
Sentence-level event classification in unstructured texts

M. Naughton Æ N. Stokes Æ J. Carthy

Received: 4 September 2008 / Accepted: 19 August 2009 / Published online: 11 September 2009
� Springer Science+Business Media, LLC 2009

Abstract The ability to correctly classify sentences that describe events is an important

task for many natural language applications such as Question Answering (QA) and Text

Summarisation. In this paper, we treat event detection as a sentence level text classification

problem. Overall, we compare the performance of discriminative versus generative

approaches to this task: namely, a Support Vector Machine (SVM) classifier versus a

Language Modeling (LM) approach. We also investigate a rule-based method that uses

handcrafted lists of ‘trigger’ terms derived from WordNet. Two datasets are used in our

experiments to test each approach on six different event types, i.e., Die, Attack, Injure,

Meet, Transport and Charge-Indict. Our experimental results show that the trained SVM

classifier significantly outperforms the simple rule-based system and language modeling

approach on both datasets: ACE (F1 66% vs. 45% and 38%, respectively) and IBC (F1

92% vs. 88% and 74%, respectively). A detailed error analysis framework for the task is

also provided which separates errors into different types: semantic, inference, continuous
and trigger-less.

Keywords Information extraction � Event detection � Language modeling �
Machine learning

1 Introduction

Event detection is a core Natural Language Processing (NLP) task that focuses on the

automatic identification and classification of various event types in text. This task has

applications in automatic Question Answering (QA), Text Summarisation and more recently

in the context of Semantic Web Retrieval. For example, event recognition is a core task in

QA since the majority of web user questions have been found to relate to events and

M. Naughton (&) � N. Stokes � J. Carthy
School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
e-mail: martina.naughton@ucd.ie; martina.naughton@gmail.com

N. Stokes
e-mail: nicola.stokes@ucd.ie

123

Inf Retrieval (2010) 13:132–156
DOI 10.1007/s10791-009-9113-0

situations in the world (Saurı́ et al. 2005). For complex questions such as ‘‘How many people

were killed in Baghdad in March?’’, QA systems often rely on event detection systems to

identify all relevant event instances before formulating an answer. In addition, text sum-

marisation research has focused on the use of phrasal concepts such as events to represent

text topicality in extractive and generative summarisation tasks (Li et al. 2006; Vander-

wende et al. 2004; Wu 2006; Filatova and Hatzivassiloglou 2004; Daniel et al. 2003).

A common conclusion of these research efforts is that an event-based approach to sum-

marisation improves the quality of the generated summaries. More recently, there has been a

lot of interest by the Semantic Web community in automatic methods for adding rich

metadata to documents such as entity and event tags. For example, Reuters, the financial news

giant, recently launched an API called Open Calais1 which is capable of adding semantic

markup to unstructured HTML news documents. This API can recognise people, places,

companies, and different event types. There are quite a few interesting applications of this

type of semantic markup, including more effective document search and result presentation.

In this paper, we investigate the use of generative and discriminate models for identi-

fying the sentences in a document that describe one or more instance of a specified event

type. For each event type used in our experiments, the task is treated as a binary text

classification problem, where each sentence is either classified as one that contains an

instance of that event type or as one that does not. We view this task as a filtering step in a

larger pipeline NLP architecture (e.g., a QA system), which helps speed up subsequent

processing by removing irrelevant, non-event sentences. Three event detection approaches

are explored in this paper. Firstly, we train a Support Vector Machine (SVM) using a

variety of term, lexical and additional event based features to encode each training/test

instance. Secondly, we adopt a probabilistic language modeling approach that captures

how descriptions of event instances in text are likely to be generated. We estimate a series

of unigram models using three well-known smoothing approaches, and examine their

overall behavior on classification performance.

Event classification at a sentence level is a very challenging task. For example, if the

target event is Die, we want our system to extract sentences such as ‘‘5 people were killed in

the explosion’’ and ‘‘A young boy and his mother were found dead on Wednesday evening’’.

However, that classifier must also be able to detect complex cases such as: ‘‘An ambulance

rushed the soldier to hospital, but efforts to save him failed’’ and reject instances such as

‘‘Fragmentation mines have a killing range of 100 feet’’. A naı̈ve system that selects only

sentences that contain terms connected with death such as ‘kill’, ‘die’ or ‘execute’ may

correctly detect many positive instances. Nevertheless, there are instances where this

approach would fail. The aim of the third event detection system investigated in this paper is

to evaluate the effectiveness of such a shallow NLP approach by developing a manual rule-

based system, which finds sentences connected to a target event type using a handcrafted list

of ‘trigger’ terms found in WordNet (Miller 1995). This system is compared with the SVM

and unigram language models in order to investigate how the performance of such a manual

approach compares against more sophisticated supervised techniques.

We use two datasets in our experiments. The first is the ACE 2005 Multilingual

Training Corpus (Walker et al. 2006) that was annotated for 33 different event types.

Within the ACE data the number of instances referring to each event type is somewhat

limited. For this reason we select the six types that have the highest frequency of occur-

rence in the data and use these in our experiments. They include the Die, Attack, Transport,
Meet, Injure and Charge-Indict types. The second corpus is a collection of articles from the

1 http://www.opencalais.com/

Inf Retrieval (2010) 13:132–156 133

123

http://www.opencalais.com/

Iraq Body Count (IBC) database2 manually annotated for the Die event type. This dataset

arose from a larger project that focuses on statistical approaches for collecting fatalities

statistics from unstructured news data. We use this additional corpus to augment the data

used for training a classifier on the Die event.

In this paper, our results show that the most effective classification approach is

dependent on the target event type. For ‘broad’ event types3 such as Attack and Transport,
the SVM appears to be the most appropriate approach. Yet for more ‘specific’ types such as

Charge-Indict and Injure, the trigger-based classification system produces the best overall

results. Finally, our experiments also demonstrate that the type of dataset used for training

significantly affects the performance of our supervised approaches on this classification

task. Specifically, heterogeneous datasets with a rich vocabulary tend to be more suitable

for training purposes.

We make a number of contributions in this paper. First, the applicability of Machine

Learning and Language Modeling based approaches for Event Classification at a sentence-

level is fully investigated. Previous research has focused on event detection at either the

term/phrasal level (ACE research) or the document level (TDT research); there is no prior

work that examines this problem at a sentence level, a granularity which is favored by

many IR, QA and Summarisation applications. Secondly, we introduce a manual rule-

based system, which consistently outperforms the language modeling approach, and per-

forms competitively with the SVM on many of the event types. Also, a thorough error

analysis methodology is described in Sect. 6, which will be useful for researchers working

in this area. Finally, a novel event dataset of Iraqi war articles, where all instances of the

Die event type have been manually annotated at the sentence level, is introduced.4

The remainder of this paper is organised as follows. We begin with a brief description of

background research and related work in Sect. 2. Section 3 continues with details of the

datasets used in our experiments. Section 4 describes the approaches adopted for identi-

fying sentences that describe one or more instance of a particular event type. We exper-

imentally evaluate and compare the performance of our event detection algorithms in Sect.

5. The common errors produced by each approach are analysed in Sect. 6. Finally, in Sect.

7, we conclude with a discussion of our experimental observations and our intentions for

future work.5

2 Background and related work

Event detection, in the context of news stories, has been an active area of research for the

best part of 10 years. Many event extraction technologies have been reported in the lit-

erature. For example, event extraction systems capable of detecting disease outbreaks

(Grishman et al. 2002), conflict events (King and Lowe 2003; Atkinson et al. 2008), and

natural disaster events in a multilingual setting (Atkinson et al. 2008) have been investi-

gated. Moreover, the NIST sponsored Topic Detection and Tracking (TDT) project, which

2 http://www.iraqbodycount.org/database/
3 We use the term ‘broad’ in this context to describe events that can be described by many synonymous,
near-synonymous and related ‘trigger’ terms. In contrast, ‘specific’ event types are expressed using a more
limited set of vocabulary terms. These concepts are described in more detail in Sect. 5.2.2.
4 For a copy of the IBC dataset, please contact the first author.
5 Some initial experiments by the authors on this work are published in (Naughton et al. 2008). However,
substantially more experimental results and analyses are presented in this publication.

134 Inf Retrieval (2010) 13:132–156

123

http://www.iraqbodycount.org/database/

began in 1998 investigated the development of technologies that could detect novel events

in segmented or unsegmented news streams, and track the progression of these events over

time (Yang et al. 1998, 1999; Allan et al. 1998). Although this project ended in 2004,

event detection is still investigated by more recently established projects such as the

Automatic Content Extraction (ACE) program, and in domains outside of news text such as

Biomedical Text Processing (Murff et al. 2003; Hripcsak et al. 2003).

Within the ACE program, the goal of the Event Detection and Recognition (EDR) task

is to identify all event instances (as well as the attributes and participants of each instance)

of a pre-specified set of event types. An ACE event is defined as a specific occurrence

involving zero or more ACE entities,6 values and time expressions. Two spans of text are

used to identify each event: the event trigger and the event mention. An event trigger or

anchor is the word that most clearly expresses the event’s occurrence. In many cases, this

will be the main verb in the event mention. It can also appear as a noun ‘‘The meeting
lasted 5 hours’’, or an adjective ‘‘the dead men...’’. The event mention is the sentence that

describes the event. Even though the task of identifying event mentions is not directly

evaluated in ACE, systems still need to identify them so that the various attributes and

participants within the mention can be extracted. The algorithms evaluated in this paper

can also be applied to the detection of event mentions that contain ACE events. Overall

five sites participated in this task in 2005: University of Amsterdam, BBN Technologies,

IBM, Lockheed Martin and New York University. The most similar work to that describe

in this paper is detailed in (Ahn 2006), where the task is treated as a word classification

problem which involves finding all the event triggers and tagging them with the relevant

event label (33 event types and a ‘none’ event type were defined). Features used included

various lexical, WordNet, dependency and related entity features. However in this work,

event detection is carried out at a sentence level rather than at a term level. Therefore, no

direct comparison with previously published ACE results is possible.

Much research regarding Event Detection in unstructured texts came about as a result of

the TDT initiative. For instance, the aim of the First Story Detection (FSD) or New Event

Detection (NED) task (as it is also known) was to flag documents that discuss breaking

news stories as they arrive on a news stream. Dragon Systems adopted a LM approach to

this task (Allan et al. 1998; Yamron et al. 2002), building discriminator topic models from

the collection and representing documents using unigram term frequencies. They then

employed a single-pass clustering algorithm to identify documents that describe new

events (i.e., all seed documents that form new clusters). The overall goal of the TDT Event

Tracking task was to track the development of specific events over time. A number of

information retrieval and machine learning techniques have been investigated for this task,

including k-Nearest Neighbour (kNN) classification, Decision Tree induction and a variety

of LM approaches (Allan et al. 1998; Yang et al. 1998, 1999, 2000; Walls et al. 1999;

Schultz and Liberman 1999; Schwartz et al. 1997). However, these TDT tasks were

somewhat restrictive in the sense that detection is carried out at a document level.

Our work differs from previous TDT and ACE research since this event detection task is

performed at a sentence level where the amount of data available for building discrimi-

nating event models is far more limited. Although very little research has focused on event

detection at a sentence level some work has been carried out in similar text classification

problems at this level of granularity. For instance, the vast majority of email classification

systems (such as spam detection (Sahami et al. 1998; Segal et al. 2004) and automatic

6 An ACE Entity is an entity identified using guidelines outlined by EDR task, see http://projects.
ldc.upenn.edu/ace/annotation for more details.

Inf Retrieval (2010) 13:132–156 135

123

http://projects.ldc.upenn.edu/ace/annotation
http://projects.ldc.upenn.edu/ace/annotation

foldering (Segal and Kephart 2000; Aery and Chakravarthy 2004; Dredze et al. 2006)

systems) have employed text classification techniques such as naı̈ve bayes, rule learners,

and SVMs. Also, summarisation systems often rely on methods of extracting useful

sentences to include in an end summary. (Allan et al. 2001) treated this very task as a

sentence-level text classification problem. Specifically, they adopted Language Modeling

techniques to find the sentences in a document that are both novel and relevant to a given

topic being summarised. A year after its publication, this seminal research went on to

motivate the introduction of the Novelty Detection Track at TREC.7 Due to the success of

this approach, coupled with the fact that language modeling approaches have been applied

to many other classification tasks (Lewis 1992; Larkey and Croft 1996; Sahami 1996;

Sahami et al. 1998; McCallum and Nigam 1998), we investigate the applicability of similar

language modeling based techniques for the event classification task described in this paper.

3 Corpora

The ACE 2005 Multilingual Corpus was annotated for entities, relations and events. It

consists of articles originating from six difference genres including Newswire (20%),

Broadcast News (20%), Broadcast Conversation (15%), Weblogs (15%), Usenet News-

groups (15%) and Conversational Telephone Speech (15%). We evaluate our methods on

the following event types which have a high number of instances in the collection: Die,

Attack, Transport, Meet, Injure and Charge-Indict.
The data we use from the IBC database consists of Newswire articles gathered from 77

different news sources. To obtain a gold standard set of annotations for articles in the IBC

corpus, we asked ten volunteers to mark up all Die event instances. To maintain consis-

tency across both datasets, events in the IBC corpus were identified in a manner that

conformed to the ACE annotation guidelines. In order to approximate the level of inter-

annotation agreement achieved for the IBC corpus, two annotators were asked to annotate a

disjoint set of 250 documents. Inter-rater agreements were calculated using the kappa

statistic that was first proposed by (Cohen 1960). Using the annotated data, a kappa score

of 0.67 was obtained, indicating that while the task is difficult for humans the data is still

useful for our training and test purposes. Discrepancies were adjudicated and resolved by

an independent volunteer. Statistics describing both datasets are listed in Table 1.

When the IBC and ACE datasets are compared, we find that there are properties that

differ between them. For instance, the IBC corpus consists only of newswire articles

whereas the ACE data is made up from different genres of documents such as weblogs,

news articles and Usenet newsgroups. As a result, the vocabulary used to describe the Die
event for example in the ACE data is more diverse as its event instances occur across more

topics (e.g., wars, natural disasters, traffic accidents, murders, terrorist attacks etc.). In

contrast, the IBC data only contains Die events that occur in the context of the recent Iraqi

war (see Fig. 1 for specific examples). This greater diversity in vocabulary within topics is

also clear when we compare the term statistics of the ACE and IBC datasets. For example,

although the average number of total terms per document is larger in the IBC corpus

(585.92) than the ACE data (445.55), the average number of unique terms per document is

7 The TREC novelty track ran from 2002 to 2004. The aim of the task was to highlight sentences containing
relevant and new information in a short, topical document stream. This is analogous to highlighting key
parts of a document for another person to read, and this kind of output can be useful as input to a
summarization system.

136 Inf Retrieval (2010) 13:132–156

123

much higher in ACE (49.8) than IBC (32.4). Another reason for this diversity, is that ACE

articles contain a combination of informal (e.g., from weblogs and Usenet newsgroups

texts) and formal reporting vocabulary (e.g., newswire). Based on this analysis we con-

clude that the ACE dataset is a heterogeneous event corpus, while the IBC dataset is a

homogeneous one.

4 Event detection as classification

In this paper, we treat event detection as a series of binary classification tasks, one for each

event type used in our experiments. It is important to emphasise that event detection is not

treated as a multi-class classification problem in this paper. Instead, a binary classifier is

built for each event type such that a sentence belonging to the data collection of that type is

assigned to one of the following classes:

– An On-Event Sentence is a sentence that contains one or more instance of the target

event type.

– An Off-Event Sentence is a sentence that does not contain any instance of the target

event type.

4.1 A machine learning approach

In an attempt to develop an appropriate classification approach for this task we use an SVM

to automatically classify each instance as either an on-event or off-event sentence. SVMs

Fig. 1 Sample Die event instances taken from articles in the ACE 2005 and IBC datasets

Table 1 Statistics describing both datasets where Trans. and Charge refer to the Transport and Charge-
Indict event types, respectively

ACE IBC

Die Injure Attack Meet Trans. Charge Die

No. of sentences 4496 1487 6962 2639 5934 637 8628

No. of documents 154 50 235 84 181 43 332

No. Ev. Sent. 392 87 984 160 472 85 2262

Avg. Doc. length 29.2 29.7 29.6 31.4 32.8 14.8 25.9

Avg. Ev. Sent./Doc. 2.54 1.74 4.18 1.92 2.55 2.60 6.78

Inf Retrieval (2010) 13:132–156 137

123

have been shown to be more robust in classification tasks involving text where the

dimensionality is high (Joachims 1998). In our experiments we used a relatively efficient

implementation of an SVM called the Sequential Minimal Optimisation (SMO) algorithm

(Platt 1999) that is provided through the Weka framework (Witten and Frank 2000). One

advantage of using this implementation is that the amount of memory required by SMO is

linear to the size of the data. When an SVM is used for classification, it is important that an

appropriate kernel function is chosen. For classification tasks such as this, where the

number of features is large, it has been reported (Hsu et al. 2000) that a linear kernel is

typically the most suitable. To confirm this, we experiment with three kernel types, namely

polynomial, RBF and linear kernels. Also, parameter optimisation for the C penalty

parameter was performed across all kernels during the cross validation process. The effects

of this optimisation process together with the effects of altering the SVM’s kernel type are

reported in Sect. 5.2.

For difficult NLP tasks such as QA, more complex feature representations (beyond the

standard bag of words) have been proposed (Moschitti et al. 2007; Surdeanu et al. 2008)

recently. However, such representations, although suited to the QA task require expensive

pre-processing and have never been shown to yield significant improvements in perfor-

mance for classification tasks such as the one investigated in this paper. Instead each

sentence forms a training/test instance for our classifier and is encoded using the following

set of features:

– Terms: Stemmed terms (using Porter’s stemming algorithm (Porter 1997)), with a

frequency in the training data greater than two, were used as term features. All

stopwords were removed from this feature set.

– Lexical Information: The presence or absence of each part of speech (POS) tag and

chunk tag was used as a feature. We used the Maximum Entropy POS tagger and

chunker, provided with the C&C Toolkit (Curran et al. 2007). The POS tagger uses the

standard set of grammatical categories from the Penn Treebank and the chunker

recognises the standard set of grammatical chunk tags: NP (Noun Phrase), VP (Verb

Phrase), PP (Prepositional Phrase), ADJP (Adjective Phrase), ADVP (Adverb Phrase)

and so on. Chunk tags are used widely within the Computational Linguistics

community to represent phrasal-level clauses in a span of text. For example, if a

sentence contains any noun phrase, its corresponding NP chunk feature would be

assigned the value ‘1’. Otherwise, if no noun phrase were present, the value assigned to

this feature would be ‘0’.

– Noun Chunks: Noun chunks with a frequency greater than two were also used as a

feature. Examples include ‘American soldier’ and ‘suicide bomb’.

– Additional: We added the following additional features to the feature vector: sentence

length, sentence position, presence/absence of negative terms (e.g., no, not, didn’t,

don’t, isn’t, hasn’t), presence/absence of a modal terms (e.g., may, might, shall, should,

must, will) and the presence/absence of a location, person, organisation and a time-

stamp. Named Entities are recognised using the named entity identifier available in the

C&C Toolkit. Time-stamps were identified using in-house software developed by

members of the Language Technology research group at the University Melbourne.8

Our belief is that these additional features will aid the learner to correctly identify on-
event sentences of the target event. For example, intuitively sentences at the beginning

of a document are more likely to be on-event sentences since the lead sentences of a

8 http://www.cs.mu.oz.au/research/lt/

138 Inf Retrieval (2010) 13:132–156

123

http://www.cs.mu.oz.au/research/lt/

document are often used to describe the major events discussed in the article.

Therefore, we expect that the ‘sentence position’ feature will prove useful for this task.

We evaluate the overall effectiveness of these additional features in Sect. 5.2

In the past, feature selection methods have been found to have a positive effect on

classification accuracy of text classification tasks. To examine the effects of such techniques

on this particular task, we use Information Gain (IG) to reduce the number of features used

by the classifier by 50%. For example, if 400 hundred features were used to encode each

instance originally, IG would select the top 200 most discriminative features and utilize this

latter set to represent each train/test instance. While there are several motivating reasons for

using IG for feature selection, there are also many limitations associated with it. One

problem is that it tends to show unfair favouritism toward attributes with a large number of

possible values (Tang and Liu 2005). That is, it is likely to prefer to split on an attribute with

thirty possible values than one with only two possible values. In light of this drawback, the

Gain Ratio metric introduced by (Quinlan 1993) is a preferred feature selection metric,

which is designed to address such biases toward high-valued attributes. Although the

majority of the features used for this task have only 2–3 possible values, we experiment with

the IG and Gain Ratio metrics and report their effects on the SVMs overall performance in

Sect. 5.2. The use of wrapper based techniques (such as Forward Selection or Backward

Elimination), or alternative techniques such as random forests could be used instead of IG or

Gain Ratio, and might produce some performance improvement. However, the improve-

ment would not be expected to be very significant. For a full review of possible feature

selection techniques that could be used, we refer the reader to (Cunningham 2008).

4.2 Language modeling

The language modeling approach presented in this section is based on Bayesian decision

theory. Consider the situation where we wish to classify a sentence sk into a category

c 2 C ¼ fC1. . .CjCjg: One way to do this is to choose the category that has the largest

posterior probability given the training text:

c� ¼ arg max
c2C

fPrðcjskÞg ð1Þ

Using Bayes rule, this can be re-written as:

c� ¼ arg max
c2C

fPrðskjcÞPrðcÞg ð2Þ

¼ arg max
c2C

fPrðskjcÞg ð3Þ

¼ arg max
c2C

YN

i¼1

PrcðwiÞ
()

ð4Þ

where deducing Eq. 3 from Eq. 2 assumes uniform weighted categories. Here, Pr(Pr(sk|c))

is the likelihood of sk under category c, which can be computed using Eq. 4. Therefore, for

each event type, we construct a unigram language model LM(ci), for each possible class ci

(i.e., the on-event category and the off-event category) using sentences from the training

data belonging to that category. Then to classify a new sentence sk, we supply sk to each

model, and assign it to the winning category according to Eq. 3.

One drawback of these models is that they generally under-estimate the probability of

any previously unseen word in the sentence. To combat this problem smoothing techniques

Inf Retrieval (2010) 13:132–156 139

123

are used to assign a non-zero probability to the unseen words and as a result improve the

accuracy of overall term probability estimation. Many smoothing methods have been

proposed over the years and in general they all try to discount the probabilities of seen

terms and assign the extra probability mass to the unseen words. In IR, it has been found

that the choice of smoothing method affects retrieval performance (Zhai and Lafferty 2001;

Kraaij and Spitters 2003). For this reason, we experiment with various smoothing tech-

niques and compare their effects on classification performance in Sect. 5.

One of the simplest proposed solutions to this problem is the Laplace smoothing method

(Manning and Schütze 1999). Similar to (Allan et al. 2001) we use a variant of this technique

by adding 0.01 to the numerator and multiply the denominator by 1.01 as follows:

PlpðwjLMðciÞÞ ¼
tf ðw; ciÞ þ 0:01

jcij � 1:01
ð5Þ

By modifying the frequency of terms in this way, all unseen words either meaningful or

not, will be assigned the same probability, which is not ideal. For example, consider the

event type Attack, and two test sentences both containing terms that were not seen in the

training data. Given that one of these terms is ‘sand’ and the other is ‘knife’, using the

Laplace smoothing approach both of these unseen terms will be assigned the same like-

lihood of occurrence, which is counterintuitive given that the target event type is Attack.

To overcome this problem, alternative smoothing methods exist which try to estimate the

probability of unseen terms with respect to some background model. In IR applications this

is usually built from the entire corpus. The idea is to attribute different probabilities to

unseen words according to their global distribution in the collection. Jelinek-Mercer
smoothing is a linear interpolation smoothing approach that does exactly this. It combines

the maximum likelihood estimation (MLE) of P(w|LM(ci)) from the class model with MLE

of P(w|C) from the collection model where C is the entire collection of documents. It uses a

coefficient k to control the influence of each model as follows:

PjmðwjLMðciÞÞ ¼ ð1� kÞPðwjLMðciÞÞ þ kPðwjCÞ ð6Þ

High values of k lead to more smoothing. This means that the background probabilities of

unseen terms have a greater influence on final term probabilities. For smaller classes this is a

desirable property due to the limited number of seen terms in the training data. We experi-

ment with varying values, where k [[0, 1], and found 0.5 to be the optimal value. Absolute
Discounting is a similar approach to smoothing where the count of each seen term is reduced

by a constant d and the discounted probability mass is redistributed amongst the unseen words

in a manner which is proportional to their probability in the collection model as follows:

PadðwjLMðciÞÞ ¼
maxðtf ðw; ciÞ � d; 0Þ þ djciju � PðwjCÞ

jcij
ð7Þ

where |ci|u is the number of distinct terms in class ci and d [[0, 1]. Again, higher values of

d result in higher levels of smoothing. We experiment with varying values where d [[0, 1]

and found that 0.5 proved to be the most effective value for d, and as a result used this

value in the experiments presented in Sect. 5.2.

For this task, we normalise all numeric references, locations, person names and or-

ganisations to DIGIT, LOC, PER, and ORG, respectively. This will help to reduce the

dimensionality of our models, and hopefully improve their classification accuracy, par-

ticular in cases where unseen instances of these entities occur in the test data. The effect of

this normalisation process is examined in Sect. 5.2.

140 Inf Retrieval (2010) 13:132–156

123

4.3 Trigger-based event classification

According to the ACE annotation guidelines9 event instances are identified in the text by

finding event triggers that explicitly mark the occurrence of each instance. As a result, each

event instance tagged in our datasets has a corresponding trigger that the annotators used to

identify it. For example, terms such as ‘killing’, ‘death’ and ‘murder’ are common triggers

used to identify instances of the Die event type. Therefore, the trigger-based event clas-

sification system selects sentences containing one or more candidate trigger terms as

positive on-event instances. With the aid of a volunteer, we used WordNet to manually

create a list of terms for the system that are synonyms, near-synonyms and related terms of

the event type in question. For example, in the case of the Meet and Die events, common

trigger terms include {‘encounter’, ‘visit’, ‘reunite’} and {‘die’, ‘suicide’, ‘assassination’},

respectively. We classify each sentence for a given event type as follows: if a sentence

contains one or more terms in the trigger list for that event type then it is assigned to the

on-event class for that type. Otherwise, it is assigned to the off-event class. Table 2 con-

tains the number of trigger terms used for each event type.10

4.4 Baseline systems

We compare the performance of the trained SVM, unigram language models and the

trigger-based classification system against the following baseline systems in order to assess

the overall difficulty of the task:

– Random assigns each sentence randomly to one of the possible classes, i.e., on-event

or off-event.

– Minority Class Baseline assigns each sentence to the class that is least frequent in the

training data. In our case, this is the on-event class.

The next section reports the results of our experiments, the aims of which are to

determine the performance of these event classification systems on some unstructured news

data.

5 Evaluation methodology and results

5.1 Evaluation methodology

A standard measure for classification performance is classification accuracy. However, for

corpora where the class distribution is skewed (as is the case in our datasets where

approximately 90% of the instances belong to the off-event class) this measure can be

misleading. In this section, we report on-event evaluation scores for each event as defined

by the following metrics: Precision, Recall and F1.

Let a be the number of sentences correctly classified by system s as an on-event, b is the

total number of sentences classified by s as an on-event, and c is the total number of

human-annotated sentences in the on-event class. Then, the Precision, Recall and F1 score

for the on-event class for system s can be defined as:

9 Available at http://projects.ldc.upenn.edu/ace/annotation/
10 Trigger term lists are available at: http://csserver.ucd.ie/*martina/triggerLists.html

Inf Retrieval (2010) 13:132–156 141

123

http://projects.ldc.upenn.edu/ace/annotation/
http://csserver.ucd.ie/~martina/triggerLists.html

Precisions ¼
a

b
; Recalls ¼

a

c
and F1s ¼

2� Precisions � Recalls
Precisions þ Recalls

ð8Þ

To obtain an accurate indication of each classifier’s overall performance, average F1

scores across all events are often computed. These averages can be computed in two ways

to reflect the importance of the smaller events. The first method, called macro averaging,

gives an equal weight to each event and is obtained by computing an average of the F1

scores achieved. The second, called micro averaging, assigns weights to each event in a

way that is proportional to the frequency of that event in the collection. For classes with a

small amount of positive training instances, it is typically more difficult to achieve good

classification, and their poor performance will have a larger effect on the overall perfor-

mance when the macro average is used. Since the events in our corpora have unbalanced

distributions we report both the micro and macro F1 scores.

5.2 Results

In this section, we present the results obtained for our different event classification

approaches. More specifically, the purpose of the experiments reported in this section is to

answer the following questions:

1. What are the effects of varying the kernel function used on the SVM’s classification

performance?

2. How does the performance of each approach differ across the six event types explored

in this paper?

3. Do additional linguistic features improve the classification performance of the SVM?

4. How effective are the unigram language models as event classifiers?

5. What is the effect of varying the size of classifier training data?

6. What is the effect of homogeneous versus heterogeneous training data on classification

performance?

5.2.1 Comparing the performance of the SVM using different kernel functions

To determine which kernel function is more suitable for this classification task, we built

three versions of the SVM. The first was built using a linear kernel, the second with a

polynomial kernel, and the third using an RBF kernel function. Each variation was eval-

uated using the IBC data where the target event type is Die. The resulting Precision, Recall

and F1 scores achieved for the on-event class are contained in Table 3. To produce these

results, optimisation of the C penalty parameter and gamma (RBF kernel only) was carried

out. As shown, the RBF and linear kernel functions tend to outperform the polynomial

kernel function. Moreover, the linear and RBF kernels tend to produce very similar results

for this task. This is possibly because the linear kernel is a special case of RBF, as (Keerthi

Table 2 Trigger term list sizes for the six event types used in the experiments

Event type # Triggers terms Event type # Triggers terms

Die 29 Transport 14

Meet 12 Injure 10

Charge-Indict 8 Attack 8

142 Inf Retrieval (2010) 13:132–156

123

and Lin 2003) show that the linear kernel with a penalty parameter C has the same

performance as the RBF kernel with certain values of C. In the remainder of the experi-

ments presented in the sections to follow, a linear kernel, with parameter optimisation is

used since our results suggest that it marginally outperforms the other kernels in this

classification task.

5.2.2 Comparing event classification performance across events

We begin this discussion by focusing on the Die event type since we have additional

training and test data for this event from the IBC data collection. Results for the other

five event types annotated in the ACE data are discussed later in this section. Table 4

shows the Precision, Recall and F1 scores achieved for the on-event class obtained by

each approach. Two variations of the SVM using a linear kernel function were built.

The first version (denoted in Table 4 by SVMlinear (AllFeats. IG)) was trained using all

the features (approximately 5000) to encode each training/test instance where the

features were reduced using Information Gain (IG). In the second version, the same set

Table 3 % Precision, Recall and F1 for the on-event class achieved by the SVM (with parameter opti-
misation), using a polynomial (SVMpoly), linear (SVMlinear) and RBF (SVMRBF) kernel function

Algorithm On-Event class

Precision Recall F1

SVMlinear (All Feats. IG) 91.83 92.94 92.38

SVMRBF (All Feats. IG) 91.42 93.18 92.28

SVMpoly (All Feats. IG) 85.60 86.48 85.98

These scores are generated from the IBC dataset using 10-fold cross validation where the target event type is
Die

Table 4 % Precision, Recall and F1 for the on-event class achieved by all algorithms where the target event
type is Die

Algorithm On-Event class

Precision Recall F1

SVMlinear (All Feats. IG) 91.83 92.94 92.38*

SVMlinear (All Feats.) 92.09 92.40 92.23*

Trigger-based 83.34 92.51 87.66*

LM(DS) Feature Norm 64.93 84.77 73.47

LM(DS) No Feature Norm 63.43 85.38 72.71

LM(LP) Feature Norm 61.62 84.09 71.04

LM(LP) No Feature Norm 61.28 83.78 70.72

LM(JM) Feature Norm 54.49 93.81 68.89

LM(JM) No Feature Norm 54.50 93.31 68.75

Minority Class 28.26 100.0 43.16

Random 25.48 47.88 33.15

These scores are generated from the IBC dataset using 10-fold cross validation

* indicates that the result isstatistically significantly (95% confidence level) better than the results of the
systems listed in the bottom half of the table

Inf Retrieval (2010) 13:132–156 143

123

of features was used, but no feature reduction was carried out (denoted in the table by

SVMlinear (AllFeats)). LangModel(JM), LangModel(DS) and LangModel(LP) represent

unigram language models smoothed using Jelinek-Mercer, Discount Smoothing and

Laplace techniques, respectively. Two variations of each language model were also

built. The first variation of each model was built using feature normalisation as

discussed in Sect. 4.2 (i.e., replacing all locations, organisations with common keywords

such as LOC and ORG). Such models are denoted in the text as Feature Norm. When

building the second variation of each model, no feature normalisation was used. These

models are denoted in the text as No Feature Norm.

Overall, results in this table suggests that the SVM (built using a linear kernel function)

using IG is the most effective method for correctly classifying on-event sentences using

IBC data for the Die event type. Similar results were achieved when the Gain Ratio

technique was used instead of IG for feature selection purposes. Since the Wilcoxon

signed-rank test showed that there was no statistically significant difference between these

results, we omitted them from Table 4. When feature selection techniques are not used, a

marginal decrease in performance is observed. The fact that each version of the SVM

obtains an on-event F1 score of about 90% is extremely encouraging when one considers

the large skew in class distribution that is present here (i.e., the majority of training

instances belong to the off-event class). Moreover, the Wilcoxon signed-rank test also

revealed that the scores produced by both versions of the SVM are statistically significantly

better (indicated by a * in Table 4) than those produced by the trigger-based system and the

remaining systems listed in the bottom half of Table 4.

The results in Table 4 also indicate that the trigger-based system performs very well,

achieving similar scores to the SVM. This outcome suggests that selecting sentences

containing terms strongly associated with the target event is an effective way of solving

this task. Nevertheless, its precision for the on-event class is about 8% lower than that of

the SVM variations, suggesting that this approach tends to make more false alarm type

mistakes, where negative instances are classified as being positive on-events. More spe-

cifically, many sentences that contain terms like ‘suicide’ as part of a noun phase (e.g.,

‘suicide bomb’ or ‘suicide car driver’) do not report a death. The trigger-based system will

place these in the on-event class whereas the SVM correctly places them in the off-event
category. Finally, the Wilcoxon signed-rank test revealed that the results produced by the

trigger-based system are statistically significantly better (indicated by a * in Table 4) than

those produced by the systems listed in the bottom half of Table 4.

In general, the language modeling based techniques are not as effective as the SVM or

trigger-based systems for the Die event type. Nevertheless, Table 4 shows that each lan-

guage model achieves F1 scores of approximately 70% for the on-event class. It is also

evident from this table that using the feature normalisation process discussed in Sect. 4.2 to

reduce the term features used to build the language models has only marginal effects on the

% on-event F1 score.

So far we have looked at system performance for the Die event on the IBC data

collection. Figure 2 shows the % F1 of the on-event class achieved using 10-fold cross

validation by all approaches on the six selected event types defined in the ACE data. To

produce these results, a binary classifier (with the ability to discriminate between on-event
and off-event sentences) was built for each event type.

Overall, these results indicate that the performance of each approach for the on-event
class varies considerably across the event types. They also show that the majority of

approaches perform marginally better on event types such as Charge-Indict and Die. One

plausible reason for this is that these events are very ‘specific’ where only a few terms

144 Inf Retrieval (2010) 13:132–156

123

(e.g., ‘charge’, ‘accuse’, ‘die’, ‘killed’) are typically associated with their occurrences.

Therefore, the SVM is able to learn these term features during training, and the trigger-

based system has sufficient coverage of these terms in its trigger list. Consequently, both

systems achieve their highest on-event F1 scores when the target event is Charge-Indict or

Die. However, for broader types such as Attack and Transport, the trigger-based system

performs poorly. This is probably because instances of these types are discussed in many

different contexts and circumstances, and thus require a larger vocabulary to describe

them. To illustrate this point further, sample instances of the Transport event type are

shown in Fig. 3. We see from Fig. 2 that the SVM performs well on such event types,

outperforming the trigger-based system on the Attack and Transport events by a percentage

difference of approximately 50% and 20%, respectively.

To gain an accurate indication of each system’s overall performance, the % macro and

micro average F1 was calculated across the six ACE event types for all systems. These

results are shown in Table 5. Overall, system rankings across the micro and macro scores

remain consistent, as do corresponding scores for each system. However, this is not true in

the case of the trigger-based approach; its micro average F1 score is approximately 10%

lower than its macro score. The reason for this is that the trigger-based system performs

very well on small events such as Charge-Indict, Die and Meet, but performs relatively

poorer on the larger event types (Attack and Transport).

Fig. 2 % F1 of the on-event class achieved by each method for all six event types. These scores are
generated from the ACE dataset using 10-fold cross validation

Fig. 3 Sample Transport event instances taken from articles (of varying types, i.e., weblogs, newswire etc.)
in the ACE 2005 corpus

Inf Retrieval (2010) 13:132–156 145

123

Finally, we used Wilcoxon’s signed-rank test to determine the best performing classifier

based on both the macro-level and micro-level evaluations shown in Table 5. This test

revealed that there was no statistically significant difference between the macro F1 scores

produced by the SVMlinear (AllFeats. IG) and trigger-based systems. On the other hand, it

did show that the micro F1 scores produced by the SVMlinear (AllFeats. IG) system are

statistically significantly better (95% confidence level) than those generated by the trigger-

based system. Finally, across both forms of evaluation we found that the results produced

by the SVMlinear (AllFeats. IG) are statistically significantly better (95% confidence level)

than those produced by all variations of the language models. However, Wilcoxon’s

signed-rank test also revealed that there is no statistically significant difference between the

results produced by the trigger-based system and those produced by the language models.

5.2.3 Effectiveness of linguistic features

To access the effectiveness of each feature set on overall classification performance, we

evaluated the SVMlinear (AllFeats. IG) system using different feature set combinations for

all event types across both datasets using 10-fold cross validation to generate the results.

These scores are shown in Fig. 4 where terms, nc, lex, additional denote the terms, noun

Table 5 % Macro and micro F1 across all six ACE events (i.e., Die, Charge-Indict, Meet, Attack, Injure
and Transport)

Algorithm % Micro F1 % Macro F1

SVMlinear (All Feats. IG) 66.37* 67.46

Trigger-based 45.32 55.93

LM(JM) Feature Norm 37.84 37.80

LM(DS) Feature Norm 34.26 33.78

LM(LP) Feature Norm 30.74 29.08

Random 16.86 15.67

* indicates that the result is statistically significantly (95% confidence level) better than the results of the
systems listed in the bottom half of the table

Fig. 4 % F1 for the on-event class achieved by the SVM using different combinations of features for the six
event types using the IBC and ACE datasets, respectively. These scores are generated using 10-fold cross
validation

146 Inf Retrieval (2010) 13:132–156

123

chunks, lexical, and ‘additional’ features, respectively. See Sect. 4.1 for more details on

how these features were constructed. Due to the success of the trigger-based system

reported in the previous subsection, it also makes sense to investigate the effectiveness of

the trigger term lists as a potential SVM feature. The trigger feature is a binary feature

which is encoded as follows: if the candidate sentence contains a trigger term for the given

event then a value of 1 is assigned to this feature, otherwise 0 is assigned.

Looking at the results of these experiments in Fig. 4, we see that term features are the

most valuable feature type for this task, since the addition of the other feature sets provides

no significant increase (or decrease) in F1 score. For some event types such as Meet, a little

improvement is obtained from adding the additional trigger feature, but it seems that most

of the trigger terms are successfully learned by the SVM. When we examined the top 100

most discriminative individual features ranked using information gain, 60% of those

included features from the Noun Chunk, Lexical and Additional feature sets. Specifically,

the presence/absence of a numerical token, the presence/absence of the VBD (past tense

verb) part of speech tag, sentence length and sentence position are ranked as the 2nd 4th

6th and 14th most discriminative features, respectively when the target event is Die.

Numerical terms for example, tend to occur frequently in Die on-event sentences because

such sentences typically include a fatality count. However, it turns out that this feature is

not found to be as useful for other event types. Also, the VBD (part of speech tag indicating

a past tense verb) part-of-speech feature is also found to be discriminative for the Die type,

since sentences discussing an event that are written in the past tense typically signifies that

the event has occurred, whereas sentences discussing an event written in the conditional

may not. Unlike the numerical feature, this feature is also found to be useful across all

event types. This suggests that some of these additional features are more discriminative

for some event types and less discriminative for others. We feel this is an interesting result

and hope to investigate this further as part of future work.

5.2.4 Effects of varying training data size

The graphs in Fig. 5 depict the F1 scores of the on-event class achieved by SVMlinear

(AllFeats. IG) (Fig. 5a) and LangModel(DS) (Fig. 5b) systems for all event types using

two levels of training data during the cross validation process. The 10:90 Train/Test split

was generated by using one partition of the data to train the algorithms, and the remaining

nine for testing purposes. In contrast, the 90:10 Train/Test split was generated using nine

partitions of the data for training and the remaining one for testing purposes. Baring this in

mind, Fig. 5a suggests that the on-event F1 score of all types improves by increasing the

amount of data used for training. More specifically, we observe that this increase is

generally greater for the ACE types. This is probably because the data for each event is

quiet limited to begin with. Similarly, Fig. 5b shows analogous results when the Lang-
Model(DS) Feature Norm. language model variation is used. We include these result to

illustrate how the language models overall are affected by an increase in the amount of data

used to build the models.

5.2.5 Effectiveness of the language modeling approaches

The results presented so far show that the language modeling based techniques are not as

effective as the SVM approach or trigger-based system for this classification task on all

event types and both datasets. Overall, models smoothed with the Laplace method tend to

have the least impact out of the three smoothing techniques investigated. This is due to the

Inf Retrieval (2010) 13:132–156 147

123

fact that this method assigns the same probability to all unseen terms. Thus, terms that

appear frequently in the overall collection have the same likelihood of occurring in an on-
event sentence as terms that rarely occur in the overall collection. In contrast, in the case of

the Jelinek-Mercer and Absolute Discounting smoothing methods, term probabilities of

unseen terms are estimated in a manner that is proportional to their global distribution in

the entire corpus. Consequently, the probabilities assigned to unseen terms tend to be more

reliable approximations of true term probabilities.

5.2.6 Homogeneous versus heterogeneous training data

When we compared the IBC and ACE datasets (for the Die event) in Sect. 3, we found that

there are some properties that differ between them (e.g., the number of topics covered and

the size of there respective vocabularies). We hypothesise that these differences will have a

direct effect on each system’s performance, particularly that of the language models since

Fig. 5 % F1 for the on-event class depicting the effects of using varying levels of training data across all
event types generated using 10-fold cross validation. a % F1 for the on-event class for the SVM (All Feats.
IG) system using varying levels oftraining data across all event types; b % F1 for the on-event class for the
LangModel(DS) system using varying levels of trainingdata across all event types

148 Inf Retrieval (2010) 13:132–156

123

term probabilities are estimated in a way that is proportional to their global distribution in

the training corpus. To confirm this, we evaluate each system for the Die event using five

combinations of training/test data and compare resulting F1 scores for the on-event class.

These results are shown in Fig. 6 where:

– Train:ACE/IBC-Test:ACE/IBC signifies when a mixture of data from the IBC and

ACE datasets was used for both training and testing purposes during the 10-fold cross

validation process.

– Train:IBC-Test:IBC signifies when only the IBC dataset was used for both training

and testing purposes during the 10-fold cross validation process.

– Train:ACE-Test:ACE signifies when only the ACE dataset was used for both training

and testing purposes during the 10-fold cross validation process.

– Train:ACE-Test:IBC signifies when the ACE data was used for training and the IBC

data was used for testing.

– Train:IBC-Test:ACE signifies when the IBC data was used for training and the ACE

data was used for testing.

The results shown in this graph suggest that the language modeling based method

appear to be the most sensitive approach to changes in training source. For example, the

on-event F1 score of all three models are reduced by approximately 40% when the Trai-
n:IBC-Test:ACE training/test combination is used compared to the Train:ACE-Test:IBC
combination. This suggests that the term probabilities are less accurate when a more

homogeneous dataset is used to estimate them during the training phase. The SVM scores

also vary considerably across each of the difference combinations, but to a lesser extent.

The results of the trigger-based classification system vary the least across the different

combinations of training/test data since it is an unsupervised method and does not rely on

training data to learn how to detect on-event sentences. Overall, using the Train:IBC-
Test:ACE combination for training/testing produces the poorest result across all approaches

for this task suggesting that when homogeneous datasets are used for training, the systems

find it more difficult to correctly classify instances that contain events described across

more diverse contexts, topics and circumstances. To summarise: for this task we have

found that a heterogeneous training dataset produces more accurate classifiers, regardless

of whether the test data is heterogeneous or homogenous.

Fig. 6 % F1 for each approach using five combinations of training/test data for the Die event type

Inf Retrieval (2010) 13:132–156 149

123

6 Error analysis

For this classification task we investigated three different approaches for identifying

sentences in a document that describe instances of a given event type, i.e., a machine

learning, a language modeling and a manual knowledge engineering-based approach. In

this section, we examine in detail the types of errors generated by the three approaches

when the target event type is Die. We also analyse the amount of overlap that exists

between the correct decisions produced by each system for this target type. We do this in

order to determine if it would be worthwhile combining the approaches in some way with

the aim of reducing the overall error rate for this task.

The errors produced by all three approaches can be classified into four broad categories.

The first error type corresponds to instances, which in order to be correctly classified,

require logical inference and external knowledge. We refer to this form of error as an

inference error. The following are typical examples for the Die event type: ‘‘The baby fell

80 feet’’ and ‘‘America does care somewhat that you’ve lost your leader’’. Humans have no

problem resolving such examples. For instance, a human could infer (using world

knowledge) that if a baby falls 80 feet it has very little chance of survival. However, a

machine does not readily have this information available to it during the decision making

process. In the second example, external knowledge or additional context is also required

to infer that ‘‘lost your leader’’ indicates that the leader has actually died.

The second type of error identified corresponds with cases that describe continuous

instances of the target event type. That is, the events are not discrete and as such have no

specific location or time information attached to them. We refer to this form of error as a

continuous error. Examples for the Die event type include: ‘‘Roadside bombs account for

up to 80% of U.S. deaths’’, ‘‘Most guns may have fallen silent but the death toll in Iraq

continues to rise’’, and ‘‘It’s like a never ending circle of violence, death and destruction’’.

In these examples, the target event is described at the topic level rather than at a finer event
level. More specifically, an exact instance of the Die event is not being discussed here.

These false positive errors are difficult to identify since the containing sentences often

exhibit the same vocabulary and features as on-event sentences.

In the third type of error, we have identified sentences that require deeper semantic

analysis in order for the correct classification decision to be made. As such, unlike

inference errors, no external knowledge or additional context can be used to resolve these

classification errors. We refer to this form of error as a semantic error. Typical examples

include: ‘‘If we let this go unchecked, people will die.’’, ‘‘He would be the first in a really

long time to actually be killed.’’ and ‘‘They are threatening to kill the hostages.’’. It is clear

that more complex compositional semantic analysis is required in order to correctly

classify such cases.

The last error type identified corresponds with trigger-less errors. That is, false positive

cases that typically contain terms that commonly occur in on-event sentences (e.g., ‘hos-

pital’, ‘wounded’, ‘detained’), but are not accompanied with the appropriate target event

trigger term. Typical examples include: ‘‘Two wounded women were taken to hospitals in

Baghdad and Ramadi.’’, and ‘‘On Sunday night U S troops detained ex army Gen Mumtaz

al Taji at a house in Baquba about 30 miles north of Baghdad.’’

Figure 7 depicts the percentage breakdown of the four major error types produced by

the unigram language model smoothed using Jelinek-Mercer (left), the SVM (middle) and

the trigger-based classifier (right). After studying these pie charts we notice the following

trends:

150 Inf Retrieval (2010) 13:132–156

123

– 90% of the errors produced by the language model are trigger-less errors where the

sentences do not describe instances of the target event type, but were classified as on-
event instances.

– 77% of the errors produced by the SVM are semantic errors. These are mainly cases

that report instances of the target event type, but have been misclassified as off-event
sentences by the SVM because the ‘‘true’’ semantic meaning of the sentence was not

correctly established.

– 17% of the errors produced by the SVM are trigger-less errors. These are false positive

sentences that do not contain any trigger terms, but do contain terms such as ‘weapon’,

‘gun’ and ‘war which are often found in on-event Die sentences. Both the language

modeling and SVM approaches are using contextual terms surrounding trigger words

as discriminative features in their classification decisions. However, the occurrence of a

strong contextual term can result in a classification error when the accompanying

trigger term does not occur. This is a problem with learning methods where term

independence is assumed.

– 62% of the errors produced by the trigger-based classifier are semantic errors. When we

examined these errors closely we found that 50% were false positives and the

remaining 50% were false negatives. Interestingly, many of the false positives errors

consisted of sentences that contained the term ‘suicide’ as part of a noun phrase such as

‘‘suicide attack’’ or ‘‘suicide car bomber’’. Also, we found that the false negative cases

were mainly sentences such as ‘‘The police found the bodies of seven men in various

parts of Baghdad.’’ and ‘‘Three more bodies were found in the New Baghdad district

where human bodies were found dead’’.

– 25% of the errors produced by the trigger-based classifier are continuous errors. These

sentences talk about the target event in the general sense, but no specific instance of it

is reported.

– 9% of the errors produced by the trigger-based classifier are trigger-less errors. These

are mainly cases where the sense of the trigger term is not connected with Die. For

example, the term ‘execute’ has many other distinct meanings associated with it other

Fig. 7 Percentage breakdown of the four major error types in each event classification system where the
target event is Die

Inf Retrieval (2010) 13:132–156 151

123

than ‘to be executed’. Examples include sentences such as ‘‘She executed the speech

perfectly with no problems.’’. Also, when the term ‘executive’ is stemmed it becomes

‘execute’ which explains why sentences such as ‘‘Reuters chief executive Tom Glocer

called for a comprehensive investigation into this event.’’ were incorrectly classified as

on-event sentences by the trigger-based classifier.

One recurring observation from this error analysis is that the tense of the sentence and

the part of speech of its trigger term(s) tend to act as good indicators for this classification

task. For example, when a trigger term occurs as a past participle (‘‘was killed’’) it usually

indicates that the event has already occurred. Whereas if it occurs as a present participle

(‘‘is killing’’) or a noun (‘‘the dead’’), this is not necessarily the case. In the existing SVM

presented in Sect. 4.1, we only capture the presence or absence of each POS tag as features.

However, it appears from this error analysis that these features alone are not powerful

enough to convey the underlying semantics of the sentence. Also, they tell us nothing about

the grammatical characteristics of the terms acting on the specific key terms such as the

trigger term(s). To combat this problem, we add the following additional feature set to the

SVM:

– Combined Term and Lexical Features: For each stemmed term in the corpus we

create a feature for it and concatenate it with its part of speech in this context. For

example, the stem ‘‘kil’’ can occur as a past tense verb (‘‘The device killed seven

people’’), as a present participle (‘‘is killing thousands’’), as a past participle (‘‘Seven

were killed ’’), as a noun (‘‘the killing’’) or as a plural noun (‘‘the targeted killings’’).

So for this stem we add five additional features: {kil_VBD, kil_VBG, kil_VBN, kil_NN,
kil_NNS}.

The resulting overall classification accuracy as well as the Precision, Recall and F1 for

each class of the modified SVM (SVMlinear (Modified)) and original SVM (SVMlinear

(AllFeats. IG)) is shown in Table 6. We also include the results of the existing trigger term

based system for comparison purposes. From these results we see a minimal increase in

overall performance as a result of adding these additional features. Although the increase is

not huge it is encouraging to see that the modified classifier correctly classifies previous

errors such as ‘‘Unexploded ordnance UXO in northern Iraq are killing and maiming

dozens of people every day’’ where the trigger term (‘killing’) occurs as a present parti-

ciple. One of the reasons for this is that the kill_VBG feature, which captures the fact that

the verb ‘to kill occurs as a present participle, is ranked as the 8th most discriminative

feature used by the modified SVM.

The last question we wish to address in this section is to determine whether it is

worthwhile combining the output of these systems (using for example, an ensemble

Table 6 % Precision, Recall and F1 of the on-event class achieved by the SVM with new features where
the target event type is Die

Algorithm On-event class

Precision Recall F1

SVMlinear (Modified) 93.19 92.27 92.72

SVMlinear (All Feats. IG) 91.83 92.94 92.38

Trigger-based 83.34 92.51 87.66

These scores are generated from the IBC dataset using 10-fold cross validation

152 Inf Retrieval (2010) 13:132–156

123

method) in an attempt to reduce the overall error rate of the task. One way of answering

this question is to determine whether or not each system is classifying the same instances

correctly, since high performing yet diverse systems can increase performance when

combined (Ng and Kantor 2000). Table 7 shows the percentage of correct classifications

generated by each system pair for the on-event class. We can see that the OnEventoverlap

between the system pairs ranges between 79.8% and 94.7%. The most similar system pair

is the SVM and trigger-based classifier. More specifically, these systems correctly classify

almost 95% of the same on-event sentences. In contrast, for OffEventoverlap scores (as

shown in Table 8), we see that systems are tending to produce different off-event errors.

This implies that a combination experiment could be beneficial if a voting type scheme

were employed where contradicting classifications were resolved by counting votes across

systems. However, the overall gains will probably be minimal. We leave this combination

experiment for future work.

7 Conclusions and future directions

Sentence level event classification is an important first step for many NLP applications

such as QA and summarisation systems. For each event type used in our experiments we

compared a variety of approaches for identifying sentences that described instances of that

type.

Overall we have shown that the most effective approach for this task depends on the

event type being detected. For broad vocabulary event types such as Attack and Transport,
the SVM appears to be the most appropriate approach. For more specific types such as

Charge-Indict and Injure, the trigger-based classification system proved to be the most

powerful approach. In general, the language models were the least effective out of the three

systems across all event types and datasets. We also observed that the performance of each

approach for the on-event class varies considerably across the event types. Also, we found

that terms alone prove to be the most powerful feature set used by the SVM for this

classification task. Additional features such as the presence/absence of the VBD part of

speech tag and sentence position can also act as good indicators regardless of the event

Table 7 % on-event overlap between the event classification systems

OnEventoverlap SVMlinear (Modified) LangModel (JM) Trigger-based

SVMlinear (Modified) 100% – –

LangModel (JM) 79.8% 100% –

Trigger-based 94.7% 81.3% 100%

Table 8 % off-event overlap between the event classification systems

OffEventoverlap SVMlinear (Modified) LangModel (JM) Trigger-based

SVMlinear (Modified) 100% – –

LangModel (JM) 13.86% 100% –

Trigger-based 36.62% 13.04% 100%

Inf Retrieval (2010) 13:132–156 153

123

type in question. Other features such as the presence/absence of a numerical token was

found to be useful for certain types such as the Die event. Finally, our experiments also

revealed that the type of dataset used for training significantly affects the performance of

the supervised approaches. Specifically, heterogeneous datasets with a rich vocabulary

proved to be more suitable for training purposes and thus produced better performing

classifiers on this task.

As part of our future work, we intend to focus on an issue that was not discussed in this

paper, namely, event co-reference resolution. In a real-world event detection application,

such as calculating an Iraq war body count from news articles, the system should also be

capable of identifying multiple instances of the same event to ensure that a particular Die
event is not counted multiple times. We are currently investigating the applicability of

clustering techniques as a means of identifying co-referring event sentences within and

between distinct news articles reporting on the same event.

Acknowledgements This research was supported by the Irish Research Council for Science, Engineering
& Technology (IRCSET) and IBM under grant RS/2004/IBM/1. The authors wish to thank the members of
the Language Technology Research Group at the University of Melbourne, NICTA for their helpful dis-
cussions regarding this research. We also wish to extend our gratitude to Anthony Brew and Prof. Pádraig
Cunningham from the Machine Learning Research Group at University College Dublin for their advice
regarding some of the machine learning aspects of this research.

References

Aery, M., & Chakravarthy, S. (2004). emailsift: Mining-based approaches to email classification. In Pro-
ceedings of the 27th international ACM SIGIR conference on research and development in information
retrieval (pp. 580–581). New York: ACM.

Ahn, D. (2006). The stages of event extraction. In Proceedings of the ACL workshop on annotating and
reasoning about time and events (pp. 1–8). Morristown, NJ: Association for Computational
Linguistics.

Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, Y. (1998). Topic detection and tracking pilot
study. Final report. In Proceedings of DARPA broadcast Nem transcription and understanding
workshop (pp. 194–218).

Allan, J., Gupta, R., & Khandelwal, V. (2001). Temporal summaries of news topics. In Proceedings of the
24th international ACM SIGIR conference on research and development in information retrieval (pp.
10–18). New York: ACM.

Atkinson, M., Piskorski, J., Pouliquen, B., Steinberger, R., Tanev, H., & Zavarella, V. (2008). Online-
monitoring of security-related events. In Proceedings of the 22nd international conference on com-
putational linguistics (pp. 1–4). Manchester, UK: Coling 2008 Organizing Committee.

Cohen, J. (1960). A coeficient of agreement for nominal scales. Educational and Psychological Measure-
ment, 20(1), 37–46.

Cunningham, P. (2008). Dimension reduction. In M. Cord & P. Cunningham (Eds.), Machine learning
techniques for multimedia (pp. 91–112). Berlin: Springer.

Curran, J., Clark, S., & Bos, J. (2007). Linguistically motivated large-scale NLP with C&C and Boxer. In
Proceedings of the 45th annual meeting of ACL, Demonstrations Session (pp. 29–32).

Daniel, N., Radev, D., & Allison, T. (2003). Sub-event based multi-document summarization. In Pro-
ceedings of the HLT-NAACL 03 workshop on text summarization (pp. 9–16). Morristown, NJ: Asso-
ciation for Computational Linguistics.

Dredze, M., Lau, T., & Kushmerick, N. (2006). Automatically classifying emails into activities. In Pro-
ceedings of the 11th international conference on intelligent user interfaces (pp. 70–77). New York:
ACM.

Filatova, E., & Hatzivassiloglou, V. (2004). Event-based extractive summarization. In Proceedings of the
ACL workshop on summarization (pp. 104–111).

Grishman, R., Huttunen, S., & Yangarber, R. (2002). Real-time event extraction for infectious disease
outbreaks. In Proceedings of the HLT’02 conference (pp. 366–369).

154 Inf Retrieval (2010) 13:132–156

123

Hripcsak, G., Bakken, S., Stetson, P., & Patel, V. (2003). Mining complex clinical data for patient safety
research: A framework for event discovery. Journal of Biomedical Informatics, 36(1/2), 120–130.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2000). A practical guide to support vector classification.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.3096.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant
features. In C. Nédellec & C. Rouveirol (Eds.), Proceedings of the 10th European conference on
machine learning (pp. 137–142.). Springer, Heidelberg, DE, Chemnitz, DE.

Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with gaussian kernel.
Neural Computation, 15(7), 1667–1689.

King, G., & Lowe, W. (2003). An automated information extraction tool for international conflict data with
performance as good as human coders: A rare events evaluation design. International Organization,
57(03), 617–642.

Kraaij, W., & Spitters, M. (2003). Language models for topic tracking. In B. Croft & J. Lafferty (Eds.),
Language models for information retrieval. Norwell, MA: Kluwer Academic Publishers.

Larkey, L., & Croft, B. (1996). Combining classifiers in text categorization. In Proceedings of the 19th
international ACM SIGIR conference on research and development in information retrieval (pp. 289–
297). New York: ACM.

Lewis, D. (1992). An evaluation of phrasal and clustered representations on a text categorization task. In
Proceedings of the 15th international ACM SIGIR conference on research and development in
information retrieval (pp. 37–50). New York: ACM.

Li, W., Wu, M., Lu, Q., Xu, W., & Yuan, C. (2006). Extractive summarization using inter and intra event
relevance. In Proceedings of the 44th annual meeting of ACL (pp. 369–376). Morristown, NJ: Asso-
ciation for Computational Linguistics.

Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge,
MA: MIT Press.

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification. In
Proceedings of the AAAI-98 Workshop on Learning for Text Categorization (pp. 41–48). AAAI Press.

Miller, G. (1995). Word Net: A lexical database for english. Communications of the ACM, 38(11), 39–41.
Moschitti, A., Quarteroni, S., Basili, R., & Manandhar, S. (2007). Exploiting syntactic and shallow semantic

kernels for question answer classification. In Proceedings of the 45th annual meeting of the association
of computational linguistics (pp. 776–783). Association for Computational Linguistics.

Murff, H., Patel, V., Hripcsak, G., & Bates, D. (2003). Detecting adverse events for patient safety research:
A review of current methodologies. Journal of Biomedical Informatics, 36(1/2), 131–143.

Naughton, M., Stokes, N., & Carthy, J. (2008). Investigating statistical techniques for sentence-level event
classification. In Proceedings of the 22nd international conference on computational linguistics (pp.
617–624). Manchester, UK: Coling 2008 Organizing Committee.

Ng, K. B., & Kantor, P. B. (2000). Predicting the effectiveness of naı̈ve data fusion on the basis of system
characteristics. Journal of the American Society for Information Science (JASIS), 51(13), 1177–1189.

Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In B.
Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in Kernel methods: Support vector learning
(pp. 185–208). Cambridge, MA: MIT Press. ISBN:0-262-19416-3.

Porter, M. F. (1997). An algorithm for suffix stripping. In K. Sparck Jones & P. Willett (Eds.), Readings in
information retrieval (pp. 313–316). San Francisco, CA: Morgan Kaufmann Publishers Inc. ISBN:1-
55860-454-5.

Quinlan, R. (1993). C4.5: Programs for machine learning. San Francisco, CA: Morgan Kaufmann Pub-
lishers Inc.

Sahami, M. (1996). Learning limited dependence Bayesian classifiers. In Proceedings of the 2nd interna-
tional conference on knowledge discovery and data mining (pp. 335–338). AAAI Press.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to filtering junk e-mail.
In Proceedings of the AAAI-98 (pp. 1–8).

Saurı́, R., Knippen, R., Verhagen, M., & Pustejovsky, J. (2005). Evita: A robust event recognizer for QA
systems. In Proceedings of the conference on HLT and empirical methods in natural language pro-
cessing (pp. 700–707).

Schultz, J., & Liberman, M. (1999). Topic detection and tracking using idf weighted cosine coefficient. In
Proceedings of the DARPA broadcast news workshop (pp. 189–192). Morgan Kaufmann Publishers
Inc.

Schwartz, R., Imai, T., Nguyen, L., & Makhoul, J. (1997). A maximum likelihood model for topic clas-
sification. In Proceedings of Eurospeech (pp. 1455–1458).

Segal, R., Crawford, J., Kephart, J., & Leiba, B. (2004). Spamguru: An enterprise anti-spam filtering system.
In Proceedings of the first conference on email and anti-spam.

Inf Retrieval (2010) 13:132–156 155

123

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.3096.

Segal, R., & Kephart, J. (2000). Incremental learning in swift file. In Proceedings of the 17th international
conference on machine learning (pp. 863–870). Morgan Kaufmann Publishers Inc.

Surdeanu, M., Ciaramita, M., & Zaragoza, H. (2008). Learning to rank answers on large online qa col-
lections. In Proceedings of the 46th annual meeting of the Association of Computational Linguistics;
Human Language Technologies (ACL-HLT). Association for Computational Linguistics.
http://grupoweb.upf.es/hugoz/pdf/mihai_acl08.pdf

Tang, L., & Liu, H. (2005). Bias analysis in text classification for highly skewed data. In Proceedings of the
5th IEEE international conference on data mining (pp. 781–784). Washington, DC: IEEE Computer
Society.

Vanderwende, L., Banko, M., & Menezes, A. (2004). Event-centric summary generation. In Working notes
of DUC 2004 (pp. 76–81).

Walker, C., Strassel, S., Medero, J., & Consortium, L. D. (2006). ACE 2005 multilingual training corpus.
Linguistic Data Consortium, University of Pennsylvania.

Walls, F., Jin, H., Sista, S., & Schwartz, R. (1999). Topic detection in broadcast news. In Proceedings of the
DARPA broadcast news workshop (pp. 193–198). Morgan Kaufmann Publishers Inc.

Witten, I., & Frank, E. (2000). Data mining: Practical machine learning tools and techniques with Java
implementations. San Francisco, CA: Morgan Kaufmann Publishers Inc.

Wu, M. (2006). Investigations on event-based summarization. In Proceedings of the COLING/ACL student
research workshop (pp. 37–42). Morristown, NJ: Association for Computational Linguistics.

Yamron, J. P., Gillick, L., van Mulbregt, P., & Knecht, S. (2002). Statistical models of topical content. In
Topic detection and tracking: Event-based information organization (pp. 115–134). Norwell, MA:
Kluwer Academic Publishers. ISBN:0-7923-7664-1.

Yang, Y., Ault, T., Pierce, T., & Lattimer, C. (2000). Improving text categorization methods for event
tracking. In Proceedings of the 23rd international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. 65–72). New York: ACM.

Yang, Y., Carbonell, J., Brown, R., Pierce, T., Archibald, B., & Liu, X. (1999). Learning approaches for
detecting and tracking news events. IEEE Intelligent Systems, 14(4), 32–43.

Yang, Y., Pierce, T., & Carbonell, J. (1998). A study of retrospective and on-line event detection. In
Proceedings of the 21st international ACM SIGIR conference on research and development in
information retrieval (pp. 28–36). New York: ACM.

Zhai, C., & Lafferty, J. (2001). A study of smoothing methods for language models applied to ad hoc
information retrieval. In Proceedings of the 24th international ACM SIGIR conference on research and
development in information retrieval (pp. 334–342). New York: ACM.

156 Inf Retrieval (2010) 13:132–156

123

http://grupoweb.upf.es/hugoz/pdf/mihai_acl08.pdf

	Sentence-level event classification in unstructured texts
	Abstract
	Introduction
	Background and related work
	Corpora
	Event detection as classification
	A machine learning approach
	Language modeling
	Trigger-based event classification
	Baseline systems

	Evaluation methodology and results
	Evaluation methodology
	Results
	Comparing the performance of the SVM using different kernel functions
	Comparing event classification performance across events
	Effectiveness of linguistic features
	Effects of varying training data size
	Effectiveness of the language modeling approaches
	Homogeneous versus heterogeneous training data

	Error analysis
	Conclusions and future directions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

