98% when o = 100.

We then fixed = 100 and tried different values of 5. Figure 1b shows the error p with
respect to different 5 values. As can bee seen, when f§ increases, the accuracy of the
approximation also improves. -

Figure 2 shows the error p = H@IZ%Q INDCG(q) — NDCG(q)| with regards to dif-
ferent o values. We can get similar observations.

All these results verify the correctness of the discussions in Sect. 4.2, and indicate that
the approximation of IR measures using our proposed method can achieve high accuracy.

5.3 On the performance of ApproxAP

We adopted the five fold cross validation as suggested in LETOR for both TD2003 and
TD2004 datasets. For each fold, we used the training set to learn the ranking model, use the
validation set to select hyper parameters o and f§ in the ApproxAP algorithm, and use the
test set to report the ranking performance. The detailed process is as follows:

(a) we first chose a set of o values {50, 100, 150, 200, 250, 300} and a set of f values {1,
10, 20, 50, 100}.

(b) we set 6 = 0.001, n = 0.01, K = 10 in Algorithm 1. That is, we made 10 random
restarts.

(c) for each combination of xand f3, we learned a ranking model with 10 random restarts
to avoid local optima. We learned 30 models in total.

(d) we tested the performance of each model on the validation set and selected the model
with the highest MAP as the final model;

(e) we tested the performance of the final model on the test set.

As baselines, we used AdaRank.MAP and SVM™, which directly optimize AP. We
also compared with Ranking SVM and ListNet, two state-of-the-art algorithms that do not

0.05 1

5 [m—o0=10 —4—0=50 —e—0=300 |
= 0.04 1
[0}
=
2 0.03+
é .‘:::;s:r;’::g:r;“:
= 0021
o
St
2 0014
<
0 1 = = 1 = = 1 = 1 |

10 30 50 70 90 110 130 150 170 190
Iterations

Fig. 2 Accuracy of NDCG@n approximation on OHSUMED dataset. This is training curve over fold 1.
The x-axis is the number of iterations ¢ in Algorithm 1
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Table 3 Ranking accuracy in

terms of MAP Algorithm TD2003 TD2004
AdaRank.MAP 0.2283 0.2189
Svmm e 0.2445 0.2049
Ranking SVM 0.2628 0.2237
ListNet 0.2753 0.2231
ApproxAP 0.2834 0.2224

belong to the approach of direct optimization. We cited the results of AdaRank.MAP,
SVM™ Ranking SVM, and ListNet directly from LETOR official website (http://
www.research.microsoft.com/ ~ letor). According to the information in the website, the
hyper parameters of these algorithms have been carefully tuned and the validation set has
been used for model selection. In this regard, the experimental settings for our methods and
these baselines are the same, which ensures a fair comparison among them.

As can be seen from Table 3, ApproxAP performs better than AdaRank.MAP and
SVM™ on both datasets. For example on TD2003, ApproxAP gets more than 15%
relative improvement over SVM™* and more than 20% relative improvement over Ada-
Rank.MAP. Since ApproxAP only uses a simple gradient method for the optimization (as
compared to the structured SVM and Boosting used in the two baselines), the current result
clearly shows the advantage of using the proposed method for direct optimization, and we
foresee that with the use of more advanced optimization techniques, the performance of
ApproxAP could be further improved.

Furthermore, ApproxAP is better than Ranking SVM and ListNet on TD2003 and gets
similar result as Ranking SVM and ListNet on TD2004. We also find that AdaRank.MAP
and SVM" are not as good as Ranking SVM and ListNet. We hypothesize the reason as
follows. AdaRank.MAP and SVM"“? optimize the upper bound of AP and it is not clear
whether the bound is tight. If the bound is very loose, optimization of the bound cannot
always lead to the optimization of AP, and so they may not perform well on some datasets.
This is in accordance with the discussions in He and Liu (2008).

5.4 On the performance of ApproxXNDCG

We used a similar strategy to select the hyper parameters o for ApproxXNDCG to that for
ApproxAP. We chose the same set of « values {50, 100, 150, 200, 250, 300} and the same
value of d, 1 and K. But we used NDCG@n for model selection instead of MAP on the
validation set.

We compared ApproxXNDCG with AdaRank.NDCG and SoftRank, which directly
optimize NDCG. We also compared with Ranking SVM and ListNet. We cited the results
of AdaRank.NDCG, Ranking SVM and ListNet from LETOR official website
(http://www.research.microsoft.com/ ~ letor). Again, according to the information in the

T s S e e e en

dataset AdaRankNDCG ~ 0.5330 04790  0.4673 0.4496
SoftRank 05229 04732 04580  0.4539
Ranking SVM 04958 04207 04164 04140
ListNet 05326 04732 04432 04410
ApproxNDCG 05771 05037 04794 04620
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website, the hyper parameters of these algorithms have been carefully tuned and the
validation set has been used for model selection. There is a hyper parameter ¢ in SoftRank.
We tuned the parameter and used validation set to select the best value. That is, the same
experimental strategy was applied to all the algorithms here for fair comparisons.

Table 4 shows average NDCG at positions 1, 3, 5 and 10 for the five algorithms on the
OHSUMED dataset. For position 1, ApproxNDCG gets 0.08 NDCG gain over Ranking
SVM, which is about 16% relative improvement; it also gets more than 0.04 NDCG gain
over AdaRank.NDCG and SoftRank, which is about 8% relative improvement. Improve-
ments can also be observed at other positions. Overall, ApproxXNDCG achieves the highest
accuracy. The performances in terms of NDCG@n of AdaRank.NDCG, SoftRank,
Ranking SVM, ListNet and ApproxNDCG are 0.6640, 0.6623, 0.6457, 0.6600 and 0.6680
respectively. Again ApproxNDCG is the best one. Note that since NDCG@n considers all
the documents in a ranked list, the difference of it of different algorithms is not so large as
NDCG value at top positions. Overall, ApproxNDCG is the best of the compared algo-
rithms. This verifies the effectiveness of our proposed method.

5.5 Discussions

In this sub section, we will make some deep investigations on the algorithms derived from
our proposed framework.

5.5.1 Approximation accuracy versus optimization feasibility

As mentioned in Sect. 4.3, the larger the hyper-parameters (« and f§) are, the more accurate
the approximations of IR measures are, and the more difficult the optimization of the
surrogate functions is.

Table 5 shows the training performance in terms of NDCG @5 of ApproxNDCG on fold
1 of the OHSUMED dataset with respect to different o and K values. As can be seen, with
only one random restart (K = 1), « = 300 does not get better training performance than
o = 50 and o = 100. This is because a larger value of « makes the objective function more
difficult to maximize. As we increase the number of random restarts to 100, we see that
o = 300 gets the best training accuracy, o = 100 the second, and « = 50 the third.

From this table, we conclude that larger value of o indeed makes the objective more
difficult to maximize; to learn a better ranking model for large o, more random restarts are
needed (or generally, more effective global optimization methods are needed). We got
similar observations for ApproxAP. The details are omitted here.

5.5.2 Comparison with SoftRank
In Sect. 3.6, we have performed some analysis on the comparison with SoftRank, which

belongs to the same sub category of the direct optimization approach as our methods. Here
we make some experimental studies, including training performance and time complexity.

Table 5 Training performance

(NDCG@5) of ApproxNDCG on ! 100

fold 1 of OHSUMED dataset % =50 04818 0.4828
o= 100 0.4849 0.4862

K is the number of random o = 300 0.4793 0.5073

restarts in Algorithm 1
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Table 6 Running time per iter-

ation on fold 1 of OHSUMED  ‘\lgorithm Time (seconds)
dataset ApproxNDCG <0.5
SoftRank ~10

After tuning the hyper parameter of SoftRank, it achieved its best training performance
in terms of NDCG@5 on fold 1 of OHSUMED as 0.4940. Comparing the results in
Table 5, we see that the best training accuracy of ApproxNDCG is better than that of
SoftRank. From Tables 4 and 5, we get that ApproxXNDCG achieved better ranking
accuracy than SoftRank on both training and testing sets.

Furthermore, we also logged the running time in the experiments. Table 6 shows the
information of ApproxNDCG and SoftRank on fold 1 of the OHSUMED dataset. As can be
seen, ApproxNDCG is much faster than SoftRank.

6 Conclusions and future work

In this paper, we have set up a general framework to approximate position based IR
measures. The key part of the framework is to approximate the positions of documents by
logistic functions of their scores. There are several advantages of this framework: (1) the
way of approximating position based measures is simple yet general; (2) many existing
techniques can be directly applied to the optimization and the optimization process itself is
measure independent; (3) it is easy to conduct analysis on the accuracy of the approach and
high approximation accuracy can be achieved by setting appropriate parameters.

We have taken AP and NDCG as examples to show how to approximate IR measures
within the proposed framework, how to analyze the accuracy of the approximation, and
how to derive effective learning algorithms to optimize the approximated functions.
Experiments on public benchmark datasets have verified the correctness of the theoretical
analysis and have proved the effectiveness of our algorithms.

There are still some issues that need to be further studied.

1. The approximated measures are not convex, and there may be many local optima in
training. We have used random restart strategy to find a good solution. We plan to
study other global optimization methods to further improve the performance of the
proposed algorithms.

2. We have used linear ranking models in the experiments. Our algorithms can be
directly applied for other functions such as neural networks. We will conduct
experiments to test our algorithms with other function classes.

Appendix: Approximation accuracy analysis
In the appendix, we give proofs of the major theorems in this paper.
(I) Proof of Theorem 1

Proof Note that
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7 exp(—syy)
B - — =Y,
#(x) —m(x)[ = Y (1 T oxp(—asey) {50y <0}>
yEXy#x Wy o)
o) gy <0}’
- X,y .
yEX y#x I+ exp(iasx,y)
If we can prove that for any document y € X,
CXp(—O{Sx_y) 1
————— N5, <0} | < ——— 25
‘1 + exp(—osxy) {5 }‘ exp(d0) + 1’ (25)
then we can have
i 1 n—1
[#e) = 7)< D T T e 11 26)

VEX y#x

Now we prove the inequality (25). We consider s, , > 0 and s, < O separately.
— For s,,, > 0, from (18) we have
1 + exp(osyy) > 1+ exp(dx0).
Then,

exp(—asy,) 1 - 1
1 +exp(—asy,) 1+exp(asyy) 1 +exp(d)

Note that 1{s,, < 0} = 0 when s,, > 0. Hence, for s,, > 0,

exp(—osy.y) 1
——— — 1{5,, <0 —_.
1 + exp(—osyy) {ovy <0} < 1+ exp(8,0)

— For s,,, <0, from (18) we have
1 + exp(—asyy) > 1 + exp(d,a).
Note that 1{s,, <0} = 1 when s,, < 0. Hence, for s, <0,

exp(—asy.y) 1 1
— - {5, <0}| = < .
1 + exp(—osyy) {8y <0} 1 +exp(—asyy) 1+ exp(dx)

Combining the two cases we end up with (25). According to (26), Theorem 1 is correct.

(IT) Proof of Theorem 2

We prove Theorem 2 about the accuracy of precision approximation.

Proof For simplicity, we denote

R _exp(B(ay) — 7t(x)))
Ut <200} = T exp (30 = 7))

From (7) and (15), we have
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(ﬂ(ly) - %)

+ZZ r0)r(x) (1{nx><n<y>} 1{n<x><n<y>}>‘

2" |p.| #0) ()

IMAP — MAP| =

(27)
x) [H{n(x) <n(y)}  Yrx)<n()}
(y) n(y)

<23 \D+|

Yy x#y
r(y) R
2.1, fr(y)

ifn(9) <n())
7(y)

1
o

11
a(y) ()

Now we consider respectively.

H{r(x)<n(y)} Yn(x)<zn()}
(y) n(y)
a(y)1{n(x) <n(y)} — 2 U{n(x) <n(y)}
n(y)r(y)

n(y) (A {n(x) <n()} — Hrlx) <n(y)}) + (n(y) — 7)) H{n(x) <n(y)}
n(y)7(y)

n(y)(A{n(x) <n(y)} — Yn(x)<n(y)})
n(y)7(y)
(n(y) — 72(»){=(x) <n(y)}‘
n(y)7(y)
< 1{n(x) <n(y)} — Yn(x) <n(y)}
- n(y)

IN

+

w(y)n(y)
Similar to the derivation of (25), we can get

[{n(x) <m()} = Ufn(x) <n(y)}| <
Combining (28) and (29), we get

) [H{nx) <n(y)}  Yrx)<n()}
7(y) n(y)

1 €
_ZZ \D+| (n (1+exp(ﬁ(1*28)))+ﬁ(y)n(y))

1
1 +exp(f(1 —2¢))"

(29)

1 3
<Z ( +eXp(ﬁ(1*23)))+ﬁ(Y)n(y))

D | 1 D |

1
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Al 1 ‘:n(Ay)—n(y)’<A e G31)
w(y)  n(y) w(y)n(y) | wy)n(y)
Then
1 1
IO 7‘ - Z@A;
D1 [70) 7)< 2=1D4 7))
D | (32)
|D+| Z (i—¢)
Substitute (30) and (32) into (27), we get
Dy | Dy |
_ 1 1 14Dy 1
MAP — MAP —+te — .
| ‘1+6Xp(ﬁ(1—28));l—8 |D.| ;l-(l—s)
Since ID,| > 1, hence
- | D | 1D |
MAP — MAP —+2¢ —_—
| |<1+exp(/3(1—29))zz—s+ F;z (i—e)
Proof of Theorem 3
Proof From (9) and (13), we obtain
INDCG — NDCG|
NS - 1 logy (1 + i(x)) —logy (1 + m(x))| (33)
xexlogz (x)) log, (1 + 7(x))
Since alogza—slm = m and m(x) > 1, #(x) > 1, we have

&
N .
2 )~ Tl 5y

| log, (1 + 7t(x)) — log, (1 + 7(x))
Considering that log,(1 + 7t(x)) > 1, we have

log, (1 + #(x)) —log, (1 + =(x)) &
) Tog, (1 + fr(;) ’< 22’ (34)

Then (33) becomes

21 — 1 €
NDCG — NDCG|<N; !
| | erXlOg2(l +7(x))21n2

——NDCG
2In2

According to the definition of NDCG, we always have NDCG < 1. Hence,

NDCG — NDCG| < —*—
| ‘<21 2
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Appendix: Gradient derivation
(D) Gradient of ApproxNDCG
We show how to derive the gradient for ApproxNDCG.

According to the chain rule, we obtain
G

AD— aNDCG IZ logz 1+n ) Ot () (35)
Further,
on(x) _ _ N~ exp(asy) sy
a0 7 (L + exp(asy,))* 00 (36)
E— exp(0sy ) <6f(X; 0) oy 0))
7 (1+exp(asy))” \ 00 00
201 r(x
ey _ 2 1 In2 (37)
on 20?2 (1 + 7(x))
7(x) (logy (1 + (x)))* (

Substituting (36) and (37) into (35), we get the gradient for ApproxNDCG.
Note that (xO in (36) depends on the specific form of the ranking model f. For
example, for hnear function, we have Lf(a%@ = x.

(II) Gradient of ApproxAP

We next show how to derive the gradient for ApproxAP.
According to the chain rule, we obtain

P
69 |D+| an )

B 2.2 1 0 (38)

xX#£y

where

1 expl(B0) — ()
10 = ) TT expBR0) — 7))

Again by the chain rule, we have
oJ(0) oJ(0)or(y) 0J(0)0nr(x)

30~ or(y) 80 | om(x) (39)
Now we consider gﬁfg and gigg .
0(0) _ —1 Bexp(Blalx) - 7)) (40)
Or(x) 70 (14 exp(B(R(x) — 7(y))))*
oJ(0) -1 1
0r(y) 7 0) 1+ exp(B((x) - 7)) )

&
L1 Bexp(Bli) — 7))
70) (1 -+ exp(B(r(x) — 7))
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Substituting (36), (40) and (41) into (39), and then substituting (39) into (38), we get the
gradient for ApproxAP.
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