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Abstract We introduce fast filtering methods for content-based music retrieval problems,

where the music is modeled as sets of points in the Euclidean plane, formed by the (on-set

time, pitch) pairs. The filters exploit a precomputed index for the database, and run in time

dependent on the query length and intermediate output sizes of the filters, being almost

independent of the database size. With a quadratic size index, the filters are provably

lossless for general point sets of this kind. In the context of music, the search space can be

narrowed down, which enables the use of a linear sized index for effective and efficient

lossless filtering. For the checking phase, which dominates the overall running time, we

exploit previously designed algorithms suitable for local checking. In our experiments on a

music database, our best filter-based methods performed several orders of a magnitude

faster than the previously designed solutions.

Keywords Content-based retrieval � Symbolically encoded polyphonic music �
Filtering � Indexing

1 Introduction

In this paper we are interested in content-based music retrieval (CBMR) of symbolically

encoded music. Such setting enables searching for excerpts of music, or occurrences of

query patterns, that constitute only a subset of instruments appearing in the full orches-

tration of a musical work. Instances of the setting include the well-known query-by-

humming application, but our framework can also be used for more complex applications
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where the query pattern searched for and the music database to be searched may be

polyphonic. Examples of such applications include musicological analysis of lengthy

musical works (e.g. operas) where polyphonic patterns could be efficiently identified

without the burden of handicraft, and music clustering based on a given set of polyphonic

profiles.

Another example of a complex application, where the CBMR framework could be used

as a tool, is plagiarism detection: consider a new music piece that is to be inspected for

plagiarism. One can extract (manually) some set of significant melody passages from the

piece and search for them in a database of existing symbolically encoded music. The

matching pieces in the database can be sorted according to the frequency of matches of the

chosen melody passages (or with some more elaborate metric), and the inspector can then

manually check the most distinguishing candidates. For the approach to be successful, the

CBMR algorithm should be effective enough to detect similar melody passages and omit

dissimilar ones, and fast enough to enable real time queries.

Indeed, the design of a suitable CBMR algorithm is always a compromise between

effectiveness and efficiency. Effectiveness means high precision and recall: the similarity/

distance measure used by the algorithm should not be too permissive to detect false

matching positions (giving low precision) and not too restrictive to omit true matching

positions (giving low recall). In this paper, we concentrate on a modeling of music that we

believe is effective in this sense, and at the same time provides computationally feasible

retrieval performance.

As symbolically encoded monophonic music can easily be represented as a linear string,

in literature several solutions for monophonic CBMR problems are based on an appropriate

method from the string matching framework (see e.g. Ghias et al. 1995; Mongeau and

Sankoff 1990). Polyphony, however, imposes a true challenge, especially when no voicing

information is available (i.e., for a note it is not known for which voice it belongs to, thus

preventing the possibility for an effective string representation), or the occurrence is

allowed to be distributed across the voices (Lemström and Pienimäki 2007). In some cases

it may suffice to use some heuristic, as for an example the SKYLINE algorithm (Uitdenb-

ogerd and Zobel 1998), to achieve a monophonic reduction out of the polyphonic work.

This, however, does not often provide musically meaningful results.

In order to be able to deal with polyphonic music, geometric-based modeling has been

suggested (Clausen et al. 2000; Typke 2007; Ukkonen et al. 2003; Wiggins et al. 2002).

Most of these provide also another useful feature, i.e., extra intervening elements in the

musical work, such as grace notes, that do not appear in the query pattern can be ignored in

the matching process. The downside is that the geometric online algorithms (Clifford et al.

2006; Lubiw and Tanur 2004; Ukkonen et al. 2003; Wiggins et al. 2002) are not com-

putationally as efficient as their counterparts in the string matching framework. Moreover,

the known offline (indexing) methods (Clausen et al. 2000; Typke 2007) compromise on

crucial matters.

These downsides are not surprising: the methods look at all the subsequences and the

number of them is exponential in the length of the database. Thus, a total index would also

require exponential space.

In this paper we deal with symbolically encoded, polyphonic music for which we use

the pitch-against-time representation of note-on information, as suggested in Wiggins et al.

(2002) (see Figs. 1 and 2). The musical works in a database are concatenated in a single

geometrically represented file, denoted by T ; T ¼ t1; t2; . . .;tn; where tj 2 R
2 for 1 B j B n.

In a typical retrieval case the query pattern P;P ¼ p1; p2; . . .; pm; pi 2 R
2 for 1 B i B m, to

be searched for is often monophonic and much shorter than the database T to be searched,
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that is m � n. We assume that P and T are given in the lexicographic order. If this is not

the case, the sets can be sorted in mlogm and nlogn times, respectively.1

The problems of interest are the following:

(P1) Find translations of P such that each point in P match with a point in T.

(P2) Find translations of P that give a partial match of the points in P with the points in T.

(P20) Find translations of P that give a partial match of the points in P with the points in T,

such that each point in a marked point subset Pm (Pm , P) match with a point in T.

Fig. 1 An excerpt of Einojuhani Rautavaara’s opera Thomas (1985). Printed with the permission of the
publisher Warner/Chappell Music Finland Oy

2 3 4

pitch

time
PT

Fig. 2 Pointset T, to the left, represents Fig. 1 in the geometric representation. Pointset P, to the right,
corresponds to the first two and half bars of the melody line (the highest staff of Fig. 1) but the fifth point has
been delayed somewhat. The depicted vectors correspond to translation f that gives the largest partial match
of P within T

1 As symbolic music is based on discrete space, the application does not actually require a continuous
valued space. However, as our methods would also work with continuous values, the given, more general
definition is reasoned because of its attraction to a larger variety of problems.
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Notice that the partial matches of interest in P2 need to be defined properly, e.g. one can

use a threshold k to limit the minimum size of partial matches of interest. Alternatively,

one can search for the partial matches of maximal size only. The algorithms discussed in

the sequel work for both versions if not otherwise mentioned.

Problem P20 is a modified version of P2 in which the user may declare points that are

important and have to be present in a match. This setting is relevant in cases where the user

may be able to say which out of his hummed notes were correct but is not capable of

correcting the possibly false ones.

Ukkonen et al. (2003) presented algorithms PI and PII solving problems P1 and P2 in

worst case times O(mn) and O(mnlogm), respectively. Their algorithms require O(m)

space. Noteworthy, the algorithm solving P1 has an O(n) expected time complexity.

Clifford et al. (2006) showed a connection of P2 to a problem family for which o(mn)

solutions are conjectured not to exist, and give an approximation algorithm, called MSM,

for P2, that runs in time O(nlogn).

In this paper we introduce index-based filtering algorithms for the three problems

presented above. Our contribution is twofold. Firstly, our methods outperform their

competitors; in particular, the algorithms are output sensitive, i.e., the running time

depends more on the output than on the input. This is achieved by exploiting a simple

indexing structure that is not a total index. Secondly, we show how to keep the index of a

practical, linear size. The index enables fast filtering; the running time of the filters can be

expressed as Oðgf ðmÞlognþ if Þ; where if � n is the number of intermediate positions the

filter f examines in order to produce cfcandidate positions, and gf (m) is a function specific

to filter f. The found cf ðcf � if � nÞ candidate positions are subsequently checked using

Ukkonen et al’s PI and PII algorithms. Thus, executing checking take time O(cfm) and

O(cfmlogm), in the worst case, for P1 and P2, respectively. It happens that the more

complicated the filter is, the larger gf (m) is, yet if and cf get smaller. This tradeoff in the

filters is studied experimentally.

2 Related work

We will denote by P ? f a translation of P by vector f, i.e., vector f is added to each component

of P separately: Pþ f ¼ p1 þ f ; p2 þ f ; . . .;pm þ f : Problem P1 can then be expressed as the

search for a subset I of T such that P ? f = I for some f. Please note that a translation

corresponds to two musically distinct phenomena: a vertical move corresponds to transpo-

sition while a horizontal move corresponds to aligning the pattern time-wise (see Fig. 2).

It is easy to solve P1 in O(mn log(mn)) time: collect all translations mapping each point

of P to each point of T, sort the set based on the lexicographic order of the translation

vectors (see below for definition), and report the translation getting most votes (i.e. being

most frequent). If some translation f gets m votes, then a subset I of T is found such that

P ? f = I. With some care in organizing the sorting, one can achieve O(mn logm) time

(Ukkonen et al. 2003). The voting algorithm also solves the P2 problem under translations.

A faster algorithm specific to P1 is as follows: Let p1; p2; . . .; pm and t1; t2; . . .; tn be the lists

of pattern and database points, respectively, lexicographically ordered according to their 2-

dimensional coordinate values: pi \ piþ1 iff pi:x \ piþ1:x or (pi:x ¼ piþ1:x and

pi:y \ piþ1:y), and tj\tjþ1 iff tj:x\tjþ1:x or (tj:x ¼ tjþ1:x and tj:y\tjþ1:y), where .x and .y
denote the two coordinates. Consider the translation fi1 ¼ ti1 � p1; for any 1� i1� n:One can

scan the database points in the lexicographic order to find a point ti2 such that p2 þ fi1 ¼ ti2 : If
such is found, one can continue scanning from ti2þ1 on to find ti3 such that p3 þ fi1 ¼ ti3 : This
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process is continued until a translated point of P does not occur in T or until a translated

occurrence of the entire P is found. The resulting procedure is given in Fig. 3.

The properties of the above solutions are summarized below.

Theorem 1 (Ukkonen et al. 2003) The P1 problem under translations for query pattern
P and database T can be solved in O(mn) time and O(m) working space where m = |P|
B |T| = n.

For P2 the O(mn logm) time voting algorithm is still the fastest known. However, it is

known that quadratic running times are probably the best one can achieve for this problem:

Theorem 2 (Clifford et al. 2006) The P2 problem is3SUM-hard.

This means that an o(|P||T|) time algorithm for P2 would yield an o(n2) algorithm for the

3SUM problem, where |T| = n and |P| = H(n). The 3SUM problem asks, given n numbers,

whether there are three numbers a, b, and c among them such that a ? b ? c = 0; finding a

sub-quadratic algorithm for 3SUM would be a surprise (Barequet and Har-Peled 2001).

The 3SUM-hardness result has an implication on the possibility of finding good

indexing solutions to P2: it is 3SUM-hard to build an index structure for T in g(n) time so

that one could later solve P2 in h(m) time, where g(n) ? h(m) = o(n2). To see why this

holds, notice that for patterns of length H(n), one could otherwise solve P2 in o(n2) time.

Hence, either the preprocessing time g(n) or online query time h(m) need to be quadratic

under the 3SUM-hardness assumption.

Clausen et al. (2000) suggested an indexing schema to be used with the geometric rep-

resentation. Their aim was to achieve sublinear query times in the length of the score. This is

achieved using an indexing schema similar to inverted files for natural language Information

Retrieval. The efficiency is achieved with the cost of robustness. The indexing alters the

original database converting it into an invariant form, so that if the same processing is done

for the pattern, one can find the occurrences quickly. This information extraction however

makes the approach non-applicable to problems P1 and P2 as exact solution.

Another very general indexing approach has been proposed recently (Typke 2007).

Typke proposes the use of metric indexes. This approach has the advantage that it works

Fig. 3 Algorithm 1
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under robust geometric similarity measures. However, the disadvantage is that it is difficult

to support translations or partial matching; the approach assumes that the database contains

the essential parts of each musical work, such that the query can directly be compared

against an extract from the corresponding work.

We will confine to an approach that combines indexing and practically lossless filtering.

That is, we study solutions to P1, P2, and P20 that do some preprocessing for the database.

This preprocessing builds an index for the database that can be used to speed up a filtering

algorithm: such an algorithm tries to find all promising areas in the database where the real

occurrences could lie. Filtering algorithm is lossless if no real occurrence is missed by the

filter; to this end we use special characteristics of the considered applications. The other

objective is to minimize the amount of false positives, i.e., areas where, after checking, no

real occurrences could be found. Such algorithms are widely studied in the context of

approximate string matching; for background on filtering, see Navarro (2001).

Our filters have close counterparts in the string matching domain; namely the pattern
matching with gaps (Crochemore et al. 2002), with transposition invariance added

(Mäkinen et al. 2005; Fredriksson et al. 2006), gives similar problem statement to that of

ours. The difference is due to the discrepancy in the modelling of music: string repre-

sentation omits the time information of the point set representation. Hence, the algorithms

working on the string representation may allow spurious matches where the rhythmic

characteristics can be arbitrarily far away from that of the pattern. In practice, as this

difference is not that dramatic we will therefore compare our filters to the best current

algorithms (Fredriksson and Grabowski 2008) obtained for the string representation.2

3 Index based filters

The idea used in Ukkonen et al. (2003) and Wiggins et al. (2002) is to work on trans-set

vectors. Let p [ P be a point in the query pattern. A translation vector f is a trans-set
vector, if there is a point t [ T, such that p ? f = t. Let the number of points in P and T be

m and n, respectively. Moreover, without loss of generality, let us assume all the points

both in the pattern and in the database to be unique. So, the number of (unique) trans-set

vectors is within the range [n ? m - 1, nm], i.e., quadratic in the worst case.

For the indexing purposes we consider translation vectors that appear within the pattern and

the database. We call translation vector fintra-pattern vector, if there are two points p and p0,
where p, p0 [ P, such that p ? f = p0. The intra-database vector is defined in the obvious way.

The number of intra-pattern and intra-database vectors are O(m2) and O(n2), respectively.3

A nice property of Ukkonen et al’s PI and PII algorithms is that they are capable of

starting the matching process anywhere in the database. Should there be a total of s
occurrences of the pattern within the database and an oracle telling where they are, we

could check the occurrences in O(sm) and O(smlogm) time, in the worst case, by executing

locally PI and PII, respectively.

In the sequel we will exploit this property by first running a filtering algorithm whose

output is subsequently checked, depending on the case, by PI or PII. If a quadratic size for

2 In order to work in our setting, the algorithms presented in Fredriksson et al. (2006) have to be provided
with an input where the polyphony is reduced in parallel monophonic voices.
3 To be precise, there are

Pr
i¼1 niðni � 1Þ=2 intra-database vectors when the database is a concatenation of r

music pieces with sizes n1; n2; . . .; nr such that
Pr

i¼1 ni ¼ n: To simplify the notation, we omit r and length
ni, and just use the general upper bound O(n2).
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the index structure is allowed, we have a lossless filter: all intra-database vectors are stored

in a balanced search tree in which each translation can be retrieved in O(logn) time.

Definition 1 C(f) is the list of starting positions i of vector f ¼ tj � ti; for some j, in the

database.

Such lists are stored as leaves of a binary search tree so that a search from root with key

f leads to the associated leaf (see Fig. 4). Let us denote by |C(f)| the number of elements in

the list. Since the points are readily in the lexicographic order, building such a structure

takes a linear time in the number of elements to be stored.

However, for large databases, a quadratic space is infeasible. To avoid that, we store only

a subset of the intra-database vectors. In content-based music retrieval, where the query

pattern is typically given by humming or by playing an instrument, an occurrence is not

scattered throughout the database, but is a very local and compact subpart of the database

typically not including too many intervening elements. Now we make a full use of this

locality and that the points are readily sorted: for each point i in the database, 1 B i B n - 1,

we store intra-database vectors to points iþ 1; . . .; iþ aþ 1 (a ¼ minða; n� i� 1Þ), where

a is a constant, independent of n and m. Constant a sets the ‘reach’ for the translation

vectors. Thus, the index structure becomes of linear, O(n) size. Naturally such filters are no

more totally lossless, but by choosing a large a and by careful thinking in the filtering

algorithms, losses are truly minimal.

As for an example, consider the case given in Fig. 4. Here n = 12 and we have chosen

a = 4, which gives us, instead of (12 9 11)/2 = 66, 43 translation vectors out of which 23 are

original. So, each original vector f appears as a label of a leaf and is followed by a list C(f)
giving the starting positions of such vector f in T. Note, for instance, that t5 at position h3, 4i
does not appear in the list for translation vector h4, 0i although t5 þ h4; 0i ¼ h7; 4i ¼ t11 2 T ;
because it does not fit in the window (11 - 5 [ a ? 1).

In the following, we develop eight lossless filters {FILTERK}, k 2 f0; 1; . . .; 7g; all

sharing the same structure:

Select candidate positions Examine some intra-pattern vectors f and their starting

positions C(f) in the database. This step takes O(gk(m)logn ? ik) time, where gk() is a

function depending on FILTERK and ik is the amount of intermediate candidate positions,

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

<<1,3> <<3,3>

<<3,0>

<<2,−1>

<2,−1>

<3,4>

<<2,1>

<<2,−4>

<1,3>

<2,2>

<3,4>

<<1,2>

<<1,0>

<<1,−3>

<1,−1>

<1,3>

<2,5>

<5,3>

<<1,−1>

<<3,−2>

<6,5>

<6,8>

<5,3>

<6,2>

<6,5>

T

P

<<3,1>

<3,1>

<2,2>

<3,4>

<<4,−1>

<<4,0>

<4,6>

<3,−2>

<2,5>

<3,4>

<4,6>

<4,0>

<2,2>

<2,5>

<<2,4>

<1,2>

Fig. 4 The dataset T and the corresponding search tree when a = 4. We have suppressed the subtrees that
are not of interest when also the pattern P (bottom left corner) is given
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i.e, the number of the starting positions examined to produce the final set of candidates

of size ck.

Check candidates Use algorithm PI or PII locally to check the candidate positions for

real occurrences in time O(mck) or O(mcklogn), respectively.

All the filters are lossless: the ck candidate positions contain all the s real occurrences.

The goal is to minimize ck, yet, keeping the running time O(gk(m)logn ? ik) of the

selection process reasonable. This creates a tradeoff, which we try to cover with the eight

choices for the filter.

3.1 Solving P1

To solve the problem P1 we consider four straightforward filters. The simplicity of these

filters is due to the fact that all the points (and therefore all the intra-pattern vectors) need

to find their counterparts within the database. Thus, to find candidate occurrences, we may

consider occurrences of any of the intra-pattern vectors.

In FILTER0 we choose a random intra-pattern vector f = pj - pi. The candidate list to be

checked is C(f) containing thus c0 = |C(f)| candidates. For FILTER1 and FILTER2 we collect

statistics about the frequency of distinct intra-database vectors. FILTER1 chooses the intra-

pattern vector f � ¼ pj � pi that occurs the least in the database, i.e., for which the c1 ¼
jCðf �Þj is smallest. In FILTER2, we consider the two intra-pattern vectors f � ¼ pj � pi and

f �� ¼ pl � pk that have the least occurrences within the database, i.e., for which i2 ¼
jCðf �Þj þ jCðf ��Þj is smallest (see Fig. 4). Then the set

S ¼ i00 j ti0 � ti00 ¼ pi � p1; i
0 2 Cðf �Þ; tk0 � ti00 ¼ pk � p1; k

0 2 Cðf ��Þf g ð1Þ

contains the candidates for starting positions of the pattern, such that both f � and f �� are

included in each such occurrence.

For instance, consider the example depicted in Fig. 4. Let us assume that the two

illustrated intra pattern vectors are selected by the algorithm. Then we know that pi ¼
p2 ¼ h2; 3i; pk ¼ p1 ¼ h1; 1i; f � ¼ h2;�1i; Cðf �Þ ¼ fh3; 4i; h4; 6ig; f �� ¼ h4; 0i; and

Cðf ��Þ ¼ fh2; 2i; h2; 5ig: Now the candidate positions are given by the Eq. 1:

S ¼ i00 j ti0 � ti00 ¼ pi � p1; i
0 2 Cðf �Þ; tk0 � ti00 ¼ pk � p1; k

0 2 Cðf ��Þf g ð2Þ

¼ i00 j ti0 � ti00 ¼ h1; 2i; i0 2 fh3; 4i; h4; 6ig; tk0 � ti00 ¼ h0; 0i; k0 2 fh2; 2i; h2; 5igf g ð3Þ

¼ i00 j ft5 � ti00 ¼ h1; 2i; t6 � ti00 ¼ h1; 2ig ^ ft3 � ti00 ¼ h0; 0i; t4 � ti00 ¼ h0; 0igf g ð4Þ

¼ i00 j fti00 ¼ t3 _ ti00 ¼ t5g ^ fti00 ¼ t3 _ ti00 ¼ t4gf g ð5Þ

¼ f3; 5g
[
f3; 4g ð6Þ

¼ f3g ð7Þ
Note that after line 3 we know that th3;4i ¼ t5; th4;6i ¼ t6; th2;2i ¼ t3; and th2;5i ¼ t4:
Thus, given the window length a = 4, in this case we have found only one candidate to

be checked that resides at position t3.

For the running time, FILTER0 uses O(logn) time to locate the candidate list. FILTER1 and

FILTER2 execute at most O(m2) additional inquiries each taking O(logn) time. FILTER2 needs

also O(i2) time for intersecting the two occurrence lists into the candidate list S, with

i2 = |S|; notice that values i00 can be scanned from left to right simultaneously to the
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scanning of lists C(f �) and C(f ��) from left to right, taking amortized constant time at each

step of the intersection.

With all the filters we could consider only translations between consecutive points

within the pattern. In this way we would somewhat compromise on the potential filtration

power, but the ‘reach constant’ a above would get an intuitive interpretation: it tells how

many intervening points are allowed to be in the database between any two points that

match with the consecutive pattern points.

For long patterns, the search for the intra-pattern vector that occurs the least in T may

dominate the running time. Hence, we have FILTER3 that is FILTER2 with a random set of

intra-pattern vectors as the input.

The correctness (losslessness) of these four filters follows directly from their derivations.

3.2 Solving P2

The same preprocessing as above is used for solving P2, but the search phase needs to be

modified in order to find partial matches. We will concentrate on the case where a

threshold k is set for the minimum size of a partial match. Since any pattern point can be

outside the partial match of interest, one could in principle check the existence of all the

O(m2) vectors among the intra-database vectors, store these candidate positions in a

multiset S, and run the checking on each candidate position in S with algorithm PII. More

formally, the multiset S contains position i00 for each intra-pattern vector f = pj - pi such

that i0 [ C(f) and pi � p1 ¼ ti0 � ti00 :
4 However, this basic filter can be trivially sped up by

noticing that sorting the multiset S implements the voting algorithm; if a candidate position

i00 occurs at least k times in S, then it is a real occurrence and no more testing with PII is

necessary. For fluency reasons, we call this lossless filter FILTER4, although it is in fact

directly a solution to P2. We will also consider a lossy variant FILTER5, where for each

pattern point p only one half of the intra-pattern vectors (those that are least frequent in the

database) having p as an endpoint is chosen. Let i4 and i5 be the number of candidate

positions in S for the two filters, the running times become O(m2logn ? i4logm) and

O(m2logn ? i5logm), respectively, since the required sorting phase can be implemented by

merging the O(m2) ordered lists.

The pigeon hole principle can be used to reduce the amount of intra-pattern vectors to

check: if the pattern is split into (m - k ? 1) distinct subsets, then at least one subset must

be present in any partial occurrence of the complete pattern. Therefore, it is enough to run

the filters derived for P1 on each subset independently and then check the complete set of

candidates. The total amount of intra-subset vectors is bound by Oððm� k þ 1Þð m
m�kþ1

Þ2Þ ¼
Oð m2

m�kþ1
Þ: This is O(m) whenever k is chosen as a fraction of m. The filters FILTER0–FILTER2

each select constant number of vectors among each subset, so the total number of candidate

lists produced by each filter is O(m - k ? 1). Hence, this way the filtration efficiency

(number of candidates produced) seems to depend linearly on the number of errors m - k
allowed in the pattern. This is an improvement to the trivial approach of checking all O(m2)

intra-pattern vectors.

Notice that these pigeon hole filters are lossless if all the intra-database vectors are

stored. However, the approach works only for relatively small error-levels, as each subset

needs to contain at least two points in order to make filtering possible. Let us focus on how

to optimally use FILTER1 for the subsets in the partition, as FILTER0 and FILTER2 are less

4 Note that in this case i00 may not be part of the dataset. It is just an artifact used for the starting position of
a candidate occurrence.
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relevant for this case. The splitting approach gives the freedom to partition the pattern into

subsets in an arbitrary way. For optimal filtering efficiency, one should partition the pattern

so that the sum of least frequent intra-subset vectors is minimized. This sub-problem can

be solved by finding the minimum weight maximum matching in the graph whose nodes are

the points of P, edges are the intra-pattern vectors, and edge weights are the frequencies of

the intra-pattern vectors in the database. In addition, a set of dummy nodes are added each

having an edge of zero weight to all pattern points. These edges are present in any

minimum weight matching, so their amount can be chosen so that the rest of the matched

edges define the m - k non-intersecting intra-pattern vectors whose frequency sum is

minimum. Figure 5 illustrates the reduction.

We use an O(m3) time minimum weight maximum matching algorithm to select the

m - k ? 1 intra-pattern vectors in our filter. Some experiments were also done with an

O(m2) time greedy selection. We call this algorithm FILTER6 in the experiments.

Since FILTER6 is the most advanced of the filters, we give its pseudocode (Fig. 6) and

prove its correctness formally. The analyses of the other (simpler) filters follow with

similar arguments.

Fig. 5 Reducing pattern splitting into minimum weight maximum matching with m = 5 and k = 4 (i.e.
k = m - 1). The numbered points represent the nodes created from pattern; the 6th point is the added
dummy node. Dashed edges are drawn between each pair of nodes, and their weights (frequencies) are listed
to the right of the graph. The optimal matching (solid edges) covering all nodes induces two intra-pattern
vectors and one dummy edge. These intra-pattern vectors are the two (= (m - k ? 1)) distinct vectors
whose summed frequency in the database is minimum, and hence provide the best filtration efficiency for the
splitting strategy

Fig. 6 FILTER6
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Theorem 3 FILTER6 solves problem P2 correctly.

Proof Consider the pseudocode of Fig. 6. First, we need to show that matching M
contains m - 2(m - k ? 1) edges leading to dummy nodes d1; d2; . . .; dm�2ðm�kþ1Þ: Let us

call these dummy edges. For contradiction, assume that M has no dummy edge to some

dummy node dk0. We can obtain a matching M0 with smaller weight than M by replacing

some positive weight edge, say e = (pi, pj) [ M, with a dummy zero weight edge (p0, dk0),

which gives the contradiction. (The degenerate case with w(M) = 0, i.e. with no positive

weight edge, can be handled separately). Hence, m - 2(m - k ? 1) pattern points are

included in dummy edges, which leaves 2(m - k ? 1) points to be matched to each others.

These are the endpoints of the remaining (m - k ? 1) edges in M. Let us call these split
edges. We can now consider a splitting of the pattern into (m - k ? 1) subsets each

containing two pattern points from a distinct split edge, and the pattern points of dummy

edges distributed to the subsets in an arbitrary way. Now, list L contains all real occurrence

positions in the database, since all position are considered that match one of the split edges;

a position that does not match any of the split edges can have no more than m - (m -

k ? 1) = k - 1 points in common with the pattern, and is no occurrence with the

threshold k for the minimum size partial match. h

FILTER6 is also optimal (produces least candidate positions) in the family of filters that

examine m - k ? 1 candidate lists.

3.3 Solving P20

We consider the modified version of the partial match problem P2 where the user is allowed

to mark points that have to be included in a match. Our solution assumes that at least one

point is marked; if the user does not mark any, the first pattern point gets marked by default.

When the reach constant a is used with the intra-database vectors, we use a suchlike constant

b with the intra-pattern vectors in order to avoid the problem with losses. Constant b indi-

cates how many points within the pattern can be jumped over by a intra-pattern vector. In this

case, however, the jumps are allowed to go backwards, as well. That is, given a marked point

j (1 B j B m), we need to consider intra-pattern vectors from j� b� 1; . . .; j� 1 to j and

from j to jþ 1; . . .; jþ bþ 1 (0 B b B min{m - j - 1, j - 2}).

For the filtering phase we now have two cases. In the first case the user has marked

exactly one point (or we have the default instance) and the filter considers all intra-pattern

vectors, possibly limited by the constant b, starting from it or ending to it. The occurrences

of these vectors can be found obvious ways without or with an indexing structure. Finally,

the found candidates are checked by executing PII.

In the second case we have at least two marked notes. The pattern is divided into two

subpatterns Pm and Pr. Subpattern Pm contains all the marked points while Pr contains the

remainder. In this case, Pm is considered as the search pattern and for the filter we use FILTER1.

The checking phase becomes two-pronged. In the first subphase PI considers Pm as the pattern

and all candidate locations given by the filter need to be checked. The output of this phase

consists of pairs (p, /) where p gives the location of the occurrence and / the used translation

vector. Please note also that the output contains each and every of the true occurrences. What

remains to be done, is to complete the found occurrences so that they become maximal. To

this end, in the second checking phase, PII is executed at every found occurrence p checking

whether the occurrence could be expanded with pattern Pr using translation /.

The filter phases are easy to analyse. In the first case we need to execute m searches in

the index structure. Thus O(n) space and O(mlogn) time is needed for the filtration. In the

Inf Retrieval (2010) 13:1–21 11
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second case O(logn) time suffices. The checking phase of the second case is interesting.

Under any reasonable note distribution we may expect the first checking phase to fail,

which means that at every candidate location PI will be executed but not PII. So, the

expected running time for the checking phase is O(s), the worst case being O(smlogm),

where s, s B n, is the number of checked candidates.

In the experiments, these P20 filters are called FILTER7 and the filter variations are

separable by the number of marked notes.

3.4 Summary

All the filters described above share in common the indexing phase; a subset of the intra-

database vectors is stored in a binary search tree, each vector associated with their

occurrence positions. Then, based on searching for a carefully selected subset of intra-

pattern vectors from the binary search tree, each filter decides which are the candidate
positions among the stored intra-database vectors that need to be further checked using an

exact verification algorithm. The differences come in the way the candidates are selected

and in the choice of the verification algorithm. The P20 filtering algorithm (FILTER7) uses a

reduction to FILTER1 and slightly modified checking phase, as described earlier. The

properties of the different filters are summarized in Table 1.

Table 1 Properties of the different filters proposed

Filter Verification Lossless Time requirement Short description

FILTER0 PI Yes O(logn ? c0m) Candidates are the occurrences of a
random intra-pattern vector

FILTER1 PI Yes O(m2logn ? c1m) Candidates are the occurrences of the
intra-pattern vector that is least
frequent in the database

FILTER2 PI Yes O(m2logn ? i2 ? c2m) Candidates are the intersection of the
occurrences of the two intra-pattern
vectors that are least frequent in the
database

FILTER3 PI Yes O(xlogn ? i3 ? c3m) Candidates are the intersection of the
occurrences of the two intra-pattern
vectors that are least frequent in the
database among the x randomly
chosen vectors

FILTER4 PII Yes O(m2logn ? i4logm) Candidates are the positions that are
associated at least to k different intra-
pattern vector

FILTER5 PII No O(m2logn ? i5logm) Same as FILTER 4, but only half of the
intra-pattern vectors are considered

FILTER6 PII Yes O(m3 ? mlogn ? c6mlogm) Uses pigeon hole principle and minimum
weight maximum matching to
partition the pattern into subsets that
are subsequently checked by FILTER 1

FILTER7 PI and PII Yes O(mlogn ? c7mlogm) Candidates for the PII checking phase
are retrieved by applying FILTER 1 to a
set of notes marked by the user

Notice that the lossless property holds only if all intra-database vectors are stored

In the time requirements, value of ck depends on the filter efficiency
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The parameters can be set into a partial order by analyzing how the filters work:

c2� c1� i2� i3� i4;c3 B c0 (by expectation), c6 B i4, and i5 B i4.

4 Experiments

We set the new algorithms against the original Ukkonen et. al.’s PI and PII (Ukkonen et al.

2003). In the experiments the window length within the database (the reach constant a) was

set to 50, the window length within the pattern in FILTERs 0–3, 6 to 5, and in FILTERs 4–5 to

12. In FILTER6, we experimented with different values of k in range d 1
2

me to d15
16

me: The

selection of k has a great effect on the speed and accuracy of FILTER6. Overall, these

settings are a compromise between search time, index memory usage and search accuracy

for difficult queries. Larger window lengths may be required for good accuracy depending

on the level of polyphony and the type of expected queries.

We also compare with Clifford et. al.’s (2006) MSM5 and Fredriksson and Grabowski’s

(2008) FG6 algorithm [Alg. 6.].6 The latter solves a slightly different problem; the time

information is ignored (due to string representation of music, as discussed in Sect. 2), and

the pitch values can differ by d C 0 after transposition. We set d = 0 to make the setting as

close to ours as possible. We also tested other algorithms in Fredriksson and Grabowski

(2008) but Alg. 6 was constantly fastest among them in our setting.

To measure running times we experimented both on the length of the pattern and the

database. Reported times are median values of more than 20 trials using randomly picked

patterns. As substantial variations in the running times are characteristic to the filtering

methods, we have depicted this phenomenon in one set of experiments by using box-

whiskers: The whisker below a box represents the first quartile, while the second begins at

the lower edge and ends at the median; the borders of third and fourth quartiles are given

by the median, the upper edge of the box and the upper whisker, respectively.

We also wanted to measure how robust the PII-based methods (FILTERs 4–6) are against

errors (effectively deletions) and noise (insertions), and calculated mean average precision

and precision-against-recall plots in various settings. Here we reported the mean values of

a 25-trial experiment in which the set of occurrences found by PII was considered as the

ground truth. All the experiments were carried out with the MUTOPIA database;7 at the

time it consisted of 1.9 million notes stored in 2270 MIDI files. All speed comparisons

were run on a desktop PC with a 3 GHz Intel Pentium 4 HT processor and 1 GB of RAM.

The C/C?? algorithm implementations were compiled with GCC 4.1, with most of the

compiler optimizations enabled (-O3 -march = pentium4 etc.).

4.1 Experimenting on P1

First we experimented on the pattern size with the algorithms solving the P1 problem. The

variations in the running times of the filters are depicted in Fig. 7a. Out of the four filters,

FILTER2 performed most stably while FILTER0 had the greatest variation. The figure also

shows that all our filtering methods constantly outperform both the original PI and the FG6

algorithm. With pattern sizes jPj. 300;FILTERs 1 and 2 are the fastest ones, but with longer

patterns FILTER3 starts to dominate the results.

5 Implementation by B. Sach.
6 Implementation by K. Fredriksson.
7 http://www.mutopiaproject.org/
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The evident variation in our filters is caused by difficult patterns that only contain

relatively frequently appearing indexed vectors. In our experiments, FILTERs 1–3 had search

times of at most 2 ms. It is possible to generate patterns that have much longer search

times, especially if the database is very monotonic or narrow windows are used. However,

in practice these filters are at least 10 times faster than PI and 200 times faster than FG6 for

every pattern of less than 1000 notes.

When experimenting on the size of the database as shown in Fig. 7b, execution times of

online algorithms PI and FG6 increase linearly in the database size. Also FILTER0’s search

time increases at the same rate due to the poor filtering efficiency. FILTERs 1–3 have much

lower slope because only few potential matches need to be verified after filtering (see Sect.

4.3 for more information on execution time allocation within FILTER2). Figure 7b also

depicts the construction time of the index structure for the filters. Remember that this

costly operation needs to be executed only once for any database.

4.2 Experimenting on P2

Figure 8 shows the experimentally measured search times for the P2 filters, PII and MSM.

When varying the size of the pattern, our PII-based filters clearly outperformed MSM in all

practical cases (Fig. 8a): MSM becomes faster than PII only when |P| [ 400 and faster than

FILTER4 when |P| [ 1000. In this experiment FILTER6 performs the best until jPj [ rsim 250

after which FILTER5 starts to dominate. However, with a different setting of the parameters

FILTER6 can run faster, as the greedy version did in this experiment with k ¼ 15
16

m:
The results of the experiments on the length of the database are rather similar (Fig. 8b),

exceptions being that MSM is constantly outperformed by the others and that FILTER6

performs the best throughout the experiment. Again, a greedy version of FILTER6 is the

fastest: it is nearly 100 times faster than the basic FILTER6 and over million times faster

than MSM.
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Fig. 7 Solving P1. Search time as function of pattern a (to the left) and database b (to the right) sizes. The
database used for pattern experiments was the complete MUTOPIA collection with 1.9 million notes.
Database size experiments were done with a pattern size of 64 notes. Note the logarithmic scales

14 Inf Retrieval (2010) 13:1–21

123



As FILTER6 seems to perform the best on problem P2, we carried out a further experi-

ment on the value of the parameter k. Figure 9 shows that the selection can affect the speed

by two orders of magnitude. When searching for almost exact matches, using high values

of k can shorten search times radically. Furthermore, greedy selection of pattern vectors

seems to be more useful than searching for a perfect minimum-weight matching with high

k values ðk ¼ 15
16

mÞ because searching for a graph matching starts to have an effect on the

overall search time. On the other hand, better filtering efficiency of perfect matchings

halves the search time at low k values ðk ¼ 1
2
mÞ; compared to that of the greedy selection.
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4.2.1 Comparing whole musical works

Clifford et al. (2006), carried out experiments for partial music matching and concluded

that their algorithm is faster than PII when two whole documents are to be matched against

each other. Figure 10 depicts results of our experiment using their setting but including

also FILTERs 4–6. In our experiment, MSM becomes faster than PII when jPj ¼
jT j [ rsim 600 and dominates FILTERs 4 and 5 when the size of the matched documents

exceeds 1000 and 5000 notes, respectively. Depending on the value of k, MSM becomes

faster than FILTER6 at document sizes larger than 1500–20,000 notes. However, in this

specific task algorithms would be expected to return matches that are relatively poor if

measured as a ratio between the matched notes and pattern size. Solving the task by using

FILTER6 with k ¼ 15
16

would not give good results, but FILTERs 4, 5 and FILTER6 with k ¼ 1
2
m

are comparable with MSM, as we will show below.

This experiment shows the foundational difference between P2-based algorithms and

MSM: the first ones are to be used when dealing with musical pattern matching, MSM when

comparing large musical works against each other.

4.2.2 Precision and recall

We wanted to experiment also on the robustness against pattern variations and noise. In the

P2 problem, a change in onset or pitch of a note in the pattern or an occurrence will reduce

the number of matched notes by one. The original PII algorithm finds all occurrences of a

pattern where at least two notes match. However, our FILTERs 5–6 and MSM introduce lossy

approximations and therefore some of the occurrences may be missed.

To measure the precision and recall of our filters against PII and MSM, we randomly

picked 25 patterns from the database, created 25 variations of each and inserted the

resulting 625 variations to random locations within the database. The specific pattern

modifications were changed note onsets or pitches (errors) and inserted additional notes

(noise). A change in note onset can be considered as a deletion with an accompanying
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insertion. PII is oblivious to insertions, but they reduce the accuracy of our filters when the

insertion rate approaches the index reach constant a.

In each run, a maximum pattern error rate and noise level (number of added noise notes

per each pattern note) was chosen and a list of occurrences was retrieved for all the 25

patterns with the original PII implementation. This ground truth was further trimmed by

removing poor matches that exceeded the chosen maximum error rate. The same search

was then executed with all the P2 filters and MSM, and their resulting occurrence lists were

compared to the ground truth.

The resulting Precision–Recall curves at error rates 0.25, 0.5 and 0.75, with 16 added

noise notes for each pattern note, can be seen in Fig. 11. For basic evaluation of the

measurements, one can consider the area below a curve: the larger the area the better the

accuracy and robustness of the corresponding algorithm. FILTERs 4–5 perform much

better than MSM in all three tests, and with k ¼ 1
2
m FILTER6 is nearly lossless. By using

higher values of k, FILTER6 can be made much faster at the cost of accuracy, as the

greedy version run with k ¼ 15
16

m shows. Apparently MSM returns many false positives as

its ordering of the results is inferior to that of the filters that verify the matches with a

PII-based check.

The most relevant information of the Precision–Recall graphs can be expressed in a

tighter format by using Mean Average Precision (MAP) that represents the average pre-

cisions of a number of ranked queries. Figure 12a and b show the Mean Average Precision
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Fig. 11 Precision–Recall graphs at database error rates 0.25, 0.5 and 0.75, with 16 noise notes added for
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as a function of the maximum error rate at noise levels 0 and 20, respectively. These results

reveal that MSM performs as well as FILTERs 5 and 6 at very high error rates, but again, it

has problems ordering the results.

Noise level also affects the accuracy of our filters and MSM greatly, as can be seen in

Fig. 12c. All filters are clearly constrained by the selected reach constant a = 50. More-

over, FILTER6 is very vulnerable to noise at high values of k. The Mean Average Precision

of MSM decreases more linearly and the algorithm overtakes FILTERs 5 and 6 when the

noise level approaches a.

4.2.3 Experimenting on P20

As the last search speed comparison, we measured how much a user may speedup the

searching process with P20-based algorithms by marking up notes that he/she is sure to be

correct. P2 FILTER6 was used as the point of comparison. Figure 13 depicts that when one

note is marked, an indexing algorithm has a comparable performance to that of FILTER6.

When |P| [ 300, pointing at least two notes makes the online algorithm more than 10 times

faster than FILTER6; the speedup with the P20 index filters is at least thousandfold when

more than one points are marked.
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4.3 Index filter execution time profiles

In addition to the comparisons between different algorithms, we measured time allocation

profiles within two index filters: P1 FILTER2 and P2 FILTER6, with k ¼ 1
2
m set for the latter.

Results are shown in Fig. 14. This information can be used to improve the filtering

algorithms and our implementations. For example, match verification dominates the exe-

cution time of FILTER6 and therefore it could be improved by further optimizing the

verification function or by retrieving less irrelevant matches in the actual filtering phase.

5 Conclusions

We considered three point pattern matching problems applicable to content-based music

retrieval and showed how they can be solved using index-based filters. Given a point

pattern P of m points, the problems are to find complete and partial matches of P within a

database T of n points. The presented filters are lossless if O(n2) space is available for

indexing. We also introduced a more practical, linear size structure and sketched how the

filters based on this structure become virtually lossless.

After the preprocessing of the database, the proposed filters f use O(gf(m)logn ? if) time

to produce cf, cf B if, candidate positions that are consequently checked for real occur-

rences with the existing online algorithms. The filters vary on the complexity of gf(m), on

the number of intermediate candidate positions if, and on the output size cf. Since the

filtering power of the proposed filters is hard to characterize theoretically, we ran several

experiments to study the practical performance on typical inputs.

The experiments with the filters showed that they perform much faster than the existing

online algorithms on typical content-based music retrieval scenarios. Only in the
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application of comparing large musical works in their entirety, the existing MSM algorithm

(Clifford et al. 2006) is faster than our new filters.

A negative founding was that the proposed filters are not very stable; on all the filters

the speed varies heavily depending on the properties of the pattern.

Since the guarantee of losslessness in the filters is only valid on limited search settings

(number of mismatches allowed, constants limiting maximal reach, etc.), it was important

to study also the precision and recall. This comparison was especially fruitful against

MSM, that is an approximation algorithm, and can hence be considered as a lossy filter as

well. The experiments showed that our filters typically outperform MSM in this respect.

As a future work, we plan to study the extensions of the filters to approximate point

pattern matching; in addition to allowing partial matching, we could allow matching a

point to some e-distance from its target. Such setting gives a more robust way to model the

query-by-humming application. Although it is straightforward to extend the filters to

consider the candidate lists of all intra-database vectors within the given e-threshold from
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(d) P2/F6 time allocation at different database sizes
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Fig. 14 Execution time profiles of P1 FILTER2 (a, b) and P2 FILTER6 (c, d) as function of pattern size (a, c,
database size was 1.9 million notes) and database size (b, d, pattern size was 64 notes)
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any intra-pattern vector, the overall amount of candidate positions to check grows fast as

the threshold is loosen. Therefore, finding better strategies for filtering in this scenario is an

important future challenge.
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