Inf Retrieval (2008) 11:359-388
DOI 10.1007/s10791-008-9050-3

A compressed self-index using a Ziv-Lempel dictionary

Luis M. S. Russo * Arlindo L. Oliveira

Received: 23 January 2008/ Accepted: 23 January 2008 /Published online: 1 May 2008
© Springer Science+Business Media, LLC 2008

Abstract A compressed full-text self-index for a text 7, of size u, is a data structure used
to search for patterns P, of size m, in T, that requires reduced space, i.e. space that depends
on the empirical entropy (H; or Hy) of T, and is, furthermore, able to reproduce any
substring of 7. In this paper we present a new compressed self-index able to locate the
occurrences of P in O((m + occ)log u) time, where occ is the number of occurrences. The
fundamental improvement over previous LZ78 based indexes is the reduction of the search
time dependency on m from O(mz) to O(m). To achieve this result we point out the main
obstacle to linear time algorithms based on LZ78 data compression and expose and explore
the nature of a recurrent structure in LZ-indexes, the 7 73 suffix tree. We show that our
method is very competitive in practice by comparing it against other state of the art
compressed indexes.

Keywords Pattern matching - Text indexing - Data compression - Compressed index

1 Introduction and related work

The exact matching problem consists in searching for a short sequence P (the pattern) in a
longer sequence T (the text). Naive and linear time solutions for this problem can be found
in undergraduate computer science textbooks (Cormen et al. 2001). This problem has
outgrown its initial motivation, text editing subroutines. Text databases storing large
amounts of information such as pitch sequences, DNA or protein sequences, large natural
texts, program code, etc., need fast pattern matching algorithms. With the increasing
amount of digital information available, on-line approaches to the problem are no longer
viable. The study of index data structures, that are able to reduce the time it takes to locate
the occurrences of P, has been the focus of the string processing community for several

L. M. S. Russo (X)) - A. L. Oliveira
INESC-ID/IST, Rua Alves Redol n 9, Lisboa 1049-001, Portugal
e-mail: Isr@algos.inesc-id.pt

A. L. Oliveira
e-mail: aml@algos.inesc-id.spt

@ Springer

360 Inf Retrieval (2008) 11:359-388

years. Classical indexes, however, have a tendency to be space intensive. This constitutes a
severe problem, since not being able to store indexes in main memory limits their usage.

In recent years a new and extremely successful approach to this problem has emerged.
Compressed full-text indexes, which use data compression techniques to produce data
structures that are less space demanding have been proposed by several researchers
(Ferragina and Manzini 2005; Grossi and Vitter 2005: Kirkkédinen and Ukkonen 1996a;
Navarro 2004; Sadakane 2003). Compressed indexes consist of a careful combination of
text compression and succinct data structures with indexing data structures. Navarro and
Mikinen presented a comprehensive survey on compressed full-text indexes (Navarro and
Mikinen 2007).

A text compression technique is a way to encode the text in a format that requires less
space than that of the original raw sequence and that still represents the original text. By
representation we mean that we can consult any part of the original text, even if this
implies that first we decompress the whole string. The idea is that an index based on the
compressed format may also require less space. In fact, it turns out that data compression
algorithms explore the internal structure of a string much in the same way that indexes do.
It should be clear that we wish to recover exactly the original text, i.e. we are interested
only in “lossless” data compression methods. Text compression therefore provides a trade-
off between the size necessary to store the text and the time it takes to consult a part of the
text. This trade-off might be advantageous for storing a text or for transmitting it, such as
over the Internet, from secondary memory to main memory or from main memory to
cache. Storing compressed files saves storage space. Transmitting compressed files saves
time when the overall time to encode, transmit and decode the file is smaller than the time
to transmit the original text. Therefore applications such as gzip or bzip2 became popular
for compressing and decompressing texts.

Text compression cannot compress a string by an arbitrary amount. In fact a simple
argument proves that even if we had enough computational power available, it is not
possible to compress every text by 1 bit. A lower bound on how much a string generated by
a given source can be compressed was given by Shannon. In Shannon’s theory different
strings are grouped together into ergodic sources. Observe that for every text, individually,
it is possible to find a program that outputs it. To avoid this pathological solution we can
use Kolmogorov complexity which considers the size of the program that generates the
string as part of the complexity of the string. The fundamental problem with Kolmogorov
complexity is that it is not computable. In this work we use a more pragmatic approach.
We do not wish to make any assumptions on how the text was generated. Moreover we are
not so much interested in how much a text can be compressed in theory as we are in how
much it can be compressed by a class of “good” compressors. We will use the notion of
kth order empirical entropy H(T) given by Manzini (2001). The kth order empirical
entropy gives a lower bound on the best compression ratio that can be applied to 7, if, when
compressing a character of 7, we consider only the context of the k characters that precede
it in 7. Obviously the larger the context we consider, the better the compression should be,
ie. 0 < H(T) <---< Hy(T) < log o (where by log we mean log,). Therefore the size of
the compressed text will range from uH(T) to uHy(T) depending on the compressor we
use. Moreover, empirical entropy provides a measure of the complexity of T taken as a
finite object. This is opposed to the classical notion of entropy by Shannon. State of the art
compressed indexes consider T as finite and organize it globally. In a way, our contribution
is to organize globally Ziv—Lempel compressed indexes that were only locally organized.

A succinct data structure representation of a data structure is a compact representation
of it. Trees are a recurrent data structure in computer science and, in particular, play a

@ Springer

Inf Retrieval (2008) 11:359-388 361

central role in full-text indexing theory. It is therefore natural to consider succinct repre-
sentations of trees. Clearly the less space we need to represent a tree, the less space our
indexes will require. Jacobson (1989) was the first to study succinct data structures, such as
trees and bitmaps (strings of 1’s and 0’s). Trees are commonly implemented with pointers
which may not be the most space efficient way to store them. A tree, can, for example, be
represented as a string of left and right parentheses. This representation does not support by
itself common operations efficiently, such as moving to a father node or to a child node, but
it does represent the tree. Therefore, a tree with n nodes can be represented with 2n bits.
The work presented by Jacobson showed how to simulate tree traversals efficiently using
only o(n) extra bits. Clearly this kind of results is relevant for producing smaller full-text
indexes.

The fundamental tools supporting these kinds of data structures are the Rank and SELECT
operations over bitmaps. The RaNK operation counts the number of 1’s up to a given
position in the bitmap. The SELECT operation returns the location of the ith 1 in the bitmap.
Jacobson showed how to compute Rank in constant time, with only o(n) extra bits. Later
on, Munro (1996) obtained constant-time solutions for SELECT, with o(n) extra bits. The set
of operations provided by succinct trees has been successively enlarged and improved by
several researchers; including Munro and Raman (2001), Benoit and Demaine (2005) and
Geary et al. (2004). The Rank and SELECT operations also proved to be useful for repre-
senting permutations (Munro et al. 2003). Trees and permutations play a central role in
full-text indexing theory. Hence, this kind of results account for a significant part of the
success of compressed indexes.

Producing compressed indexes lead to new discoveries about full-text indexes. A sur-
prising such discovery was self-indexing. Basically it turned out that with a negligible
amount of information, it is possible to make full-text indexes capable of reproducing any
substring of T without storing 7 explicitly. Another important discovery is backward
searching, which is the operating principle behind the FM-Index (Ferragina and Manzini
2005).

Compressed suffix arrays (Grossi and Vitter 2005; Sadakane 2003) and the FM-index
(Ferragina and Manzini 2005) are the main trends of compressed indexes. This is partially
due to the fact that LZ-indexes (Ferragina and Manzini 2005; Kirkkdinen and Ukkonen
1996a; Navarro 2004) require a considerable amount of time to determine the number of
occurrences of P in T, denoted by occ. In fact, the index of Kérkkdinen and Ukkonen
(1996a), which was not a self-index, required O(m2 + (m + occ)log u) time and Navarro’s
(2004) index required 0((m310g 0) + (m + occ)log u) which was recently improved to
0((m210g m) + (m + occ)log u) by Arroyuelo et al. (2006). It can be seen that in all these
approaches the dependency on m is at least O(m*). The only LZ based index that was able
to achieve O(m) time was presented by Ferragina and Manzini (2005). However, this index
requires a considerable amount of space, O(uHy(T)log‘u)+ o(u) bits, ignoring the
dependency on . In fact, the index presented by Ferragina et al. has not been imple-
mented. The structure we propose is very similar to the one given by Ferragina et al. In fact
we use essentially the same structures they do. However the operations permitted and the
representation used are new. If they used the same range data structure we use, their
structure would not have a logu dependency on the space complexity. However, since
their approach is heavily dependent on the FM-Index, it may lead to alphabet related
problems, i.e. large hidden ¢ dependencies. This problem, however, has been recently
addressed (Ferragina et al. 2004; Grabowski et al. 2006) and is, therefore, solvable.
Nevertheless our approach is simpler and alphabet independent.

@ Springer

362 Inf Retrieval (2008) 11:359-388

The Ziv-Lempel algorithm is a dictionary based compression method. In essence, the
idea is that, given 7, the algorithm infers a suitable dictionary and encodes T accordingly.
The problem with compressed indexes based on this approach is that the encoding of T is
not suitable for pattern matching. In fact the dictionary generated by the Ziv—Lempel
algorithm is dynamically updated at the same time that 7 is processed. This means that the
same string may be encoded in several different ways, since the dictionary changes from
one occurrence, of the string, to another. This results in an undesirable encoding. The
solution to this problem forces us to destroy the on-line property of the Ziv—Lempel
algorithm. Our algorithm runs in two phases: in the first one we use the LZ78 algorithm to
infer a dictionary; in the second one we organize T in an off-line way, using the inferred
dictionary.

We start our exposition with some basic concepts and a general description of our index,
based on generic dictionaries. Afterwards, we show how to use the information from the
LZ78 algorithm to produce a suitable dictionary and prove that we obtain a compressed
full-text self-index. Next we describe some of the practical decisions that were taken to
implement our algorithm. Finally, we show some experimental results and conclusions.

2 Basic concepts and notation

For basic concepts related to strings and suffix trees we refer the reader to one of the many
good references available, e.g. Gusfield (1999). We use the following conventions: strings
are sequences of letters from the alphabet X, of size ¢, and start at index position O;
prefixes, substrings and suffixes are denoted respectively as S[..7], S[i..jl, S[j..]; a set C is
suffix/prefix if any suffix/prefix of an element of C is also an element of C; m is the size of
the pattern string P, u is the size of the text string 7 and occ is the number of occurrences of
P in T. By suffix tree we refer to a generalized suffix tree. The terminator symbols are not
considered as part of the edge-labels. The suffix trie is the uncompressed version of the
suffix tree, i.e. it contains a node between any two letters in a label. A point is a node in the
suffix trie. We refer indifferently to points in a suffix tree and to their path-labels. Spep(p)
is the string depth of point p. FATHER(V) is the father node of node v. SurrIXLINK(V) is the
node pointed by the suffix link of node v. LETTER(v, i) equals v[], i.e. the ith letter of the
path-label of node v. DESCEND?(p, ¢) is true iff it is possible to descend from point p with ¢
and DESCEND(p, ¢) returns the resulting point. In a suffix tree the first letters of every edge
are referred to as branching letters. By Drs(v) we refer to the depth-first time-stamp
(Cormen et al. 2001) of a node v in a suffix tree and by Drs’(p) to the depth-first time-
stamp of a point p in a suffix trie.

Definition 1 The range I(p) of a point p of a suffix tree 7 is the interval of the Drs’
values of the points that are descendants of p.

As a running example consider T = cbdbddcbababa and T as the suffix tree in Fig. 1
(top-right). In our example DFs(c) is undefined, Drs(chb) = 5, Drs’(c) = 5, Drs’(¢b) = 6 and
I(c) =[5, 8]. Table 1 presents the main symbols used throughout this paper.

2.1 Descend and suffix walk

Descend and suffix walks are classical algorithms over suffix trees but since they constitute
an important component of our method we will briefly explain them here.

@ Springer

Inf Retrieval (2008) 11:359-388 363

N
o
o

(=9

R=1) R2=4) RE)=6)
b c b b

ke)=2) Re)=5] (R#)=7)

c

R(6) =3 R(7)=8§ R

0*

1*
23678 oy |)
S e I O

36T

*® Le O

e G O

I Q
U G O

L

Fig. 1 (top-right) Suffix tree for strings {a, b, ba, bd, cba, cbd, d}. Suffix link from cb to b shown by a
dashed arrow. Nodes show their Drs value in 7. (top-left) Reverse tree of the suffix tree on the right. Nodes
show their Drs value in 7%. The R mapping is shown and R(3) is indicated by a bold arrow. (bottom-left)
Sparse suffix tree of T, nodes show their Drss7 values. Weak descent W(RooTst,2’) shown in bold
rectangle. (bottom-right) Linking points over spaces supported by Drs’ and Drsgs7 values. Orthogonal range
query [5%, 5*]:[5, 8]

An element that is responsible for the flexibility of suffix trees is the suffix link. The
suffix-link of a node v of a suffix tree is a pointer to node v[1..], denoted by SUFFIXLINK(V).
We define in an artificial way Surrix_Link(RooT) as a node that descends to the root by
every letter including terminator symbols. Several suffix tree algorithms use suffix links.
One such algorithm is a greedy traversal of the tree, greedy in the sense that the algorithm
traverses the tree trying to maximize the string depth at all times. Suppose we are given
pattern P and a suffix tree 7. A greedy traversal of P in 7 consists in trying to read a string
P by starting from the root and descending as much as possible. When it is impossible to
descend any further, we follow suffix-links until descending becomes possible again.

Definition 2 The descend and suffix walk of a string P over a suffix tree 7 is the sequence
Po- - -Pam of points of 7 computed by Algorithm 1, i.e. the sequence of values taken by the
variable point.

It is important to notice that Algorithm 1 starts by appending to P a new terminator
character $' that fails to match with any other character. The following lemma explains

@ Springer

364 Inf Retrieval (2008) 11:359-388

Table 1 Main symbols used

Symbol Meaning

T Text string

u Original length of text string in characters, i.e. |71

P Pattern string

m Length of pattern string in characters, i.e. |P|

z Alphabet for P and T

a Alphabet size, o = IZ|

occ, occy, Number of occurrences of the pattern in the text, inside a block and spanning more than one
0CC=1 block respectively

occ Occurrences determined by an orthogonal range query

Hy kth order entropy of a text character

i,j Counters in the Descend and Suffix Walk algorithm or generic indexes

Z; Ziv-Lempel block

n Number of LZ78 blocks of the text

€ Either the empty string or a small positive real number

T3 Ziv-Lempel suffix tree, dictionary

d,t Number of nodes/points in the Ziv—Lempel suffix tree,

t The tree depth in the FOR variant

ST Ziv-Lempel sparse suffix tree

d Number of nodes in the Ziv—Lempel sparse suffix tree

T7s(T) T 7g-maximal parsing

f Size of the 7 73-maximal parsing

R Reverse mapping between trees

% Descend and Suffix walk variant and block bitmap

why, for each value of i, the point values at line 5 correspond to the largest suffix of
P[..i — 1] that is a point in 7.

Lemma 1 (For Invariant) Before any execution of line 5 of Algorithm 1, it is always true
that for any j' < j we have that P[j'..i — 1] is not a point in T

Proof First it should be obvious that, except in line 10, point = P[j..i — 1], since the
SurrixLiNk(resp. DESCEND) and j++ (resp. i++) instructions are consecutive.

The lemma is proved by induction on i. The base is trivial. We assume that before
line 7 is executed if j/ < j then P[j'..i] is not a point in 7. Our result follows immediately
from this property by observing that the point and i are updated before reaching line 5
again.

The previous property can be proved by induction on the number of times the while
loop ran on an iteration of the for loop. The base follows from the induction hypotheses
of the lemma, by observing that, since 7 is suffix closed, if point P[j..i — 1] is not in 7,
neither is point P[;..i]. Finally assume that the while’s guard is true, i.e. NOT DEks-
CeND?(P[j..i — 1], P[i]). Therefore P[j..i] is not a point in 7. Hence if j/ <j + 1 then
P[j'..i] is also not a point in 7. O

This lemma shows that the value of the point in line 6 is left maximal, i.e. no P[j'..i — 1]
with j/ < j is a point of the suffix tree. Likewise the points in line 8 are right maximal, since

@ Springer

Inf Retrieval (2008) 11:359-388 365

Algorithm 1 Descend and Suffix

Walk Algorithm 1: procedure DESCEND & SUFFIX P
2: P—P¢
3: j<0
4: point « Root
5: fori < 0,i<IPl, i++ do
6: trace_left[i] « point
7: while NOT Descenp?(point, P[i]) do
8: trace_right[j] < point
9: Jjt++
10: point « SurrIxLINK(point)
11: end while
12: point « DEscenp(point, P[i])
13: end for
14: End procedure

the while’s guard has just evaluated true. This gives a way to classify the points that were
reached by the descend and suffix walk.

Definition 3 The left and right traces of a string P over a suffix tree 7 are the
sub-sequences of the descend and suffix walk given respectively by lines 6 and 8 of
Algorithm 1.

By father_right[i] (resp. father_left[i]), we refer to the lowest ancestor of trace_r-
ight[i] (resp. trace_left[i]) that is a node of 7 and by child_right[] (resp. child_left[:]), to
the highest descendant of trace_right[i] (resp. trace_left[i]) that is a node of 7. Table 2
(top) shows the descend and suffix walk of cbdbddc in 7.

We will now explain why Algorithm 1 runs in O(m) time. First it should be clear that
Algorithm 1 does terminate.

Theorem 1 Expression V(i) = 3m — i — 2j — t is a variant of the for loop, where t is
the tree depth of the point. Therefore Algorithm I terminates.

Proof Suppose that V(i) <0. Since t <i —j, then 3m—2i — j <3m —i — 2j — t.
Since j < i, then 3m — 3i < 3m — 2i — j. Therefore 3m — 3i < 0, hence m < i and the
for cycle terminates.

Except for instruction 10, it should be evident that AV = V(i 4+ 1) — V(i) < O for any i,
since j is non-decreasing and i is strictly increasing for each iteration of the FOR loop. The
problem with the Surrix_LINK operation is that it may cause ¢ to decrease. However f can
decrease at most by 1. The factor 2 associated with j compensates this effect. Therefore in
every iteration of the while cycle AV < 0. O

For now we assume that the operations DEsCEND and DescEND? are computed in constant
time and later give a more realistic analysis. The problem of analyzing the time of
Algorithm 1 is that operation SurrixLINK is computed for points, not just nodes, and
therefore does not necessarily run in constant time.

Lemma 2 (Skip/count trick) The Surrix_LINK function runs in O(At 4 2)time, where At
is the variation of tree depth.

@ Springer

366 Inf Retrieval (2008) 11:359-388

Table 2 (Top) Descend and suffix walk of cbdbddc in 7. (Bottom) Values for locating type >1
occurrences

i 0 1 2 3 4 5 6 7
P[i] c b d b d d c $
trace_left[i] € c cb cbd b bd d c
DFS’(father_left[i]) 0 0 6 8 2 4 9 0
DFS’(trace_left[i]) 0 5 6 8 2 4 9 5
DFS’(child_left[i]) 0 6 6 8 2 4 9 6
trace_right[i] cbd bd d bd d d c €
DFS’ (father_right[i]) 8 4 9 4 9 9 0 0
DFS’(trace_right[i]) 8 4 9 4 9 9 5 0
I(trace_right[i]) [8, 8] [4, 4] [9,91 [4,4] 19,91 9,91 1[5 8] [0,9]
DFS’(child_right[i]) 8 4 9 4 9 9 6 0
P[i..] cbd.bd.d.c bd.bd.d.c dbd.dc bddc ddc d.c c €
tail(P[i..]) c c ¢ c c c c &
H(P[i..]) 748 448 848 48 88 8 & €
R(H(P[i..])) 6'7'8 udef udef 6'7 6'6/ 6 € €
Ifather_left[i]l == i FALSE TRUE TRUE FALSE FALSE FALSE FALSE
W(RH(P[i..]), G} [5%, %] %) 16} 16}
R(father_left[i])) 5%]
I(tail(P[i..])) [5, 8] [5,8] [5.8] [58] [58] [58 [0,9]
occ’ 0 1 0 0 0 0

Proof Computing the SUFFIX_LINK for the nodes of 7 can be done in O(1) by storing the
suffix-links in 7. For a point, the idea is to first use the suffix link of its father node and
then descend until the string depth is equal to the string depth of the original point less 1. In
order to descend, it is not necessary to read the complete edge labels. The reason is that
P[j + 1..i — 1] must be a point in 7 since P[j..i — 1] is. Therefore we only need to check
the branching letters of the nodes we find along the way. Hence, we conclude that this
procedure can be computed in O(Ar + 2) time. O

Observe that —AV counts all the operations executed in an iteration of the for loop,
including the time to compute Surrix_LINk. Therefore Algorithm 1 runs in O(V(0)) = O(m)
time.

3 Succinct data structures

By bitmap B we refer to a string over {0,1} of length IBl. Fundamental tools to produce
succinct data structures are the Rank and SELECT operations over bitmaps. The operation
RANK(B, i) counts the number of 1’s in B[..i — 1] and SELECT(B, i) returns the smallest j
such that RaNK(B, j + 1) = i, i.e. the position of the ith 1. For the example bitmap in Fig. 2,
we have that RaNk(B, 3) = 2 and SELECT(B, 2) = 1. Munro (1996) showed how to support
these operations in O(1) time and IBl + o(IBl) bits. Succinct data structures can also be
combined with data compression techniques when B is compressible, solutions that require
IBIHy(B) + o(IBl) bits may be more adequate. This line of work was initiated by Pagh
(1999) and extended by Raman et al. (2002).

@ Springer

Inf Retrieval (2008) 11:359-388 367

Fig. 2 Sample bitmap that L
012345678901234567

represents the suffix tree 7 in
Fig. 1 (top-right) B: 110110100110100100
18. p-rig OOOWOOIO)

3.1 Succinct suffix trees

Since our approach is based on suffix trees, we need an adequate succinct representation
for them. We have already mentioned that trees can be represented as a sequence of
parentheses, i.e. can be represented as a bitmap. For example the bitmap in Fig. 2
represents the suffix tree 7 in Fig. 1 (top-right). For example, the node with Drs value 2
is represented by the parentheses at positions 3 and 8 of B. The Drs value can be
obtained from B as Rank(B, 3) + B[3] — 1 =2 + 1 — 1 = 2. This is the computation
performed by the LEFTRANK operation, i.e. LEFTRANK corresponds to Drs. The RIGHT-
RANK(v) corresponds to the largest Drs value among the descendants of v. This operation
can be computed as RANK(B, 8) + B[8] — 1 =5 4+ 0 — 1 = 4. This is consistent with
Fig. 1, where the node with Drs value 4 is the last descendant of the node with Drs
value 2.

The Rank and SELECT operations also proved useful for representing permutations.
Munro et al. (2003) showed how to represent a permutation of d elements and its inverse in
(1 + e)dlog d + o(d) bits, where ¢ is constant and 0 < ¢ < 1. An element of the permu-
tation can be computed in O(1) and an element of the inverse in O(1/e).

Geary et al. (2004) presented a succinct representation of ordinal d-node trees in
2d + o(d) bits, supporting, among others, the following operations in constant time:

— ANc(v, j) returns the jth ancestor of node v (for example Anc(v, 1) is FATHER(V));
— LerrRank(v) returns Drs(v);

— RIGHTRANK(V) returns the largest Drs value among the descendants of v;

— SeLECT(j) returns the node with Drs time j;

— CHILD(v, j) returns the jth child of node v;

— DEgG(v) returns the number of children of node v;

— DepTH(v) returns the tree depth of node v.

Definition 4 The reverse tree TR of a suffix tree 7 is the minimal labeled tree that, for
every node v of 7, contains a node VR where v® denotes the reverse string of v.

The tree 7® is shown in Fig. 1 (top-left). Observe for example that, since cbd is a node
of 7, there is a node chd® = dbc in T®. We define a canonical mapping R that, for every
node v in 7, maps Drs(v) to Drs(v¥) (see Fig. 1). We will use R(v) to denote R(Drs(v)).
Note that since the nodes of 7 form a suffix closed set, the nodes of 7% form a prefix
closed set.

We assume that the tree structure of 7 and 7% are stored using the previous repre-
sentation. Arroyuelo et al. (2006) proposed a way to represent the R mapping. Since R is a
permutation, R and R™" can be stored using the representation of Munro et al. (2003) in
(1 + e)dlog d + o(d) bits, where ¢ is fixed and 0 < ¢ < 1. This way R and R~ can be
computed in O(1) and O(1/¢) time respectively.

Lemma 3 A suffix tree T with d nodes can be stored in (1 + ¢)d(log d) + 5d + o(d)
bits. Let p be a point, ¢ a letter and v a node of T. This representation provides the
operations given by Geary et al. in O(1) time. Moreover it provides SpeP(v) in O(1) time,

@ Springer

368 Inf Retrieval (2008) 11:359-388

Surrix_LINK(V), LETTER(V, @), in O(1/¢) time and DESCEND?(p, c), DESCEND(p, ¢) in O((log o)/
€) time.

Proof According to our notation R(v) represents SELECT7«(R(LEFTRANK(Vv))). Observe
that SbEP(v) can be computed as DeprH « (SELECT 7« (R(LEFTRANK(V)))) which can be rep-
resented as DeptH «(R(v)), since 7F is prefix closed. The operation SUFFIX_LINK(V) is
computed as R~ (Fatner7«(R(v))). Observe that v[0] represents the letter just below the
root. For example cbd[0] = c. We define a bitmap D to compute v[0], in a way similar to
Sadakane (2003). We have that D[0] = 1 and, for i > 0, D[i] = 0 iff Drs(v) = i, Drs(v')
=i+ 1 and v[0] = V[0]. In our example D = 11001001. We can compute v[0], when v is
not the Roor, in O(1) as the letter in position Rank; (D, Drs(v)) of Z. This requires d + o(d)
bits. The operation LETTER(v,i) can be computed from R™!(Ancy«(R(v),i)). This
expression represents following enough suffix links to make the letter we want appear just
below the root, i.e. LETTER(v,i) = R~!(Ancy«(R(v),i)[0]. When p is not a node, DEs-
CEND?(p, ¢) can be computed in O(1/¢) time by consulting LETTER for the point below p. If p
is a node, we do a binary search among the children of p. If we find a child that starts with
¢, we return true. Procedure DESCEND(p, ¢) updates the value of p. When p is a point, this is
done in O(1) time. When p is a node, we first proceed as in DESCEND?. O

Finally observe that with this representation we cannot compute DFs’(v). The Drs’
values are essential to our algorithm because they serve as a supporting space for range
queries. This result can be obtained with a compressed bitmap.

Lemma 4 For a suffix tree T with t points and 2n nodes, operations D¥s’(p) and I(p) can
be computed in O(1) time using tHy + O(t log log t/ log t) extra bits, where Hy is the
empirical entropy of a bitmap with (t — 2n) ones and 2n zeros.

Proof Consider the bitmap that for every point of 7 stores 1 if the corresponding point is a
node and O if it is not a node. The bitmap is sorted in DFS’ order. Using the compressed
representation of Raman et al. (2002) this bitmap can be stored in tHy + O(tlog log t/ log 1)
bits supporting SeLecT; in O(l) time. Observe that for a node v we have that

Drs’(v) = SeLect (Drs(v)).
For a point p, Drs’(p) is computed as Drs’(v) — Spep(v) + Spep(p), where v is the highest
node that is a descendant of p'. Also I(p) = [Drs’(p), Drs’(SELECT(RIGHTRANK(1)))].
U

3.2 Wavelet trees

Wavelet trees are a recurrent succinct data structure. They were proposed by Grossi et al.
(2003) as a structure for supporting Rank and SELECT for sequences over an alphabet larger
than 2. They were also proposed by Chazelle (1988) for performing orthogonal range
queries. Obviously the algorithms over the structure are different. However, both use Rank
and SELECT over bitmaps. This description of the structure given by Chazelle was pointed
out by Navarro and Mékinen (2007).

Consider for example the sequence 0, 3, 3, 7, 9, 4. The wavelet tree of this sequence is
shown in Fig. 3. The wavelet tree is a perfect binary tree of height [logo]. Each node
stores a sub-sequence of the original sequence. The root stores the whole sequence.
Starting from the most significant bit, the left node stores the sub-sequence for which this
bit is 0, the right node stores the sub-sequence for which this bit is 1. In our example the

! Note that we assume that v is part of the representation of p.

@ Springer

Inf Retrieval (2008) 11:359-388 369

slele]=]=
—|=1=]=]*

—|=1=1=]=
sle[=]=]*

sl=l=]=
~|=1=1=
—|=1=]=
—T=l=1-

BEBEE

o
~[-1=1=

sl=]-]=
—T=1=1=

AT
A=Al
/
=T

—1-1T=]=
~|-1=]=

ole]e]e

~|-1=1=

ols|=]|=

0
0
0
0

—|=l=]|=

—T=T=T1=

slel=T]o

Fig. 3 Wavelet tree for sequence 0, 3, 3, 7, 9, 4.

left sub-sequence is 0, 3, 3, 7, 4 and the right sub-sequence is 9. This process continues
until all bits have been used. To descend from one node to a child node we use the Rank
operation. For the left node we use Rank, and for the right node Rank;. In our example we
can track the element 4 by computing Ranky(5) = 4 at the root node. Note that element 4
is in position 4 of the left child of the root. Obviously moving upwards uses the inverse
procedure, i.e. the SELECT) operation. Every leaf of the wavelet tree represents a type of
element in the sequence. Moving from the root to a leaf allows us to compute rank for the
element associated with the leaf. Conversely, moving from a leaf to the root allows us to
compute SELECT for that element.

The tree structure is only conceptual. In fact the only information that is stored are the
bitmaps highlighted in Fig. 3. Further Rank and SELECT operations can be used to delimit
the bits that correspond to a given node of the tree.

The wavelet tree can also be used to compute orthogonal range queries. Consider a grid
[1, f1 x [1, f] with f points inside. An orthogonal range query consists in determining the
points inside a rectangle (see Fig. 1). Provided that the points are all distinct in the first
coordinate they can stored in a wavelet tree, by building a list of the second coordinate
values ordered by the first coordinate. In the example of Fig. 1 the resulting sequence is 0,
3,3,7,9, 4. This requires flog f (1 + o(1)) bits. In fact it is easy to extend the space of the
second coordinate, i.e. extend the space to [1, f] x [1, f]. This will require flog f
(1 + o(1)) bits instead. To compute a range query [i, i'] x [}, j/] we start by locating the
range [i, i'] at the root of the wavelet tree. When we descend we track the elements i and 7.
The idea is to track every path that is contained in the [}, /'] range. Obviously we can avoid
descending by nodes for which the corresponding range [i, i'] is empty. Therefore
whenever a leaf is reached an occurrence is found, i.e. it takes O((1 + occ’)log f') time to
report occ’ occurrences. A simpler procedure can be used to count the number of occur-
rences in range [i, i'] x [, j']. The procedure consists in descending by j and j, the total of
occurrences associated with the non-shared part of these paths gives the number of
occurrences. This takes O(log f') time.

@ Springer

370 Inf Retrieval (2008) 11:359-388

The ranges we are going to use are obtained from other structures in our index, and, in
particular, from suffix trees.

4 A full-text index using suffix tree dictionaries

In this section, we explain the main contribution of this paper. Our data structure is very
similar to an inverted file. We will use this similarity to provide insight into the
algorithm.

4.1 Generic inverted index

Throughout Sect. 3, we assume that we are given an arbitrary suffix tree 7 with d nodes,
that we will use as a dictionary. We consider as dictionary words the path-labels of the
nodes of 7. The first thing we should do is to organize T according to our dictionary 7,
much like what is done in inverted files when given a lexicon.

Definition 5 The 7-maximal parsing of string T is the sequence of nodes vy,..., v, whose
concatenated path-labels compose T, i.e. T = v;...v5 and for every j, v; is the largest prefix
of v;...vsthat is a node of 7.

We assume that 7 is appropriate for 7, i.e. that it is possible to parse 7 in a maximal
way. In our example, the 7 -maximal parsing of a string 7 is the sequence
cbd,bd,d,cba,ba,ba. We refer to the elements of the 7-maximal parsing of T as blocks.
Note that the strings in the dictionary appear in the 7-maximal parsing. We denominate
them as words when referring to the dictionary and as blocks when referring to the
T -maximal parsing. We will store the 7 -maximal parsing of 7 in compact form as a string
of numbered blocks.

Definition 6 The translation V(vy,...,vp) of a sequence vy,...,vy of nodes is the string
Drs(vy)...DFs(vy).

We denote by 7(T) the translation of the 7 -maximal parsing of 7. Since the
T -maximal parsing of T is the sequence cbd,bd,d,cba,ba,ba, its translation is the string
7T (T) = 748633. Note that word ba is associated with two blocks, vs and ve.

Inverted files usually store a list of occurrences for every word of the dictionary. To play
this role we will use a stronger indexing structure, a sparse suffix tree. For reasons that will
become clear in Sect. 5 we must reverse the string 7 (7). This is achieved by extending the
canonical mapping R to sequences in the following way: R(v;...v) = R(vp)...R(vy). In our
example R(7 (T)) = R(748633) = R(3)R(3)R(6)R(8)R(4)R(7) = 2'2'3'6'7'8'. This corre-
sponds to the notion of reverse string, because the concatenation of the path-labels of
R(T(T)) in T® is ab.ab.abc.d.db.dbc = TX.

Definition 7 The sparse suffix tree* ST of a string T and a suffix tree 7 is the suffix tree
of R(7(T)).

The sparse suffix tree of our example is shown in Fig. 1 (bottom-left). We can descend
in the sparse suffix tree in the usual way with Descenpsz. However, since 7X provides the
alphabet for S7, we can also take that into consideration when descending.

2 Similar to a concept defined by Kirkkiinen and Ukkonen (1996b).

@ Springer

Inf Retrieval (2008) 11:359-388 371

Definition 8 The weak descent W(p, v&) for a point p in ST and a node v¥ in 7% is the
interval of Drsgy values of the nodes below the following points: {p.Drszz(V')]
V' is a descendant of VX in T®}

Note that by p.Drs;«(v') we are referring to the points whose path labels result from
concatenating the letter Drsz=(v') with the path-label of point p.

For example, W(Rootsz,2) = [1%,4%], since this contains the Drsgy values for the
nodes below 2/, 3’ in 8T (see Fig. 1). This can be computed in O((log d)/¢) time. We
perform two binary searches in the children of p, searching for LErTRANKz(v) and
RicHTRANK 7% (v). Then W (p, vR) = [LertRankst (v"), RicuTRANKsT (V")], where v/ and v/
are the nodes found by the binary searches.

In order to find occurrences of strings across more than one block, we will need to store
the relations across contiguous blocks. This motivates the following two definitions.

Definition 9 The head, tail of the 7-maximal parsing are respectively sequence vy,...,v;

and string v;,;...v¢ such that vy,...,v; is the smallest sequence for which v;,...vsis a point
in 7.

We denote by H(T) the translation of the head of the 7 -maximal parsing of 7. The head
of the 7 -maximal parsing of T is c¢bd,bd,d,cba,ba and the tail is the string ba. Hence H(T)
equals 74863. It may seem that tail is always just v Consider a modification 7 M of tree
T were node cbd is replaced by cbde and nodes bde, de, e are added to complete the suffix
tree. Note that cbd is not a node of 7 M, as it is only a point. The string, bcbd is parsed as
b.cb.d and the tail is cb.d and, therefore, it is not just the last block.

Next we define a set of points relating the leaves of S7 with the points in 7.

Definition 10 The linking points set of the 7-maximal parsing v;...vy of T is the
following set:

. ' piisthe largest prefix of viy1. . .vy
L= { (Des(R(V (v1...vi))), Drs’ (pi)) | thatisapointinT, for0 <i <f

The set £ is shown in Fig. 1 (bottom-right) and consists of the following points:

(Drs(R(V(cbd, bd,d, cba,ba,ba))),Drs’(e)) = (Drs(2'2'3'6'7'8'),0) = (2%,0)
(Drs(R(V(cbd, bd,d, cba,ba))), Drs’ (ba)) = (Drs(2'3'6'7'8'),3) = (3%, 3)
(DFS(R(V(cbd, bd,d,cba))),Drs’(ba)) = (Drs(3'6'7'8'),3) = (4x,3)

— (Drs(R(V(cbd,bd,d))),Drs’(cba)) = (Drs(6'7'8"),7) = (5%,7)
(Des(R(V(cbd, bd))),Drs’(d)) = (Drs(7'8'),9) = (6%,9)
(Des(R(V(cbd))),Drs’(bd)) = (Drs(8'),4) = (Tx,4)

To compute orthogonal range queries we use the wavelet tree as described. As referred,
this structure requires flog f’ (1 + o(1)) bits and can compute orthogonal range queries
in the space [1, f]1 x [1, f'] in O((1 4+ occ)log f') time. We need to store points in the
[0, d — 1] x [0, t — 1] space, where d' is the number of nodes of S7. We only need to
store f points. Therefore we must reduce the support space to the rank space. The space
[0, d — 1] can be reduced to [1, f] in O(1) time, with RANK over a bitmap of d' + o(d')
bits. The second reduction is obtained by setting f’ to ¢ and, therefore, time to report
occurrences is O((1 + occ’)log 1).

We propose an index data structure composed of the dictionary 7, the sparse suffix tree
ST and the linking points £. We will now explain how to use this index to solve the exact

@ Springer

372 Inf Retrieval (2008) 11:359-388

matching problem. Our search algorithm proceeds differently depending on whether the
pattern is completely contained inside a block or spans more than one block. We refer to
this as type 1 and type > 1 occurrences.

4.2 Occurrences lying inside a single block

The algorithm for finding occurrences inside a single block starts by identifying all the
words in the dictionary 7 that contain P as a substring. Since 7 is a suffix tree, it is
possible to achieve this in a simple way.

— Descend by P in 7. If this is impossible then there are no type 1 occurrences of P.
— Start a depth-first traversal of the sub-tree below P.
— For each node v reached compute the range query W(Rootsr,R(v)) : [0, 1].

The search in 7 consists in considering words that start with P and appending some
letters. The weak descend and the range query consist in prepending some letters to the
words found on the search in 7. For example, consider P = b. By reading b, we reach node
2 of T (see Fig. 1). The search on 7 returns nodes 2, 3, 4, hence it leads us to consider
words b, ba, bd. This originates the following weak descends: W(Roorsr,4') =0,
W(Rootsr,?2') = [1x,4%], W(Rootsr,7’) = [6%,7*]. We do not need to consider words
that start with b, since they do not correspond to blocks; there may be occurrences of ba or
cba because of ba; there may be occurrences of bd and cbd because of bd. The range
queries return no occurrences for b, occurrences 2%, 3* and 4* for ba and occurrences 6*
and 7* for bd. This corresponds to occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba,
cbd.bd.d.cba.ba.ba for ba and occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba,
for bd.

Theorem 2 The above procedure is correct and complete.

Proof (Correct) Clearly every reported block is «.P.f for some «, 5 and hence it contains
an occurrence of P. (Complete) Suppose block v; = o.P.f. Hence o.P.f is a node in 7.
Since 7 is a suffix tree, P.f is also a node in 7. Node P.f is reached by the search in 7,
since it starts by P. Every node v of ST for which v[0] = Drs((a.P.)") has its Drss7 time
in W(Rootsr, (P.f)®). Hence block v; is found in the range query. O

This algorithm was essentially presented by Navarro (2004), except for the fact that
the range queries were computed as depth-first searches in a trie similar to TR In
Navarro’s algorithm, each node of that trie stored one block. Therefore the time of these
searches was bounded by the number of type 1 occurrences of P, denoted by occ;. We do
not have a direct correspondence between the nodes of 7% and the blocks of 7-maximal
parsing, which means that this approach has no worst case guarantees. In essence, the
problem is that we may be executing more range queries than the number of occurrences
found.

Definition 11 A spurious entry for string 7 in the suffix tree 7 is a leaf v of 7 such that
R is a leaf of 7% and v is not a block in the 7-maximal parsing of T.

For a dictionary 7 without spurious entries, we can guarantee that some orthogonal
range queries must return occurrences.

Lemma 5 Assuming 7 has no spurious entries for T and v is a leaf of T, then the query
W (Rootsr,vR) : [0,1] returns at least one linking point.

@ Springer

Inf Retrieval (2008) 11:359-388 373

Proof There is some o such that (o.v)® is a leaf in TX. Since 7 is a suffix tree and v is a
leaf of 7, then a.v is also a leaf of 7. Hence, at least one linking point will be found by
W (Rootst,vF) : [0, 1], since Drssr((2.v)%) € W(Rootsr, k). O

Spurious entries may be safely removed from the dictionary. Removing spurious entries
can be done by considering 7 and 7% as a DAG, a node w in the DAG represents
simultaneously v and v®; there is an edge from w to w' if that edge exists in 7 or in 7%. To
remove spurious entries we perform a DES over this DAG. We remove nodes that do not
have blocks and are sinks or unary and the edge comes from 7. The nodes are checked and
removed in their finishing time (see Cormen et al. 2001 for definitions). This procedure
runs in O(d) time. Note that the resulting structure remains a suffix tree.

4.3 Occurrences spanning more than a single block

In this section we focus on finding occurrences that span two or more consecutive blocks,
i.e. type > 1. The ideas presented in this section are similar to those of Kérkkédinen and
Ukkonen (1996b) and related with the approach proposed by Ferragina and Manzini
(2005).

We are now faced with the problem of retrieving the words in our dictionary that appear
concatenated in 7 (T') and have P as a substring. Suppose that P = cbdbddc and that we
split P in two as cbdbdd and c. We will now search for ¢ in 7 and for chdbdd in ST . The
point ¢ in 7 induces the range I(c) = [5, 8]; on the other hand, string cbdbdd is parsed into
cbd,bd,b and hence will be translated into 748. To search on the sparse suffix tree, we need
R(748) = 6'7'8'. This will induce the range [5*, 5*]. Finally, to solve our problem we
perform the orthogonal range query [5*, 5*]:[5, 8] over the linking points £. This corre-
sponds to the question: is the string cbdbdd, parsed as cbd.bd.d, ever followed by a block
that starts by ¢? The answer is yes, since there is a linking point in [5*, 5*]:[5, 8]. This
point corresponds to cbd.bd.d.cba.ba.ba.

Observe that in this procedure we are using one suffix tree (7°) in the usual way, to
search the text from right to left, and another suffix tree (S7) to search the text in the
opposite direction. Thus we are able to search for P by starting the search from the middle
of the pattern. We “cross” the results, by using orthogonal range queries, to obtain the
occurrences of P.

We will now explain how to determine in which points to break P. The pattern should
be separated in the head and tail of P[i..], for every 0 <i < m, to account for every
possible translation that can occur. These points can be located using the following
dynamic programming equations:

Lopre 1\ | trace_right(i], if |trace_right[i]| = m — i
tail(Pli-]) = {tail(P[i + |father_right[i]|..]), otherwise (1)

H(Pli.]) = €, if [trace_right[i]| = m — i
"V father _right[i].H(P[i + |father _right[i]|..]), otherwise

We use Algorithm 2 to locate points R(H(P[i..])) in S7. We can use a similar procedure
to compute tail(P[i..]). Whenever it is not possible to descend by a letter, the DESCEND s
procedure returns the udef state. See Table 2 (bottom) for an example of this computation.
Assume that the descend and suffix walk of P is already computed. Hence, the arguments
of DEscENDgy are available when DEescenDgy is executed. Therefore, Algorithm 2 runs in

@ Springer

374 Inf Retrieval (2008) 11:359-388

O((m/e)log d) time, since it runs m times the DEscENDg7 operation, which requires O((log
d)/e) time.

Notice the importance of using the 7 -maximal parsing of T, instead of the original
LZ78 parsing. By using a maximal parsing we have the guarantee that the notion of head is
well defined. This means that to every P[i..] we associate at most one point R(H(P[i..])) in
ST. If we were using the original LZ78 parsing there could be O(m) points in ST that
corresponded to a given suffix P[i..]. Locating all those points would raise the overall
complexity to O(m?).

Having located tail(P[i..]) in 7 and R(H(P[i..])) in 87, we know where to break the
pattern. Now, all that we need are the ranges for the range query. The range for 7 is simply
I(tail(P[i..])). Whenever P[..i — 1]¥ is a node of TF, the range for ST is W(R(H(P[i..])),
Pl.i— 17%.

Let us consider, for example, the case of i =3. We have that H(P[3..]) = 48 and
R(H(P[3..])) = 6/7". Hence W(6'7’, (cbd)®) = [5%, 5*], since 8 is the only descendant of
itself in 7%, This means that, when we are extending bd.d to the left by prepending a word
from our dictionary that terminates in cbd, the only such word is cbd. Therefore, we end up
considering only the node cbd.bd.d.

Our algorithm for finding type > 1 occurrences of P proceeds as follows:

— Compute the descend and suffix walk of P in 7.
— Compute tail(P[i..]) from the descend and suffix walk of P.
— Locate the R(H(P[i..])) points in S7 (see Algorithm 2).
— If Ifather_left[i]l = i then P[..i — 1R = R(father_left[i]),
compute W(R(H(P[i..])), R(father_left[i])).
— Compute [(tail(P[i..])) from tail(P[i..]) (see Lemma 4 and Eq. 1).
— Compute the orthogonal range queries W(R(H(P[i..])), R(father_left[i])):I(tail(P[i..])).

An example of our algorithm is shown in Table 2 (bottom). The only range query that
finds occurrences (occ’) is the [5%, 5*%]:[5, 8] query, as we have explained in this section.

Theorem 3 This procedure is correct and complete.

Proof (Correct) Algorithm 2 locates points R(H(P[i..])) points in S7. These points
correspond to substrings P[i..j] of P. The weak descents extend this substrings into prefixes
P[..jl. Then tail(P[i..]) gives the corresponding suffix P[j + 1..]. The orthogonal range
query “crosses” these information and returns positions where the string P[..j] is followed
by P[j + 1..]. Hence P occurs in these positions. (Complete) Suppose that P occurs in T
= v;...v¢in the blocks v;.v;,,.... Hence there is some i such that P[i..] is a prefix of vj,;...vs
and P = father_left[i].P[i..] (see Algorithm 1 and Definition 5). The strings corresponding

Algorithm 2 Locate R(H(PJi..])) Algorithm

1: procedure Locate_HPI

2: fori <« m—1,0<ido

3: R(H(Pi..])) < Rootsr

4. if Itrace_right[i]l < m — i then

5: R(H(P|i..])) < Descennsy (R(H(P[i + |father _rightli]|..])), father_rightli])
6: end if

7: end for

8:

end procedure

@ Springer

Inf Retrieval (2008) 11:359-388 375

to father_left[i] and head of P[i..] are contained in the range W(R(H(P[i..])), R(father_-
left[i])) and the strings corresponding to fail(P[i..]) in the range I(tail(P[i..])). Therefore, P
is found by the orthogonal range query. O

5 A compressed self-index based on LZ78 dictionaries

We found it interesting to present this work in a general form, since it seems relevant to
explore other techniques for inferring dictionaries, given a text 7. We will now give a
concrete instantiation of the above algorithm, using the Ziv—Lempel 78 algorithm (Ziv and
Lempel 1978).

Definition 12 The LZ78 parsing of a string T is the sequence Z,...,Z, of strings such that
T =12,...Z, and for every i, Z; = Zic where Z; is the largest prefix of Z;...Z, among the
Z],...,Zi,].

The strings Z;...Z, are referred to as blocks. Given a string T, we proceed as follows:
compute the LZ78 parsing of T% = Z,...Z,, then consider the suffix tree for strings
(ZR.....Z%) as our dictionary, denoted by 77s. In our example T® is parsed into
a,b,ab,abc,d,db,dbc and the resulting dictionary can be seen in Fig. 1 (top-right). The
following lemmas expose why the dictionary we propose is adequate in terms of space.

Lemma 6 If the number of blocks of the LZ78 parsing of T is n then T g has at most 2n
nodes, i.e. d < 2n.

Proof Observe that every suffix of a ZRisa ZJR for some j. Therefore the set {Z%,...,ZX} is
suffix closed. Hence a suffix tree based on {ZR,...,Zf} will have at most 2n nodes. O

Lemma 7 If the number of blocks of the LZ78 parsing of T is n then the T 73-maximal
parsing of T has at most n blocks, i.e. f < n.

Proof The idea is to show that if a block v; of the 7 7g-maximal parsing is a substring of
some Z then it is a suffix. Suppose that v; is a substring of Z We have that Z = a.v.f.
Since the dictionary is a suffix tree and Z is a node, v; f§ is also a node and hence a
dictionary word. Since the parsing is max1mal we have that v;.f = v;, i.e. that v; is a suffix
of ZJR. O

5.1 Space and time complexity

With the previous results we will now determine the space and time complexity of our
algorithm using an LZ78 dictionary.

Lemma 8 The Drs’7g operation can be supported over T7g in O(1) time with o(ulog o)
bits.

Proof This result is obtained from Lemma 4. Observe that ¢, the number of points of 7 7,
can be at most u. Moreover the largest value of uH, can be at most 2 u/log, u since the
number of 1’s in the bitmap is at most 2n and Ziv and Lempel (1978) showed that n < (u/
log u)log a. A few calculations show that the space occupied by this bitmap is at most 2
ulog a(log log u/log u) + o(ulog log u/log u) bit, which is o(ulog o). O

@ Springer

376 Inf Retrieval (2008) 11:359-388

We will refer to the index that uses LZ78 dictionaries as the Inverted-LZ-Index. The
next theorem gives an overview of the space/time complexity of this structure. A previous
version of this result (Russo and Oliveira 2006), required more space.

Theorem 4 Let d and d' be the number of nodes of T73 and ST 73 respectively. Let t be
the number of points of T 73. Let f be the size of the T 73-maximal parsing of T. The space/
time trade-off of the Inverted-LZ-Index can be summarized as follows:

Space in bits [%(l+e)+%(l+e)+~£]qu + o(ulog)
<(5 + 4¢)H; + o(ulog o)
Time to count O((occ + mle)log n)
Time to locate [ree after counting
Time to display | chars O(lle), improvable to O(l/(elog, u)) with u extra bits
Conditions k = o(log, u), 6 = O(n), 0 < ¢ < 1, ¢ is constant

Proof (Space) The space requirements come from adding up the space of 775, S7 73 and
the range data structure. The 7 7g suffix tree requires at most (1 + ¢)dlog d + 5d + o(d),
according to Lemma 3. Moreover, to support Drs’7g we need o(ulog o) extra bits. The
ST 75 sparse suffix tree requires (1 + ¢)d’'log d' + 5d' + o(d') bits, according to Lemmas
3. The range data structure (wavelet tree) requires another flog f (1 + o(1)) bits. The
dominant factors are the ones associated with log u. According to Lemmas 6 and 7 these
are the factors of log d, log d and log f. Hence the overall log factor is
d(1 + &) + d'(1 + &) + f. Ziv and Lempel (1978) showed that \/u <n<u/log, u, and,
therefore n = o(ulog &), which means that all remaining requirements are o(ulog o). The
relation between n and H, was established by Kosaraju and Manzini (1999) who showed
that nlog u = uH, + o(ulog o) for k = o(log, u). Therefore, the expression in the theorem
accounts for the space requirements of the ILZI.

(Count/Locate) We have already seen that Algorithm 1 runs in O((m/¢)log o) time. The
time to find occurrences of type 1 is O((1 + occy)log n). Observe that the number of
queries computed is less than or equal to twice the number of leaves below P. By Lemma 5
we know that the queries at the leaves must return occurrences. Therefore the total time
amortizes to O((1 + occy)log n). The time to find occurrences of type > 1 is the time of
Algorithm 2, plus m weak descents and m range queries. Therefore the total time for
occurrences of type > 1 is O((occ=; + m/e)log n), where occ-; is the number of type > 1
occurrences.

(Display) Observe that even though we do not store R(7 75(T')) explicitly, we have O(1/¢)
access time to it. The idea is to store a pointer to the leaf of S7 75 with path-label R(7 75(T)),
denoted by FirsTLEAFs7. Therefore R(775(T))[i] = LerTersy (FIRSTLEAFST, i). Hence, we
can compute the jth letter of R(7 75(T))[i] as Lerter(LeTTERsT (FIRSTLEAFST, 0), /), in O(1/€)
time. To achieve optimal O(I/(elog, 1)) time we use an approach based on the work of
Sadakane and Grossi (2006), similar to Arroyuelo et al. (2006). We define a new bitmap D',
similar to bitmap D, used to retrieve the first log u bits of a node v instead of the first letter.
This requires d + o(d) bits. We also need a bitmap Q that indicates which sequences of log
u/2 bits do appear as the first bits of some v. By (i), we denote the binary representation of i,
with log /2 bits. The Q bitmap is defined as Q[i] = 1 iff (i), is the prefix of some (v), padded
with zeros. Bitmap Q contains 2/°2 u/2 — \/u bits and can therefore be stored in o(u) bits.
With these bitmaps we are able to retrieve log u/2 bits from a block in O(1) time,

@ Springer

Inf Retrieval (2008) 11:359-388 377

i.e. log, u/2 letters. We repeat these bitmaps for S7 75 and hence are able to retrieve log u/2
bits from consecutive blocks. Finally we need another bitmap to be able to skip blocks. We
use a bitmap V that marks the beginnings of the blocks in R(7 73(7')). This requires u + o(u)
bits. As pointed out by Arroyuelo et al. (2006), this bitmap can be used to report the
occurrences of P as positions in 7 instead of as a block and an offset. OJ

The worst-case of the space expression is (5 + 4¢)H; + o(ulog o). However the worst
example we were able to find, based on De Bruijn cycles, yielded (4 4+ 3¢)H; + o(ulog o)
bits. In the next section we show concrete values for the space expression.

Finally note that the bound by Kosaraju and Manzini (1999) concerns H,(T) not H(TH.
This makes little difference. In theory Ferragina and Manzini (2005) showed that
uH(T) — O(og u) < uHK(T® < uH(T) + O(log u). In practice, H(T) and H(T®) can
also be shown to be similar. Moreover, we can switch the roles of T and T¥ in our approach
and search for PX instead of P. In fact our prototype works precisely in this way. However
we believe this would have made the exposition more complex and it would make it harder
to point out the importance of the TR, suffix tree.

6 Practical issues and testing
6.1 Practical considerations

We implemented a prototype to test these ideas. Navarro (2004) pointed out that, by using
a naive search instead of the range data structure, it was possible to build a smaller index
that was faster in practice. The naive way to compute an orthogonal range query is to
choose the smallest range and, for each point of that range, check whether the point
belongs to the other range. Suppose, for example, we wish to compute the range query
W(Rootsr,2') = [1*,4x%] : [0,9] = [0,7 — 1]. First, observe that, when we refer to the
smallest range, we are referring to the range in the [1, f] x [1, f] grid not in the
[0, d — 1] x [0, t — 1] space. Therefore we reduce the [1*, 4*]:[0, 9] query to the 17,
3P"1:[17, 6”] query. Obviously, the smallest range is [17", 3”]. Since, for this particular
query, the second range covers the whole space, the result is [17 *, 37", which corresponds
to {2*, 3%, 4*}. We have already seen that this type of queries is used for type 1 occur-
rences. Therefore, using this method, the time to compute the range queries for type 1
occurrences is O(occy). For type > 1 occurrences this procedure has no worst case guar-
antees. However, in practice, this is acceptable and more efficient. Therefore we did not
implement the range data structure and we used this approach instead. This immediately
removes our capability of reducing [0, + — 1] to [1, f], which means that we cannot use
points of 7 to support the linking points. This means that there is no reason to use a
compressed bitmap to support the Drs’ operation for points that are not nodes, as described
in Lemma 4. Instead we store (Drs(R(V(vi...v;))),Drs(vit1)) when i<f and
(DES(R(V(v1...v:))),0)) when i = f; since v;,; is the largest prefix of v ...vy that is a
node in 7. Observe that the linking points in our example actually coincide exactly with
this definition, (see Fig. 1 bottom-right). To find the linking points associated with a node v
of 7, we find the leaves below point R(v) in S7. Moreover, to decide which range is
smaller, we estimate the number of points in I'(v) as the number of points in
W(Rootsr, R(v)). In Navarro’s approach, occurrences of type > 1 are further distin-
guished between type 2 and type > 2. Navarro did not use dynamic programming, because
it is possible to guarantee that there are not too many occurrences of type > 2. Type > 2

@ Springer

378 Inf Retrieval (2008) 11:359-388

occurrences span more than two blocks. The fundamental argument is that, since the LZ78-
blocks are all distinct, a given Z; occurs in at most one position. Therefore the P[i..j]
substrings of P occur in at most O(mz) positions. Hence there cannot be more than O(mz)
type > 2 occurrences of P in the LZ78 parsing of T. For 7(T) no such result exists.
However, even though a word v may correspond to more than one block of 7(7T), in
average it does not correspond to many. Therefore we do not use dynamic programming
either. Instead, we use different procedures for type 2 and type > 2 occurrences.

There is not a very compelling reason to store S7 73 as a suffix tree when not using
dynamic programming. Inverted files store a list of occurrences for every dictionary
word. These lists are usually ordered by the position in 7 of the occurrences of the
words. This regularity is usually explored, for example, with delta coding, to store these
lists in compressed form. This property is also important when searching for patterns
because, since the type > 1 search scans the text sequentially, it provides better cache
performance. Our implementation of S7 75 is similar to a sparse suffix array, i.e. a suffix
array for R(7 (T)). However, the suffixes of R(7 (T)) are only sorted by the first block.
Suffixes that start with the same block are ordered by position in R(7 (T)), just like in
inverted files.

A very important aspect of our prototype is that the implementation of 775 differs
considerably from the succinct representation we presented. The fundamental reason for
this fact is that the succinct implementation would suffer from poor cache performance.
Instead we opted for a more cache aware implementation. The 7 7g tree is implemented in
a pointer like fashion. Every node is stored in a memory cell indexed by its breath-first
time-stamp. For example, node cb will be stored in cell 3. The LETTER operation is
replaced by a Heap pointer, that, for every node v with father node v[..i — 1], points to
node v[i..]. This information suffices to read edge-labels, by using suffix links. Every node
v stores a CHILD pointer, its DFs time, a suffix link, the string depth, the HEAD pointer and
pointers indicating W(Rootsr,,, v¥) over T75. This provides better cache performance in
several points. First, we store the information in the nodes and the topological structure of
the tree together. Second, there is no need to traverse back and forth from 775 to 7575 to
read edge-labels or compute suffix links. Third, the Brs ordering avoids some cache faults
in branching. Clearly, implementing 773 this way requires more space than the succinct
implementation. This constitutes a severe problem. In order to solve it, we infer a smaller
dictionary, i.e. a 7 75 tree with less nodes. In practice, we use the following variation of the
LZ78 parsing:

Definition 13 The LZ78 parsing with quorum [of a string T is the sequence Zi,...,Z, of
strings such that T = Z,... Z, and, for every i, Z; = Zjc where c is a letter and Z; is the
largest prefix of Z;...Z, that appears at least / 4+ 1 times among the Z,,....Z; ;.

Clearly the LZ78 parsing with quorum O corresponds to the usual notion of LZ78
parsing. In practice a quorum of 2 compensates for the space requirements of 7 ;g without
affecting performance too much. Table 3 shows the size of the ILZI for different quorum
values. Variable i represents the size of different indexes, in bits. Therefore i/2%3 is the size
in megabytes, i/8u is the ratio with respect to the size of the original string and i/uH, is the
ratio with respect to the size of the compressed string. Our results show that increasing the
quorum value significantly reduces the space requirements of the ILZI while degrading the
time performance only slightly. Observe that with a quorum of 2 our index has acceptable
space requirements, in practice. Our results also show the ILZI has acceptable space
requirements in theory. For example the results show that for the xml file the practical
value is 2.65uH; bits and the theoretical value is (2.49 + 1.62¢)uH; + o(ulog o) bits.

@ Springer

379

Inf Retrieval (2008) 11:359-388

ammonns eyep aguel oY) SUIAOWI 0} SPUOdsaIIod 3 Y} YIIM PAJBIDOSSE J0JOBJ A Jey) 9AISqQ
“(f WoI0aY], 995) [e10) MO[q AnfeA STy Juasard am TZI] Y} YIIM PAARIDOSSE Y771 JO 10)0B] QUIULIAIOP O) PAsn q UeD SANJeA 3sAY) Jey) AJON "/ Pue u/,p ‘u/p soner Suimoj[oJ
Ay 10§ sanfeA [edndwd smoys uwnjod ay) jo Jred wonoq Y[, “1/(n Soqu) se pajewnsa ST Yy o1oym ‘Surns passardwod e yim oner oy soAIS Ygny1 ‘Suins [eurStio ay) Yim onex
oY) SAAIS ng/1 (GIN) SAIAQESIIN UL 3ZIS Y} SIAIT 7/1 DI0JRIY, “SIIq UL SOXIPUI JUIISJIP Y} JO IS 3y} sjudsdidal 7 AqeLie A “sanfea wnionb juasayyip sjuasaidar 7 AqeLrep

3961 + 06T 210T + S6T 3L0T + Yoe 8TIT + 60¢ 391 + 6T 36L1 + 0LT

[e101 [e101 [e101 [e101 [e101 1e101

Y60 €€T 90 Y60 ST 9,0 860 TTI $8°0 L60 0TI T60 L8O 80T ¥S0 060 61T 090

ufup ujp uf up ujp ufuyp ujp uf up ujp uf up ujp uf up ujp
SIS L8T1 €¢6 Y09 $0C L191 699 SS¢ 97T L9 S8 976 Wy S80 ST 06% SLT VL8 0
e $¥T1 819 S9¢ t81 6°L6 9¢’¢ 681 $0TI I8¢ SOT STS €6T 850 68T Pee 61T 968 I
66T 60T €S 9aI'e 651 L8 YOE 19T 8701 6I'C 880 OFb 9T TS0 19T 00¢ LOT S¢S 4
89T L60 S'8p 8T €l 9L LLT LY L'€6 89T vLO OLE YT 8F0 1T LT L60 98P v
€T T60 8SH LT 9¢T1 9TL 65T LET S'L8 65T 990 0¢€ 9T 80 THT 197 €0 99% 8
96T €60 oY 9LT 6¢1 6°€L €T el 968 LTT €90 €I¢ T 0SS0 81T 69T 960 08y 91
€9T S60 9Lb €8T Tl 8'SL ST sel 6°S8 YZT 790 60¢ €LT ¥S0 69T 08T 00T 005 T¢

Hnpoo ongp g HAp o ngp Tt Hnp o ngn gt HM o omgp g Hnp ongpn g gnp o ongpn o g
JINOS UstSug SoyaNd SuLj0Id FINOS Bup gINOS Twx d[qp FINOS $92In0g 1

sonea wnionb JuaIo)jIp JoJ Xopul [Z7][9y} Jo syuowainbar ooeds ¢ dqe],

pringer

As

380 Inf Retrieval (2008) 11:359-388

6.2 Experimental results

We compared our implementation the Inverted-Lempel-Ziv-Index (ILZI), against the
implementations provided in the Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl/).3 As
texts, we used the files in the Pizza&Chili corpus, with approximately 50 Megabytes each.
The indexes were parametrized to occupy approximately the same space whenever pos-
sible. The indexes used were the following: Raw is the raw string, ILZI is the inverted-
Lempel-Ziv-index using the algorithm described in this paper, LZI Navarro’s LZ-index,
LZI-1 is the improvement of the LZI by Arroyuelo et al., NFMI is an implementation of
the FM-index by Navarro, CSAx8 is Sadakane’s compressed suffix array, SSA is the
succinct suffix array, RL is the run-length FM-index, AFFMI is the alphabet friendly FM-
index, FMI2 is the second version of the FM-index and SAC is the suffix array in
uncompressed form, packed in bits. We omitted the compressed compact suffix array,
because it was not competitive. We also omitted the suffix array packed in words because it
was very similar to SAC.

In Table 4 we show the space requirements of different compressed indexes for the
sample files. The par line gives the parameters used for indexes that require it. The
parameters were chosen so that the resulting index occupied approximately the same size as
the ILZI. However, some minimal values were used for performance reasons. For the
CSArray we give the D value, for CSAX8 we have that L= 8 x D. Figures 4—7 show the time
performance of different compressed indexes. The performance of compressed indexes can
be described as @(m.C + occ.R + out.O), where out is the number of letters that we wish to
display, C is the counting factor, R is the reporting factor and O is the outputting factor. For
some compressed indexes it is possible to run the indexes in counting mode and the resulting
time is ®@(m.C). However for Lempel-Ziv indexes this is not possible, and our index runs in
®(@m.C + occ.R) even for counting, albeit with a smaller R constant. We determined the
factors and overall query time for all the indexes. We show the results for different values of
m in Figs. 4-7. To obtain these results we ran tests of 60 seconds each with a minimal
number of 5 repetitions. For counting, this means that we tested from 6 x 10* to 6 x 10°
patterns. For reporting, we tested from 5 to 6 x 10° patterns and each pattern had at least one
occurrence. For outputting, we displayed 60 characters per occurrence.

The fact that LZ-based indexes cannot operate in counting mode can be observed
empirically since the time of these indexes is not constant in the time to count graphs. As
expected, when m increases occ decreases and the time also decreases. Eventually, the
overall time becomes competitive with other compressed indexes. For most examples this
happens when m is around 20. The counting graphs also show that reducing the depen-
dency on m from O(m?) to O(m) had significant impact in the query time. This makes our
index up to an order of magnitude faster than LZI and LZI-1 for counting when m is large.
On the contrary, for small patterns (m = 5) it is up to 2.6 times slower than LZI and up to
four orders of magnitude slower than the other compressed indexes.

On the other hand LZ-based indexes are extremely fast at reporting occurrences. In fact
they are the only self-indexes using O(uH,) bits able to spend O(log n) time per occurrence
in practice. This is also visible in the graphs since the reporting factor of LZ-based indexes
is around an order of magnitude smaller than that of other compressed indexes.

The displaying time per character is not a very decisive factor to tell indexes apart since
all of them are very fast. The FM-index performed extremely well on natural language

3 Tested on Pentium 4, 3.2GHz, IMB of L2, 1GB of RAM, with Fedora Core 3, compiled with
gcc — 3.4 — 09.

@ Springer

http://pizzachili.dcc.uchile.cl/

381

Inf Retrieval (2008) 11:359-388

90 4! 91 Ted S 6 Ted

7’8 Ly LTE LTE Wy H 17°¢ YTe 99t 9I'c 66’1 H!

STy YLl 651 ¥9'1 LT ng/1 91 €91 veT 651 0071 ng/1
€97C 6'C6 88 ¢'L8 LSII /! EElIR | 198 898 8Tl LYS TES =~ YNNG

LTO 4! 01 Ted 9 o1 Ted

00’8 (443 80°¢ 0T'€ 80 Hn 96°C 86'C WY voe 881 HN

STy L1 €91 oLl 9I'C ng/1 LS’ 8¢’ 0r'e 19T 0071 ng/1
80LZ 0601 I'v0l T80l 6LEI /! sudl01d 1001 6001 6TSI 8701 L'€Y =~ suIRj0Ig

LTO T 9 T Ted 11 S Ted

1761 e 9I'¢ 61°¢ 1Te 00ty H! €T¢ 09t Wy 6l'c €9¢ Hn

YAy 760 L8°0 88°0 68°0 0r'1 ng/1 68°0 LT1 Wl 880 001 ng1
STIT 'Ly Sey 'ty €y 1§98 /! GINOS BUP 9t v'€9 609 0¥y 00S =~J FINOS BUP

10 IS IS IS Ted 61 S Ted

0912 16C see we 999 oIy Hu 9T 099 WY 9T 80 'Hm!

YAy LSO 990 L9°0 60'1 780 ng/1 50 0€'1 68°0 S0 001 ng1
$TIT L'8T X4 9°¢g 94§ 60v T/t GINOSTwx digp 86T 679 Sty 192 0°0S < dNOS Twx digp

LTO 9¢ 9 IS Ted L S Ted

1611 10°¢ €0°¢ 86°C 0T'€ 81y Ted 90°€ 18°¢ €Sy 00 08T H!

STy LO'1 80°1 901 Pl A ng/! 601 9¢'1 w9l LOT 001 ng/!
$TIT L'€S 1'%S TEs TLS SyL g FINOS $32In08 9§ 1'89 608 SeES 008 g FINOS $921n08

OVS TINd INAV Td vVSS 11171 8XVSD INHUN 171 IZ1 mey

so[y opdures 10y soxopur passardwod JUAIIIP JO 9ZIS oY) YIIM J[qE], § JqB]

pringer

As

Inf Retrieval (2008) 11:359-388

382

a X 8 =77ey aaey
am §XySD I0J ‘anfea (7 oyl 9AIS am AeIIySD Y3 10)1 a1mnbai Jey soxopul Joj pasn s1ajourered oy soAI3 aul| 4vd Ay, ‘n/(n 30[u) se parewnsa sI Y a1oym ‘Surns passarduiod
© [JIM OTJRI 3Y) SOATS Ygyn/1 ‘Suins [euISLIo oY) (IIM ONEI AU} SOAIS 18/1 ‘(IN) SAIAQSAN UT 9ZIS AU SOATS /1 QI0JISL, S)Iq UI SOXIPUT JUSISFFIP Y} JO AZIS A sjuasaidor
1 9[qerIR A "S)Iq Ul payjoed ‘urioy passeidwooun ur Aeire Xyjns oy ST JVS (ZIN) XOPUI-JA] Y} JO UOISIOA Puodas oy} “(TINAJV) Xopur-INg A[puerij Jeqeydre oy ‘(‘Ty) Xopur
-INA YSusp-unt oy ((YSDD) Aeare xyjns joedwod passardwod ay) ‘(YSS) Avlre Xyjns 1ouroons ay ‘(§XySD) AelryS) s.aueyepes ‘([JA) Xopul-]Ng Y jo uonejuawadur
s.omeAeN ‘(1-1Z71) 1Z1 poonpa1 {(JZ1) Xopul-ZT s.omeAeN ‘(JZT[) Xopul-ZI-PIMoAu] oy} ‘(mey) Suins [eurSLo oy} ‘SoXopul JUIIIP Jo sjuowalmbar ooeds oy smoys If

LTO ¥T 0¢ ¥9 ed L S Jed
eLTI v6'C 10°¢ 88°C 66T Yoy 'Hnp e 69°€ LyY 66T 9LT 'Hmp
STy 901 60°1 Y01 80°1 91 ng/1 €Il vel 91 60T 0071 ng/1
STIT TES 9ts TTS 'S TEL ol JINOS ustISug €96 899 '8 €¥Ss 00S ol JINOS ustISug
OVS TINd INAAV el VSS 1171 8XVSD INAN 1Z1 IZ1 mey

penunuod § Iqe],

pringer

AR

Inf Retrieval (2008) 11:359-388 383

sources.50MB english.50MB
1e-03
1e-03 |
1e-04
1e-04 |
3 3
o 1e-05 D 1605 k-
1e-06 1e-06 |
1e-07 1e-07 |
0 10 20 30 40 50 60
m
dna.50MB
1e-03
1e-02 E
1e-04 1 1e-03 E
A
o o 1e-04 | A 1
8 1e-05 3 CA-AAaaaal
1e-05 ol P PP s e
L e o O o e e
1e-06
1e-06 R e
1e-07 1e-07 + p
0 10 20 30 40 50 60
m
1e-03
1e-04 |
1e-04
1e-05 |
3 1e-05 g
(2] (2]
16-06 1e-06 |
1e-07 B 1e-07 E
0 10 20 30 40 50 60 0 10 20 30 40 50 60
m m
Lzl —— NFMI 3% LZl-1 ---m-- RL ~--@-- FMI2 &
LZI - CSAX8 - SSA --Q-- AFFMI - SAC —v—

Fig. 4 Time results for counting. These graphs shows the impact of our improvement. This can be observed
by comparing the ILZI and LZI indexes. The graphs also show the fact that LZ based indexes cannot count
in optimal time. However they do become competitive when m increases, causing occ to decrease

@ Springer

384 Inf Retrieval (2008) 11:359-388

sources.50MB english.50MB
16400 | _ ' ' ' '
1e+00
1e-01 ¢
1e-01 |
1e-02
® te02 | &
(2] (2]
1e-03
1e-03 |
1e-04
1e-04 |
1e-05 ¢
1e-05
0 0
Te+02 | 1e+00 |
1e+01
1e-01
1e+00
o O 1e-02 |
@ 1e-01 o
1e-02 1e-03 |
1e-03 ¢ 1e-04 F
1e-04 |
1e-05 ¢
1e-05
0 0
1e-01
1e-03 |
2 Q 1e-02
[2] (2]
1e-04 |
1e-03 |t
1e-05 |
0 10 20 30 40 50 60 0 10 20 30 40 50 60
m m
Lzl —+— NFMI k- LZI-1 - RL @~ FMI2 —— &
LZI —x— CSAx8 —{I SSA -0 AFFMI ——& - SAC —v—

Fig. 5 Time results for reporting

@ Springer

Inf Retrieval (2008) 11:359-388 385

sources.50MB english.50MB
. . " T . 10:04 [. . : : .
0O OO0 -0-0-O-O---
1e-04 | E
1e-05
& 1e-05 8
w (]
B
B S R R o e R S Rt | 16-06 L
1e-06
teo7b ., 107 ¢
0 10 20 30 40 50 60 0
m
dblp.xml.50MB
1e-03F -0 - 0- 0 0 - 0-0 0 -0 0 -0 9
1e-04
By oSyl 4
1e-04 E
o B T T e e SEF 3 o 1e05 |
Q A Q
® 1605 | B0 Oeg m frm s g ©
Aa A A
E A
.
16-06 | : 16-06 [
1e-07 | eor b, o,
0 0 10 20 30 40 50 60
m
pitches
1e-05 £ 1e-05 p 1
3] o o..
@ Fod B RO B 00 B B B B)
» "’ O -0 -~
1e-06 | 1e-06 F i
1e-07 i 16_07 £ 1 1 1 1 1 3
0 0 10 20 30 40 50 60
m
Lzl —+— NFMI -3 LZI-1 - RL -~ FMI2 -a
LZI -3¢ CSAX8 [SSA --O-- AFFMI -~ SAC —v—

Fig. 6 Time results for reporting factor (R). This value is obtained by subtracting the counting time and
dividing by the number of occurrences found. These graphs confirm that in fact LZ based indexes are the
fastest at reporting occurrences. These results show that this factor is comparable to that of suffix arrays,
being orders of magnitude faster than the alternatives

@ Springer

386

Inf Retrieval (2008) 11:359-388

sources.50MB

b ' ' ' ' 16-03
Ach AR A A Ak A g
1e-04 |] roos
1e-05 ¢] roos
O--OHGNO"O’O’O’O-O__O“Q._
§ 1e-06 | B¥=f: éééééég Bty By § 1606
1e-07 ¢ roor
R 1e-08
B 1e-09
0 10 20 30 40 50 60
m
dblp.xml.50MB
A A A R WS S N
1e-04 + 4 Aa AA A 1 roos
1e-05 ¢ O By ey e "v"'; 1e-05
o-8-g-g-g.-0 0-8-0-0-8-4
8 1e-06 | E 8 1e-06
? 2]
1e-07 ¢ 1e-07
1e-08 | 1608
1e-09 b - 1e-09
0 10 20 30 40 50 60
m
proteins
tfe03f ' ' ' —] 16-03
A-—--A-V-V-A-——-A»--—A-—-—-A-——-A---—A»H-A-——-A---—A-——»A
1e-04 |] 18-04
1e-05 |] 16-05
8 O 1e-06
Q 1e-06 | 8
1e-07
1e-07 ¢
1e-08
1e-08 |
1e-09
1e-09 |)) . . .]
0 10 20 30 40 50 60
m
Lzl —— NFMI - LZI-1 -
LZl —X— CSAx8 [SSA -0

Fig. 7 Time results for outputting factor (O). These results

compressed indexes at outputting

@ Springer

english.50MB

VNN PSS S SEE S

AheAe

m
dna.50MB

0

m

pitches
Ak A A A A
] Caa’ 4
/

] i
i V

RL @
AFFMI & SAC —v—

show that the ILZI is among the fastest

Inf Retrieval (2008) 11:359-388 387

based files. The LZ-based indexes had more stable performance and are among the fastest
for all samples. The suffix arrays are around two orders of magnitude faster than the
compressed indexes, most likely due to cache effects

7 Conclusions

This paper presents two fundamental observations on LZ78 based compressed indexes. The
first one is that the tree (7 73) build with the reverse blocks of the LZ78 parsing is a suffix
tree. This structure was first presented by Kirkkdinen and Ukkonen (1996a), but this
version required 7 to be present and since it was based in LZ77, it was not necessarily a
suffix tree. In the work presented by Navarro (2004) the structure is called RevTrie, but its
suffix tree nature is not explored and, in fact, reading an edge-label requires O(m?). In the
work presented by Ferragina and Manzini (2005) it appears as an FM-Index of Tg. They
present a proof that its space requirements can be related to the entropy of the text 7, in a
different way from us. Moreover, its suffix tree structure is also not explored. This
observation is fundamental for our approach since it allows us to compute a descend and
suffix walk instead of having to search for all the substrings of P. The second observation is
about the way the same string appears in the LZ78 parsing. A string S may appear in O(m)
different ways as the concatenation of LZ78 blocks. This, in turn, forces algorithms based
on the LZ78 parsing to have quadratic behavior. We solve this problem by discarding the
original parsing and using a maximal parsing. In the maximal parsing, a string S appears in
at most one way as the concatenation of blocks. Navarro uses the original LZ78 parsing.
Ferragina and Manzini discard the parsing and solve the problem by using an FM-index,
i.e. resorting to the Burrows-Wheeler transformation.

Our index is a significant contribution to LZ-based compressed indexes. We improved
the counting time performance of LZ-based indexes to linear time on m. At the same
time, the structure we propose is smaller than LZI, for all the files we tested. In practice,
with the terms we obtained in Table 4, we can choose an ¢ to make the index smaller than
4uH; + o(ulog o). In fact it can be seen in Table 4 that our implementation of the ILZI is
always smaller than the LZI. However a new version of the LZ-index proposed by
Arroyuelo et al. (2006) requires only (2 + &)uH, + o(ulog o) with worst case guarantees.
Without worst case guarantees it requires (1 + &)uH; + o(ulog o) bits and it has om®
average search time for m > 2log, u. It is interesting to notice that Arroyuelo et al.
independently explored the suffix tree structure of 7 73 to reduce the time to read an edge-
label to O(m). We cannot achieve the reduced space requirements of Arroyuelo et al.
essentially because we are storing more structures. In fact, as a second contribution of this
paper, we pointed out a possible representation of suffix trees (Lemma 3). This repre-
sentation is not very competitive when compared to the compressed suffix trees presented
by Sadakane (in press). Nevertheless, it is adequate for our goals. For suffix trees, in
general, it requires more space than the representation of Sadakane. In fact, the problem is
the space required to store R and R, (1 +¢en log n bits. Arroyuelo et al. (2006) showed
how to reduce the space requirements of R. However, even with such an improvement, it is
still not comparable to Sadakane’s approach in terms of space. We expect further work
based on this approach to produce a competitive representation.

Acknowledgments We are deeply grateful to Gonzalo Navarro for several reasons: organizing the
Workshop on Compression, Text, and Algorithms at DCC in November of 2005, that motivated stimulating
discussions on compressed indexes; providing prototypes together with Kunihiko Sadakane, Rodrigo

@ Springer

388 Inf Retrieval (2008) 11:359-388

Gonzalez, Paolo Ferragina, Giovanni Manzini, Rossano Venturini, Veli Mékinen; creating the Pizza&Chili
Corpus together with Ferragina; for suggestions and corrections along with Diego Arroyuelo and several
anonymous reviewers. We would like to thank Luis Coelho for countless discussions about our this index.
This work was supported by the Portuguese Science and Technology Foundation by grant SFRH/BD/12101/
2003 in project POCI 2010 and Project BIOGRID POSI/SRI1/47778/2002.

References

Arroyuelo, D., Navarro, G., & Sadakane, K. (2006). Reducing the space requirement of LZ-index. In
Proceedings of CPM, volume 4009 of Lecture Notes in Computer Science, pp. 318-329.

Benoit, D., Demaine, E. D., Munro, J. I., Raman, R., Raman, V., & Rao, S. S. (2005). Representing trees of
higher degree. Algorithmica, 43(4), 275-292.

Chazelle, B. (1988). A functional approach to data structures and its use in multidimensional searching.
SIAM Journal of Computing, 17(3), 427-462.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms (2nd ed.).
McGraw.

Ferragina, P., & Manzini, G. (2005). Indexing compressed text. Journal of ACM, 52(4), 552-581.

Ferragina, P., Manzini, G., Mékinen, V., & Navarro, G. (2007). Compressed representations of sequences
and full-text indexes. ACM Transactions on Algorithms (TALG), 3(2), article 20

Geary, R. F., Raman, R., & Raman, V. (2004) Succinct ordinal trees with level-ancestor queries. In
Proceedings of SODA, pp. 1-10.

Grabowski, S., Navarro, G., Przywarski, R., Salinger, A., & Mikinen, V. (2006). A simple alphabet-
independent fm-index. International Journal of Foundation of Computer Science, 17(6), 1365-1384.

Grossi, R., Gupta, A., & Vitter, J. S. (2003). High-order entropy-compressed text indexes. In Proceedings of
SODA, pp. 841-850.

Grossi, R., & Vitter, J. S. (2005). Compressed suffix arrays and suffix trees with applications to text indexing
and string matching. SIAM Journal of Computing, 35(2), 378-407.

Gusfield, D. (1999). Algorithms on strings, trees, and sequences. Cambridge University Press.

Jacobson, G. (1989). Space-efficient static trees and graphs. In Proceedings of FOCS, pp. 549-554.

Karkkdinen, J., & Ukkonen, E. (1996a). Lempel-Ziv parsing and sublinear-size index structures for string
matching. In Proceedings of the 3rd South American Workshop on String Processing, pp. 141-155.

Karkkéinen, J., & Ukkonen, E. (1996b). Sparse suffix trees. In Proceedings of COCOON, volume 1090 of
Lecture Notes in Computer Science, pp. 219-230.

Kosaraju, S. R., & Manzini, G. (1999). Compression of low entropy strings with Lempel-Ziv algorithms.
SIAM Journal of Computing, 29(3), 893-911.

Manzini, G. (2001). An analysis of the Burrows-Wheeler transform. Journal of ACM, 48(3), 407-430.

Munro, J. I. (1996). Tables. In Proceedings of FSTTCS 1996, volume 1180 of LNCS, pp. 37-42.

Munro, J. I., & Raman, V. (2001). Succinct representation of balanced parentheses and static trees. SIAM
Journal of Computing, 31(3), 762-776.

Munro, J. I., Raman, R., Raman, V., & Rao, S. S. (2003). Succinct representations of permutations. In
Proceedings of ICALP, volume 2719 of LNCS, pp. 345-356.

Navarro, G. (2004). Indexing text using the Ziv—Lempel trie. Journal of Discrete Algorithms, 2(1), 87-114.

Navarro, G., & Ferragina, P., http://pizzachili.dcc.uchile.cl/.

Navarro, G., & Mikinen, V. (2007). Compressed full-text indexes. ACM Computing Surveys, 39(1):article 2.

Pagh, R. (1999). Low redundancy in static dictionaries with o(1) worst case lookup time. In Proceedings of
ICALP, volume 1644 of Lecture Notes in Computer Science, pp. 595-604.

Raman, R., Raman, V., & Rao, S. S. (2002). Succinct indexable dictionaries with applications to encoding k-
ary trees and multisets. In Proceedings of SODA, pp. 233-242.

Russo, L. M. S., & Oliveira, A. L. (2006). A compressed self-index using a Ziv—Lempel dictionary. In
Proceedings of SPIRE, volume 4209 of Lecture Notes in Computer Science, pp. 163—180.

Sadakane, K. (2003). New text indexing functionalities of the compressed suffix arrays. Journal of Algo-
rithms, 48(2), 294-313.

Sadakane, K. (2007). Compressed suffix trees with full functionality. Theory of Computing Systems, 41(4),
589-607

Sadakane, K., & Grossi, R. (2006). Squeezing succinct data structures into entropy bounds. In Proceedings
of SODA, pp. 1230-1239.

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5), 530-536.

@ Springer

http://pizzachili.dcc.uchile.cl/

	A compressed self-index using a Ziv-Lempel dictionary
	Abstract
	Introduction and related work
	Basic concepts and notation
	Descend and suffix walk

	Succinct data structures
	Succinct suffix trees
	Wavelet trees

	A full-text index using suffix tree dictionaries
	Generic inverted index
	Occurrences lying inside a single block
	Occurrences spanning more than a single block

	A compressed self-index based on LZ78 dictionaries
	Space and time complexity

	Practical issues and testing
	Practical considerations
	Experimental results

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

