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Abstract A compressed full-text self-index for a text T, of size u, is a data structure used

to search for patterns P, of size m, in T, that requires reduced space, i.e. space that depends

on the empirical entropy (Hk or H0) of T, and is, furthermore, able to reproduce any

substring of T. In this paper we present a new compressed self-index able to locate the

occurrences of P in O((m + occ)log u) time, where occ is the number of occurrences. The

fundamental improvement over previous LZ78 based indexes is the reduction of the search

time dependency on m from O(m2) to O(m). To achieve this result we point out the main

obstacle to linear time algorithms based on LZ78 data compression and expose and explore

the nature of a recurrent structure in LZ-indexes, the T 78 suffix tree. We show that our

method is very competitive in practice by comparing it against other state of the art

compressed indexes.

Keywords Pattern matching � Text indexing � Data compression � Compressed index

1 Introduction and related work

The exact matching problem consists in searching for a short sequence P (the pattern) in a

longer sequence T (the text). Naive and linear time solutions for this problem can be found

in undergraduate computer science textbooks (Cormen et al. 2001). This problem has

outgrown its initial motivation, text editing subroutines. Text databases storing large

amounts of information such as pitch sequences, DNA or protein sequences, large natural

texts, program code, etc., need fast pattern matching algorithms. With the increasing

amount of digital information available, on-line approaches to the problem are no longer

viable. The study of index data structures, that are able to reduce the time it takes to locate

the occurrences of P, has been the focus of the string processing community for several
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years. Classical indexes, however, have a tendency to be space intensive. This constitutes a

severe problem, since not being able to store indexes in main memory limits their usage.

In recent years a new and extremely successful approach to this problem has emerged.

Compressed full-text indexes, which use data compression techniques to produce data

structures that are less space demanding have been proposed by several researchers

(Ferragina and Manzini 2005; Grossi and Vitter 2005: Kärkkäinen and Ukkonen 1996a;

Navarro 2004; Sadakane 2003). Compressed indexes consist of a careful combination of

text compression and succinct data structures with indexing data structures. Navarro and

Mäkinen presented a comprehensive survey on compressed full-text indexes (Navarro and

Mäkinen 2007).

A text compression technique is a way to encode the text in a format that requires less

space than that of the original raw sequence and that still represents the original text. By

representation we mean that we can consult any part of the original text, even if this

implies that first we decompress the whole string. The idea is that an index based on the

compressed format may also require less space. In fact, it turns out that data compression

algorithms explore the internal structure of a string much in the same way that indexes do.

It should be clear that we wish to recover exactly the original text, i.e. we are interested

only in ‘‘lossless’’ data compression methods. Text compression therefore provides a trade-

off between the size necessary to store the text and the time it takes to consult a part of the

text. This trade-off might be advantageous for storing a text or for transmitting it, such as

over the Internet, from secondary memory to main memory or from main memory to

cache. Storing compressed files saves storage space. Transmitting compressed files saves

time when the overall time to encode, transmit and decode the file is smaller than the time

to transmit the original text. Therefore applications such as gzip or bzip2 became popular

for compressing and decompressing texts.

Text compression cannot compress a string by an arbitrary amount. In fact a simple

argument proves that even if we had enough computational power available, it is not

possible to compress every text by 1 bit. A lower bound on how much a string generated by

a given source can be compressed was given by Shannon. In Shannon’s theory different

strings are grouped together into ergodic sources. Observe that for every text, individually,

it is possible to find a program that outputs it. To avoid this pathological solution we can

use Kolmogorov complexity which considers the size of the program that generates the

string as part of the complexity of the string. The fundamental problem with Kolmogorov

complexity is that it is not computable. In this work we use a more pragmatic approach.

We do not wish to make any assumptions on how the text was generated. Moreover we are

not so much interested in how much a text can be compressed in theory as we are in how

much it can be compressed by a class of ‘‘good’’ compressors. We will use the notion of

kth order empirical entropy Hk(T) given by Manzini (2001). The kth order empirical
entropy gives a lower bound on the best compression ratio that can be applied to T, if, when

compressing a character of T, we consider only the context of the k characters that precede

it in T. Obviously the larger the context we consider, the better the compression should be,

i.e. 0 B Hk(T) B_B H0(T) B log r (where by log we mean log2). Therefore the size of

the compressed text will range from uHk(T) to uH0(T) depending on the compressor we

use. Moreover, empirical entropy provides a measure of the complexity of T taken as a

finite object. This is opposed to the classical notion of entropy by Shannon. State of the art

compressed indexes consider T as finite and organize it globally. In a way, our contribution

is to organize globally Ziv–Lempel compressed indexes that were only locally organized.

A succinct data structure representation of a data structure is a compact representation

of it. Trees are a recurrent data structure in computer science and, in particular, play a
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central role in full-text indexing theory. It is therefore natural to consider succinct repre-

sentations of trees. Clearly the less space we need to represent a tree, the less space our

indexes will require. Jacobson (1989) was the first to study succinct data structures, such as

trees and bitmaps (strings of 1’s and 0’s). Trees are commonly implemented with pointers

which may not be the most space efficient way to store them. A tree, can, for example, be

represented as a string of left and right parentheses. This representation does not support by

itself common operations efficiently, such as moving to a father node or to a child node, but

it does represent the tree. Therefore, a tree with n nodes can be represented with 2n bits.

The work presented by Jacobson showed how to simulate tree traversals efficiently using

only o(n) extra bits. Clearly this kind of results is relevant for producing smaller full-text
indexes.

The fundamental tools supporting these kinds of data structures are the RANK and SELECT

operations over bitmaps. The RANK operation counts the number of 1’s up to a given

position in the bitmap. The SELECT operation returns the location of the ith 1 in the bitmap.

Jacobson showed how to compute RANK in constant time, with only o(n) extra bits. Later

on, Munro (1996) obtained constant-time solutions for SELECT, with o(n) extra bits. The set

of operations provided by succinct trees has been successively enlarged and improved by

several researchers; including Munro and Raman (2001), Benoit and Demaine (2005) and

Geary et al. (2004). The RANK and SELECT operations also proved to be useful for repre-

senting permutations (Munro et al. 2003). Trees and permutations play a central role in

full-text indexing theory. Hence, this kind of results account for a significant part of the

success of compressed indexes.

Producing compressed indexes lead to new discoveries about full-text indexes. A sur-

prising such discovery was self-indexing. Basically it turned out that with a negligible

amount of information, it is possible to make full-text indexes capable of reproducing any

substring of T without storing T explicitly. Another important discovery is backward

searching, which is the operating principle behind the FM-Index (Ferragina and Manzini

2005).

Compressed suffix arrays (Grossi and Vitter 2005; Sadakane 2003) and the FM-index

(Ferragina and Manzini 2005) are the main trends of compressed indexes. This is partially

due to the fact that LZ-indexes (Ferragina and Manzini 2005; Kärkkäinen and Ukkonen

1996a; Navarro 2004) require a considerable amount of time to determine the number of

occurrences of P in T, denoted by occ. In fact, the index of Kärkkäinen and Ukkonen

(1996a), which was not a self-index, required O(m2 + (m + occ)log u) time and Navarro’s

(2004) index required O((m3log r) + (m + occ)log u) which was recently improved to

O((m2log m) + (m + occ)log u) by Arroyuelo et al. (2006). It can be seen that in all these

approaches the dependency on m is at least O(m2). The only LZ based index that was able

to achieve O(m) time was presented by Ferragina and Manzini (2005). However, this index

requires a considerable amount of space, OðuHkðTÞlog�uÞ þ oðuÞ bits, ignoring the

dependency on r. In fact, the index presented by Ferragina et al. has not been imple-

mented. The structure we propose is very similar to the one given by Ferragina et al. In fact

we use essentially the same structures they do. However the operations permitted and the

representation used are new. If they used the same range data structure we use, their

structure would not have a log�u dependency on the space complexity. However, since

their approach is heavily dependent on the FM-Index, it may lead to alphabet related

problems, i.e. large hidden r dependencies. This problem, however, has been recently

addressed (Ferragina et al. 2004; Grabowski et al. 2006) and is, therefore, solvable.

Nevertheless our approach is simpler and alphabet independent.
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The Ziv–Lempel algorithm is a dictionary based compression method. In essence, the

idea is that, given T, the algorithm infers a suitable dictionary and encodes T accordingly.

The problem with compressed indexes based on this approach is that the encoding of T is

not suitable for pattern matching. In fact the dictionary generated by the Ziv–Lempel

algorithm is dynamically updated at the same time that T is processed. This means that the

same string may be encoded in several different ways, since the dictionary changes from

one occurrence, of the string, to another. This results in an undesirable encoding. The

solution to this problem forces us to destroy the on-line property of the Ziv–Lempel

algorithm. Our algorithm runs in two phases: in the first one we use the LZ78 algorithm to

infer a dictionary; in the second one we organize T in an off-line way, using the inferred

dictionary.

We start our exposition with some basic concepts and a general description of our index,

based on generic dictionaries. Afterwards, we show how to use the information from the

LZ78 algorithm to produce a suitable dictionary and prove that we obtain a compressed

full-text self-index. Next we describe some of the practical decisions that were taken to

implement our algorithm. Finally, we show some experimental results and conclusions.

2 Basic concepts and notation

For basic concepts related to strings and suffix trees we refer the reader to one of the many

good references available, e.g. Gusfield (1999). We use the following conventions: strings

are sequences of letters from the alphabet R, of size r, and start at index position 0;

prefixes, substrings and suffixes are denoted respectively as S[..i], S[i..j], S[j..]; a set C is

suffix/prefix if any suffix/prefix of an element of C is also an element of C; m is the size of

the pattern string P, u is the size of the text string T and occ is the number of occurrences of

P in T. By suffix tree we refer to a generalized suffix tree. The terminator symbols are not

considered as part of the edge-labels. The suffix trie is the uncompressed version of the

suffix tree, i.e. it contains a node between any two letters in a label. A point is a node in the

suffix trie. We refer indifferently to points in a suffix tree and to their path-labels. SDEP(p)

is the string depth of point p. FATHER(v) is the father node of node v. SUFFIXLINK(v) is the

node pointed by the suffix link of node v. LETTER(v, i) equals v[i], i.e. the ith letter of the

path-label of node v. DESCEND?(p, c) is true iff it is possible to descend from point p with c
and DESCEND(p, c) returns the resulting point. In a suffix tree the first letters of every edge

are referred to as branching letters. By DFS(v) we refer to the depth-first time-stamp

(Cormen et al. 2001) of a node v in a suffix tree and by DFS’(p) to the depth-first time-

stamp of a point p in a suffix trie.

Definition 1 The range I(p) of a point p of a suffix tree T is the interval of the DFS’

values of the points that are descendants of p.

As a running example consider T = cbdbddcbababa and T as the suffix tree in Fig. 1

(top-right). In our example DFS(c) is undefined, DFS(cb) = 5, DFS’(c) = 5, DFS’(cb) = 6 and

I(c) = [5, 8]. Table 1 presents the main symbols used throughout this paper.

2.1 Descend and suffix walk

Descend and suffix walks are classical algorithms over suffix trees but since they constitute

an important component of our method we will briefly explain them here.
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An element that is responsible for the flexibility of suffix trees is the suffix link. The

suffix-link of a node v of a suffix tree is a pointer to node v[1..], denoted by SUFFIXLINK(v).

We define in an artificial way SUFFIX_LINK(ROOT) as a node that descends to the root by

every letter including terminator symbols. Several suffix tree algorithms use suffix links.

One such algorithm is a greedy traversal of the tree, greedy in the sense that the algorithm

traverses the tree trying to maximize the string depth at all times. Suppose we are given

pattern P and a suffix tree T . A greedy traversal of P in T consists in trying to read a string

P by starting from the root and descending as much as possible. When it is impossible to

descend any further, we follow suffix-links until descending becomes possible again.

Definition 2 The descend and suffix walk of a string P over a suffix tree T is the sequence

p0…p2m of points of T computed by Algorithm 1, i.e. the sequence of values taken by the

variable point.

It is important to notice that Algorithm 1 starts by appending to P a new terminator

character $0 that fails to match with any other character. The following lemma explains

0 1 2 3 4 5 6 7 8 9
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Fig. 1 (top-right) Suffix tree for strings {a, b, ba, bd, cba, cbd, d}. Suffix link from cb to b shown by a
dashed arrow. Nodes show their DFS value in T . (top-left) Reverse tree of the suffix tree on the right. Nodes
show their DFS value in T R. The R mapping is shown and R(3) is indicated by a bold arrow. (bottom-left)
Sparse suffix tree of T, nodes show their DfsST values. Weak descent WðRooTST ; 2

0Þ shown in bold
rectangle. (bottom-right) Linking points over spaces supported by DFS’ and DfsST values. Orthogonal range
query [5*, 5*]:[5, 8]
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why, for each value of i, the point values at line 5 correspond to the largest suffix of

P[..i - 1] that is a point in T .

Lemma 1 (For Invariant) Before any execution of line 5 of Algorithm 1, it is always true
that for any j0\ j we have that P[j0..i - 1] is not a point in T .

Proof First it should be obvious that, except in line 10, point = P[j..i - 1], since the

SUFFIXLINK(resp. DESCEND) and j++ (resp. i++) instructions are consecutive.

The lemma is proved by induction on i. The base is trivial. We assume that before

line 7 is executed if j0\ j then P[j0..i] is not a point in T . Our result follows immediately

from this property by observing that the point and i are updated before reaching line 5

again.

The previous property can be proved by induction on the number of times the while

loop ran on an iteration of the for loop. The base follows from the induction hypotheses

of the lemma, by observing that, since T is suffix closed, if point P[j0..i - 1] is not in T ,

neither is point P[j0..i]. Finally assume that the while’s guard is true, i.e. NOT DES-

CEND?(P[j..i - 1], P[i]). Therefore P[j..i] is not a point in T . Hence if j0\ j + 1 then

P[j0..i] is also not a point in T . (

This lemma shows that the value of the point in line 6 is left maximal, i.e. no P[j0..i - 1]

with j0\ j is a point of the suffix tree. Likewise the points in line 8 are right maximal, since

Table 1 Main symbols used

Symbol Meaning

T Text string

u Original length of text string in characters, i.e. |T|

P Pattern string

m Length of pattern string in characters, i.e. |P|

R Alphabet for P and T

r Alphabet size, r = |R|

occ, occ1,
occ[1

Number of occurrences of the pattern in the text, inside a block and spanning more than one
block respectively

occ0 Occurrences determined by an orthogonal range query

Hk kth order entropy of a text character

i, j Counters in the Descend and Suffix Walk algorithm or generic indexes

Zi Ziv–Lempel block

n Number of LZ78 blocks of the text

e Either the empty string or a small positive real number

T 78 Ziv–Lempel suffix tree, dictionary

d, t Number of nodes/points in the Ziv–Lempel suffix tree,

t The tree depth in the FOR variant

ST 78 Ziv–Lempel sparse suffix tree

d0 Number of nodes in the Ziv–Lempel sparse suffix tree

T 78ðTÞ T 78-maximal parsing

f Size of the T 78-maximal parsing

R Reverse mapping between trees

V Descend and Suffix walk variant and block bitmap
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the while’s guard has just evaluated true. This gives a way to classify the points that were

reached by the descend and suffix walk.

Definition 3 The left and right traces of a string P over a suffix tree T are the

sub-sequences of the descend and suffix walk given respectively by lines 6 and 8 of

Algorithm 1.

By father_right[i] (resp. father_left[i]), we refer to the lowest ancestor of trace_r-
ight[i] (resp. trace_left[i]) that is a node of T and by child_right[i] (resp. child_left[i]), to

the highest descendant of trace_right[i] (resp. trace_left[i]) that is a node of T . Table 2

(top) shows the descend and suffix walk of cbdbddc in T .

We will now explain why Algorithm 1 runs in O(m) time. First it should be clear that

Algorithm 1 does terminate.

Theorem 1 Expression V(i) = 3m - i - 2j - t is a variant of the for loop, where t is
the tree depth of the point. Therefore Algorithm 1 terminates.

Proof Suppose that V(i) B 0. Since t B i - j, then 3m-2i - j B 3m - i - 2j - t.
Since j B i, then 3m - 3i B 3m - 2i - j. Therefore 3m - 3i B 0, hence m B i and the

for cycle terminates.

Except for instruction 10, it should be evident that DV = V(i + 1) - V(i) \ 0 for any i,
since j is non-decreasing and i is strictly increasing for each iteration of the FOR loop. The

problem with the SUFFIX_LINK operation is that it may cause t to decrease. However t can

decrease at most by 1. The factor 2 associated with j compensates this effect. Therefore in

every iteration of the while cycle DV \ 0. (

For now we assume that the operations DESCEND and DESCEND? are computed in constant

time and later give a more realistic analysis. The problem of analyzing the time of

Algorithm 1 is that operation SUFFIXLINK is computed for points, not just nodes, and

therefore does not necessarily run in constant time.

Lemma 2 (Skip/count trick) The SUFFIX_LINK function runs in O(Dt + 2)time, where Dt
is the variation of tree depth.

Algorithm 1 Descend and Suffix
Walk Algorithm

1: procedure DESCEND & SUFFIX P

2: P P:$0

3: j / 0

4: point / ROOT

5: for i / 0, i \ |P|, i++ do

6: trace_left[i] / point

7: while NOT DESCEND?(point, P[i]) do

8: trace_right[j] / point

9: j++

10: point / SUFFIXLINK(point)

11: end while

12: point / DESCEND(point, P[i])

13: end for

14: End procedure
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Proof Computing the SUFFIX_LINK for the nodes of T can be done in O(1) by storing the

suffix-links in T . For a point, the idea is to first use the suffix link of its father node and

then descend until the string depth is equal to the string depth of the original point less 1. In

order to descend, it is not necessary to read the complete edge labels. The reason is that

P[j + 1..i - 1] must be a point in T since P[j..i - 1] is. Therefore we only need to check

the branching letters of the nodes we find along the way. Hence, we conclude that this

procedure can be computed in O(Dt + 2) time. (

Observe that -DV counts all the operations executed in an iteration of the for loop,

including the time to compute SUFFIX_LINK. Therefore Algorithm 1 runs in O(V(0)) = O(m)

time.

3 Succinct data structures

By bitmap B we refer to a string over {0,1} of length |B|. Fundamental tools to produce

succinct data structures are the RANK and SELECT operations over bitmaps. The operation

RANK(B, i) counts the number of 1’s in B[..i - 1] and SELECT(B, i) returns the smallest j
such that RANK(B, j + 1) = i, i.e. the position of the ith 1. For the example bitmap in Fig. 2,

we have that RANK(B, 3) = 2 and SELECT(B, 2) = 1. Munro (1996) showed how to support

these operations in O(1) time and |B| + o(|B|) bits. Succinct data structures can also be

combined with data compression techniques when B is compressible, solutions that require

|B|H0(B) + o(|B|) bits may be more adequate. This line of work was initiated by Pagh

(1999) and extended by Raman et al. (2002).

Table 2 (Top) Descend and suffix walk of cbdbddc in T : (Bottom) Values for locating type [1
occurrences

i 0 1 2 3 4 5 6 7

P[i] c b d b d d c $’

trace_left[i] e c cb cbd b bd d c

DFS’(father_left[i]) 0 0 6 8 2 4 9 0

DFS’(trace_left[i]) 0 5 6 8 2 4 9 5

DFS’(child_left[i]) 0 6 6 8 2 4 9 6

trace_right[i] cbd bd d bd d d c e

DFS’(father_right[i]) 8 4 9 4 9 9 0 0

DFS’(trace_right[i]) 8 4 9 4 9 9 5 0

I(trace_right[i]) [8, 8] [4, 4] [9, 9] [4, 4] [9, 9] [9, 9] [5, 8] [0, 9]

DFS’(child_right[i]) 8 4 9 4 9 9 6 0

P[i..] cbd.bd.d.c bd.bd.d.c d.bd.d.c bd.d.c d.d.c d.c c e

tail(P[i..]) c c c c c c c e

H(P[i..]) 748 448 848 48 88 8 e e

R(H(P[i..])) 607080 udef udef 6070 6060 60 e e

|father_left[i]| == i FALSE TRUE TRUE FALSE FALSE FALSE FALSE

W(R(H(P[i..])),
R(father_left[i]))

[ [5*,
5*]

[ [ [ [

I(tail(P[i..])) [5, 8] [5, 8] [5, 8] [5, 8] [5, 8] [5, 8] [0, 9]

occ’ 0 1 0 0 0 0
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3.1 Succinct suffix trees

Since our approach is based on suffix trees, we need an adequate succinct representation

for them. We have already mentioned that trees can be represented as a sequence of

parentheses, i.e. can be represented as a bitmap. For example the bitmap in Fig. 2

represents the suffix tree T in Fig. 1 (top-right). For example, the node with DFS value 2

is represented by the parentheses at positions 3 and 8 of B. The DFS value can be

obtained from B as RANK(B, 3) + B[3] - 1 = 2 + 1 - 1 = 2. This is the computation

performed by the LEFTRANK operation, i.e. LEFTRANK corresponds to DFS. The RIGHT-

RANK(v) corresponds to the largest DFS value among the descendants of v. This operation

can be computed as RANK(B, 8) + B[8] - 1 = 5 + 0 - 1 = 4. This is consistent with

Fig. 1, where the node with DFS value 4 is the last descendant of the node with DFS

value 2.

The RANK and SELECT operations also proved useful for representing permutations.

Munro et al. (2003) showed how to represent a permutation of d elements and its inverse in

(1 + e)dlog d + o(d) bits, where e is constant and 0 \ e B 1. An element of the permu-

tation can be computed in O(1) and an element of the inverse in O(1/e).
Geary et al. (2004) presented a succinct representation of ordinal d-node trees in

2d + o(d) bits, supporting, among others, the following operations in constant time:

– ANC(v, j) returns the jth ancestor of node v (for example ANC(v, 1) is FATHER(v));

– LEFTRANK(v) returns DFS(v);

– RIGHTRANK(v) returns the largest DFS value among the descendants of v;

– SELECT(j) returns the node with DFS time j;
– CHILD(v, j) returns the jth child of node v;

– DEG(v) returns the number of children of node v;

– DEPTH(v) returns the tree depth of node v.

Definition 4 The reverse tree T R of a suffix tree T is the minimal labeled tree that, for

every node v of T , contains a node vR, where vR denotes the reverse string of v.

The tree T R is shown in Fig. 1 (top-left). Observe for example that, since cbd is a node

of T , there is a node cbdR = dbc in T R. We define a canonical mapping R that, for every

node v in T , maps DFS(v) to DFS(vR) (see Fig. 1). We will use R(v) to denote RðDfsðvÞÞ.
Note that since the nodes of T form a suffix closed set, the nodes of T R form a prefix

closed set.

We assume that the tree structure of T and T R are stored using the previous repre-

sentation. Arroyuelo et al. (2006) proposed a way to represent the R mapping. Since R is a

permutation, R and R-1 can be stored using the representation of Munro et al. (2003) in

(1 + e)dlog d + o(d) bits, where e is fixed and 0 \ e B 1. This way R and R-1 can be

computed in O(1) and O(1/e) time respectively.

Lemma 3 A suffix tree T with d nodes can be stored in (1 + e)d(log d) + 5d + o(d)

bits. Let p be a point, c a letter and v a node of T . This representation provides the
operations given by Geary et al. in O(1) time. Moreover it provides SDEP(v) in O(1) time,

Fig. 2 Sample bitmap that
represents the suffix tree T in
Fig. 1 (top-right)
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SUFFIX_LINK(v), LETTER(v, i), in O(1/e) time and DESCEND?(p, c), DESCEND(p, c) in O((log r)/

e) time.

Proof According to our notation R(v) represents SelectT RðRðLeftRankðvÞÞÞ. Observe

that SDEP(v) can be computed as DepthT RðSelectT RðRðLeftRankðvÞÞÞÞ which can be rep-

resented as DepthT RðRðvÞÞ, since T R is prefix closed. The operation SUFFIX_LINK(v) is

computed as R�1ðFatherT RðRðvÞÞÞ. Observe that v[0] represents the letter just below the

root. For example cbd[0] = c. We define a bitmap D to compute v[0], in a way similar to

Sadakane (2003). We have that D[0] = 1 and, for i [ 0, D[i] = 0 iff DFS(v) = i, DFS(v0)
= i + 1 and v[0] = v0[0]. In our example D = 11001001. We can compute v[0], when v is

not the ROOT, in O(1) as the letter in position Rank1ðD;DfsðvÞÞ of R. This requires d + o(d)

bits. The operation Letterðv; iÞ can be computed from R�1ðAncT RðRðvÞ; iÞÞ. This

expression represents following enough suffix links to make the letter we want appear just

below the root, i.e. Letterðv; iÞ ¼ R�1ðAncT RðRðvÞ; iÞ½0�. When p is not a node, DES-

CEND?(p, c) can be computed in O(1/e) time by consulting LETTER for the point below p. If p
is a node, we do a binary search among the children of p. If we find a child that starts with

c, we return true. Procedure DESCEND(p, c) updates the value of p. When p is a point, this is

done in O(1) time. When p is a node, we first proceed as in DESCEND?. (

Finally observe that with this representation we cannot compute DFS’(v). The DFS’

values are essential to our algorithm because they serve as a supporting space for range

queries. This result can be obtained with a compressed bitmap.

Lemma 4 For a suffix tree T with t points and 2n nodes, operations Dfs’ðpÞ and I(p) can
be computed in O(1) time using tH0 + O(t log log t/ log t) extra bits, where H0 is the
empirical entropy of a bitmap with (t - 2n) ones and 2n zeros.

Proof Consider the bitmap that for every point of T stores 1 if the corresponding point is a

node and 0 if it is not a node. The bitmap is sorted in DFS’ order. Using the compressed

representation of Raman et al. (2002) this bitmap can be stored in tH0 + O(t log log t/ log t)
bits supporting Select1 in O(1) time. Observe that for a node v we have that

Dfs’ðvÞ ¼ Select1ðDfsðvÞÞ.
For a point p, Dfs’ðpÞ is computed as Dfs’ðvÞ � SdepðvÞ þ SdepðpÞ, where v is the highest

node that is a descendant of p1. Also IðpÞ ¼ ½Dfs’ðpÞ;Dfs’ðSelectðRightRankðvÞÞÞ�.
(

3.2 Wavelet trees

Wavelet trees are a recurrent succinct data structure. They were proposed by Grossi et al.

(2003) as a structure for supporting RANK and SELECT for sequences over an alphabet larger

than 2. They were also proposed by Chazelle (1988) for performing orthogonal range

queries. Obviously the algorithms over the structure are different. However, both use RANK

and SELECT over bitmaps. This description of the structure given by Chazelle was pointed

out by Navarro and Mäkinen (2007).

Consider for example the sequence 0, 3, 3, 7, 9, 4. The wavelet tree of this sequence is

shown in Fig. 3. The wavelet tree is a perfect binary tree of height dlog re. Each node

stores a sub-sequence of the original sequence. The root stores the whole sequence.

Starting from the most significant bit, the left node stores the sub-sequence for which this

bit is 0, the right node stores the sub-sequence for which this bit is 1. In our example the

1 Note that we assume that v is part of the representation of p.
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left sub-sequence is 0, 3, 3, 7, 4 and the right sub-sequence is 9. This process continues

until all bits have been used. To descend from one node to a child node we use the RANK

operation. For the left node we use RANK0 and for the right node RANK1. In our example we

can track the element 4 by computing Rank0ð5Þ ¼ 4 at the root node. Note that element 4

is in position 4 of the left child of the root. Obviously moving upwards uses the inverse

procedure, i.e. the Select0 operation. Every leaf of the wavelet tree represents a type of

element in the sequence. Moving from the root to a leaf allows us to compute rank for the

element associated with the leaf. Conversely, moving from a leaf to the root allows us to

compute SELECT for that element.

The tree structure is only conceptual. In fact the only information that is stored are the

bitmaps highlighted in Fig. 3. Further RANK and SELECT operations can be used to delimit

the bits that correspond to a given node of the tree.

The wavelet tree can also be used to compute orthogonal range queries. Consider a grid

[1, f] 9 [1, f] with f points inside. An orthogonal range query consists in determining the

points inside a rectangle (see Fig. 1). Provided that the points are all distinct in the first

coordinate they can stored in a wavelet tree, by building a list of the second coordinate

values ordered by the first coordinate. In the example of Fig. 1 the resulting sequence is 0,

3, 3, 7, 9, 4. This requires flog f (1 + o(1)) bits. In fact it is easy to extend the space of the

second coordinate, i.e. extend the space to [1, f] 9 [1, f0]. This will require flog f0

(1 + o(1)) bits instead. To compute a range query [i, i0] 9 [j, j0] we start by locating the

range [i, i0] at the root of the wavelet tree. When we descend we track the elements i and i0.
The idea is to track every path that is contained in the [j, j0] range. Obviously we can avoid

descending by nodes for which the corresponding range [i, i0] is empty. Therefore

whenever a leaf is reached an occurrence is found, i.e. it takes O((1 + occ0)log f0) time to

report occ0 occurrences. A simpler procedure can be used to count the number of occur-

rences in range [i, i0] 9 [j, j0]. The procedure consists in descending by j and j0, the total of

occurrences associated with the non-shared part of these paths gives the number of

occurrences. This takes O(log f0) time.

30 3 7 9 4

0

0

0

0

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

0

1

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

1

1

1

0

1

0

0

0

1

0

0

1

1

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

0

1

0

0

1

1

0

0

1

0 1

0

0

0

0

0

0

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

1

0

0

1

0 1 0 1

0

0

0

0

0 1 0

0

0

1

1

0

0

1

1

1

0

1

0

0

0 1 0

0

1

1

1

1 0

1

0

0

1

1 0 1 0 1 0 1

Fig. 3 Wavelet tree for sequence 0, 3, 3, 7, 9, 4.
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The ranges we are going to use are obtained from other structures in our index, and, in

particular, from suffix trees.

4 A full-text index using suffix tree dictionaries

In this section, we explain the main contribution of this paper. Our data structure is very

similar to an inverted file. We will use this similarity to provide insight into the

algorithm.

4.1 Generic inverted index

Throughout Sect. 3, we assume that we are given an arbitrary suffix tree T with d nodes,

that we will use as a dictionary. We consider as dictionary words the path-labels of the

nodes of T . The first thing we should do is to organize T according to our dictionary T ,

much like what is done in inverted files when given a lexicon.

Definition 5 The T -maximal parsing of string T is the sequence of nodes v1,…, vf, whose

concatenated path-labels compose T, i.e. T = v1…vf, and for every j, vj is the largest prefix

of vj…vf that is a node of T .

We assume that T is appropriate for T, i.e. that it is possible to parse T in a maximal

way. In our example, the T -maximal parsing of a string T is the sequence

cbd,bd,d,cba,ba,ba. We refer to the elements of the T -maximal parsing of T as blocks.

Note that the strings in the dictionary appear in the T -maximal parsing. We denominate

them as words when referring to the dictionary and as blocks when referring to the

T -maximal parsing. We will store the T -maximal parsing of T in compact form as a string

of numbered blocks.

Definition 6 The translation V(v1,…,vf) of a sequence v1,…,vf of nodes is the string

DFS(v1)…DFS(vf).

We denote by T ðTÞ the translation of the T -maximal parsing of T. Since the

T -maximal parsing of T is the sequence cbd,bd,d,cba,ba,ba, its translation is the string

T ðTÞ ¼ 748633. Note that word ba is associated with two blocks, v5 and v6.

Inverted files usually store a list of occurrences for every word of the dictionary. To play

this role we will use a stronger indexing structure, a sparse suffix tree. For reasons that will

become clear in Sect. 5 we must reverse the string T ðTÞ. This is achieved by extending the

canonical mapping R to sequences in the following way: R(v1…vf) = R(vf)…R(v1). In our

example RðT ðTÞÞ ¼ Rð748633Þ ¼ Rð3ÞRð3ÞRð6ÞRð8ÞRð4ÞRð7Þ ¼ 202030607080. This corre-

sponds to the notion of reverse string, because the concatenation of the path-labels of

RðT ðTÞÞ in T R is ab.ab.abc.d.db.dbc = TR.

Definition 7 The sparse suffix tree2 ST of a string T and a suffix tree T is the suffix tree

of RðT ðTÞÞ.

The sparse suffix tree of our example is shown in Fig. 1 (bottom-left). We can descend

in the sparse suffix tree in the usual way with DescendST . However, since T R provides the

alphabet for ST , we can also take that into consideration when descending.

2 Similar to a concept defined by Kärkkäinen and Ukkonen (1996b).
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Definition 8 The weak descent W(p, vR) for a point p in ST and a node vR in T R is the

interval of DfsST values of the nodes below the following points: fp:DfsT Rðv0Þj
v0 is a descendant of vR in T Rg

Note that by p:DfsT Rðv0Þ we are referring to the points whose path labels result from

concatenating the letter DfsT Rðv0Þ with the path-label of point p.

For example, WðRootST ; 2
0Þ ¼ ½1�; 4��, since this contains the DfsST values for the

nodes below 20, 30 in ST (see Fig. 1). This can be computed in O((log d)/e) time. We

perform two binary searches in the children of p, searching for LeftRankT RðvÞ and

RightRankT RðvÞ. Then Wðp; vRÞ ¼ ½LeftRankST ðv00Þ;RightRankST ðv000Þ�, where v00 and v000

are the nodes found by the binary searches.

In order to find occurrences of strings across more than one block, we will need to store

the relations across contiguous blocks. This motivates the following two definitions.

Definition 9 The head, tail of the T -maximal parsing are respectively sequence v1,…,vi

and string vi+1…vf such that v1,…,vi is the smallest sequence for which vi+1…vf is a point

in T .

We denote by H(T) the translation of the head of the T -maximal parsing of T. The head

of the T -maximal parsing of T is cbd,bd,d,cba,ba and the tail is the string ba. Hence H(T)

equals 74863. It may seem that tail is always just vf. Consider a modification TM of tree

T were node cbd is replaced by cbde and nodes bde, de, e are added to complete the suffix

tree. Note that cbd is not a node of T M, as it is only a point. The string, bcbd is parsed as

b.cb.d and the tail is cb.d and, therefore, it is not just the last block.

Next we define a set of points relating the leaves of ST with the points in T .

Definition 10 The linking points set of the T -maximal parsing v1…vf of T is the

following set:

L ¼ hDfsðRðVðv1. . .viÞÞÞ;Dfs’ðpiÞi j
pi is the largest prefix of viþ1. . .vf

that is a point in T ; for 0 \ i � f

� �

The set L is shown in Fig. 1 (bottom-right) and consists of the following points:

– hDfsðRðVðcbd; bd; d; cba; ba; baÞÞÞ;Dfs’ð�Þi ¼ hDfsð202030607080Þ; 0i ¼ h2�; 0i
– hDfsðRðVðcbd; bd; d; cba; baÞÞÞ;Dfs’ðbaÞi ¼ hDfsð2030607080Þ; 3i ¼ h3�; 3i
– hDfsðRðVðcbd; bd; d; cbaÞÞÞ;Dfs’ðbaÞi ¼ hDfsð30607080Þ; 3i ¼ h4�; 3i
– hDfsðRðVðcbd; bd; dÞÞÞ;Dfs’ðcbaÞi ¼ hDfsð607080Þ; 7i ¼ h5�; 7i
– hDfsðRðVðcbd; bdÞÞÞ;Dfs’ðdÞi ¼ hDfsð7080Þ; 9i ¼ h6�; 9i
– hDfsðRðVðcbdÞÞÞ;Dfs’ðbdÞi ¼ hDfsð80Þ; 4i ¼ h7�; 4i

To compute orthogonal range queries we use the wavelet tree as described. As referred,

this structure requires flog f 0 (1 + o(1)) bits and can compute orthogonal range queries

in the space [1, f] 9 [1, f 0] in O((1 + occ0)log f 0) time. We need to store points in the

[0, d0 - 1] 9 [0, t - 1] space, where d0 is the number of nodes of ST . We only need to

store f points. Therefore we must reduce the support space to the rank space. The space

[0, d0 - 1] can be reduced to [1, f] in O(1) time, with RANK over a bitmap of d0 + o(d0)
bits. The second reduction is obtained by setting f 0 to t and, therefore, time to report

occurrences is O((1 + occ0)log t).
We propose an index data structure composed of the dictionary T , the sparse suffix tree

ST and the linking points L. We will now explain how to use this index to solve the exact
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matching problem. Our search algorithm proceeds differently depending on whether the

pattern is completely contained inside a block or spans more than one block. We refer to

this as type 1 and type [ 1 occurrences.

4.2 Occurrences lying inside a single block

The algorithm for finding occurrences inside a single block starts by identifying all the

words in the dictionary T that contain P as a substring. Since T is a suffix tree, it is

possible to achieve this in a simple way.

– Descend by P in T . If this is impossible then there are no type 1 occurrences of P.

– Start a depth-first traversal of the sub-tree below P.

– For each node v reached compute the range query WðRootST ;RðvÞÞ : ½0; t�.
The search in T consists in considering words that start with P and appending some

letters. The weak descend and the range query consist in prepending some letters to the

words found on the search in T . For example, consider P = b. By reading b, we reach node

2 of T (see Fig. 1). The search on T returns nodes 2, 3, 4, hence it leads us to consider

words b, ba, bd. This originates the following weak descends: WðRootST ; 4
0Þ ¼ ;,

WðRootST ; 2
0Þ ¼ ½1�; 4��, WðRootST ; 7

0Þ ¼ ½6�; 7��. We do not need to consider words

that start with b, since they do not correspond to blocks; there may be occurrences of ba or

cba because of ba; there may be occurrences of bd and cbd because of bd. The range

queries return no occurrences for b, occurrences 2*, 3* and 4* for ba and occurrences 6*

and 7* for bd. This corresponds to occurrences cbd:bd:d:cba:ba:ba, cbd:bd:d:cba:ba:ba,

cbd:bd:d:cba:ba:ba for ba and occurrences cbd:bd:d:cba:ba:ba, cbd:bd:d:cba:ba:ba,

for bd.

Theorem 2 The above procedure is correct and complete.

Proof (Correct) Clearly every reported block is a.P.b for some a, b and hence it contains

an occurrence of P. (Complete) Suppose block vi = a.P.b. Hence a.P.b is a node in T .

Since T is a suffix tree, P.b is also a node in T . Node P.b is reached by the search in T ,

since it starts by P. Every node v of ST for which v½0� ¼ Dfsðða:P:bÞRÞ has its DfsST time

in WðRootST ; ðP:bÞRÞ. Hence block vi is found in the range query. (

This algorithm was essentially presented by Navarro (2004), except for the fact that

the range queries were computed as depth-first searches in a trie similar to T R. In

Navarro’s algorithm, each node of that trie stored one block. Therefore the time of these

searches was bounded by the number of type 1 occurrences of P, denoted by occ1. We do

not have a direct correspondence between the nodes of T R and the blocks of T -maximal

parsing, which means that this approach has no worst case guarantees. In essence, the

problem is that we may be executing more range queries than the number of occurrences

found.

Definition 11 A spurious entry for string T in the suffix tree T is a leaf v of T such that

vR is a leaf of T R and v is not a block in the T -maximal parsing of T.

For a dictionary T without spurious entries, we can guarantee that some orthogonal

range queries must return occurrences.

Lemma 5 Assuming T has no spurious entries for T and v is a leaf of T , then the query
WðRootST ; v

RÞ : ½0; t� returns at least one linking point.

372 Inf Retrieval (2008) 11:359–388

123



Proof There is some a such that (a.v)R is a leaf in T R. Since T is a suffix tree and v is a

leaf of T , then a.v is also a leaf of T . Hence, at least one linking point will be found by

WðRootST ; v
RÞ : ½0; t�, since DfsST ðða:vÞRÞ 2 WðRootST ; v

RÞ. (

Spurious entries may be safely removed from the dictionary. Removing spurious entries

can be done by considering T and T R as a DAG, a node w in the DAG represents

simultaneously v and vR; there is an edge from w to w0 if that edge exists in T or in T R. To

remove spurious entries we perform a DFS over this DAG. We remove nodes that do not

have blocks and are sinks or unary and the edge comes from T . The nodes are checked and

removed in their finishing time (see Cormen et al. 2001 for definitions). This procedure

runs in O(d) time. Note that the resulting structure remains a suffix tree.

4.3 Occurrences spanning more than a single block

In this section we focus on finding occurrences that span two or more consecutive blocks,

i.e. type [ 1. The ideas presented in this section are similar to those of Kärkkäinen and

Ukkonen (1996b) and related with the approach proposed by Ferragina and Manzini

(2005).

We are now faced with the problem of retrieving the words in our dictionary that appear

concatenated in T ðTÞ and have P as a substring. Suppose that P = cbdbddc and that we

split P in two as cbdbdd and c. We will now search for c in T and for cbdbdd in ST . The

point c in T induces the range I(c) = [5, 8]; on the other hand, string cbdbdd is parsed into

cbd,bd,b and hence will be translated into 748. To search on the sparse suffix tree, we need

R(748) = 607080. This will induce the range [5*, 5*]. Finally, to solve our problem we

perform the orthogonal range query [5*, 5*]:[5, 8] over the linking points L. This corre-

sponds to the question: is the string cbdbdd, parsed as cbd.bd.d, ever followed by a block

that starts by c? The answer is yes, since there is a linking point in [5*, 5*]:[5, 8]. This

point corresponds to cbd:bd:d:cba:ba:ba.

Observe that in this procedure we are using one suffix tree ðT Þ in the usual way, to

search the text from right to left, and another suffix tree ðST Þ to search the text in the

opposite direction. Thus we are able to search for P by starting the search from the middle

of the pattern. We ‘‘cross’’ the results, by using orthogonal range queries, to obtain the

occurrences of P.

We will now explain how to determine in which points to break P. The pattern should

be separated in the head and tail of P[i..], for every 0 \ i \ m, to account for every

possible translation that can occur. These points can be located using the following

dynamic programming equations:

tailðP½i::�Þ ¼ trace right½i�; if jtrace right½i�j ¼ m� i
tailðP½iþ jfather right½i�j::�Þ; otherwise

�
ð1Þ

HðP½i::�Þ ¼ �; if jtrace right½i�j ¼ m� i
father right½i�:HðP½iþ jfather right½i�j::�Þ; otherwise

�

We use Algorithm 2 to locate points R(H(P[i..])) in ST . We can use a similar procedure

to compute tail(P[i..]). Whenever it is not possible to descend by a letter, the DescendST
procedure returns the udef state. See Table 2 (bottom) for an example of this computation.

Assume that the descend and suffix walk of P is already computed. Hence, the arguments

of DescendST are available when DescendST is executed. Therefore, Algorithm 2 runs in
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O((m/e)log d) time, since it runs m times the DescendST operation, which requires O((log

d)/e) time.

Notice the importance of using the T -maximal parsing of T, instead of the original

LZ78 parsing. By using a maximal parsing we have the guarantee that the notion of head is

well defined. This means that to every P[i..] we associate at most one point R(H(P[i..])) in

ST . If we were using the original LZ78 parsing there could be O(m) points in ST that

corresponded to a given suffix P[i..]. Locating all those points would raise the overall

complexity to O(m2).

Having located tail(P[i..]) in T and R(H(P[i..])) in ST , we know where to break the

pattern. Now, all that we need are the ranges for the range query. The range for T is simply

I(tail(P[i..])). Whenever P[..i - 1]R is a node of T R, the range for ST is W(R(H(P[i..])),
P[..i - 1]R).

Let us consider, for example, the case of i = 3. We have that H(P[3..]) = 48 and

R(H(P[3..])) = 6070. Hence W(6070, (cbd)R) = [5*, 5*], since 80 is the only descendant of

itself in T R. This means that, when we are extending bd.d to the left by prepending a word

from our dictionary that terminates in cbd, the only such word is cbd. Therefore, we end up

considering only the node cbd.bd.d.

Our algorithm for finding type [ 1 occurrences of P proceeds as follows:

– Compute the descend and suffix walk of P in T .

– Compute tail(P[i..]) from the descend and suffix walk of P.

– Locate the R(H(P[i..])) points in ST (see Algorithm 2).

– If |father_left[i]| = i then P[..i - 1]R = R(father_left[i]),
compute W(R(H(P[i..])), R(father_left[i])).

– Compute I(tail(P[i..])) from tail(P[i..]) (see Lemma 4 and Eq. 1).

– Compute the orthogonal range queries W(R(H(P[i..])), R(father_left[i])):I(tail(P[i..])).

An example of our algorithm is shown in Table 2 (bottom). The only range query that

finds occurrences (occ’) is the [5*, 5*]:[5, 8] query, as we have explained in this section.

Theorem 3 This procedure is correct and complete.

Proof (Correct) Algorithm 2 locates points R(H(P[i..])) points in ST . These points

correspond to substrings P[i..j] of P. The weak descents extend this substrings into prefixes

P[..j]. Then tail(P[i..]) gives the corresponding suffix P[j + 1..]. The orthogonal range

query ‘‘crosses’’ these information and returns positions where the string P[..j] is followed

by P[j + 1..]. Hence P occurs in these positions. (Complete) Suppose that P occurs in T
= v1…vf in the blocks vj.vj+1…. Hence there is some i such that P[i..] is a prefix of vj+1…vf

and P = father_left[i].P[i..] (see Algorithm 1 and Definition 5). The strings corresponding

Algorithm 2 Locate R(H(P[i..])) Algorithm

1: procedure Locate_HPI

2: for i / m - 1, 0 \ i do

3: RðHðP½i::�ÞÞ  RootST

4: if |trace_right[i]| \ m - i then

5: RðHðP½i::�ÞÞ DescendST ðRðHðP½iþ jfather right½i�j::�ÞÞ; father right½i�Þ
6: end if

7: end for

8: end procedure
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to father_left[i] and head of P[i..] are contained in the range W(R(H(P[i..])), R(father_-

left[i])) and the strings corresponding to tail(P[i..]) in the range I(tail(P[i..])). Therefore, P
is found by the orthogonal range query. (

5 A compressed self-index based on LZ78 dictionaries

We found it interesting to present this work in a general form, since it seems relevant to

explore other techniques for inferring dictionaries, given a text T. We will now give a

concrete instantiation of the above algorithm, using the Ziv–Lempel 78 algorithm (Ziv and

Lempel 1978).

Definition 12 The LZ78 parsing of a string T is the sequence Z1,…,Zn of strings such that

T = Z1…Zn and for every i, Zi = Zjc where Zj is the largest prefix of Zi…Zn among the

Z1,…,Zi-1.

The strings Z1…Zn are referred to as blocks. Given a string T, we proceed as follows:

compute the LZ78 parsing of TR = Z1…Zn, then consider the suffix tree for strings

{Z1
R,…,Zn

R} as our dictionary, denoted by T 78. In our example TR is parsed into

a,b,ab,abc,d,db,dbc and the resulting dictionary can be seen in Fig. 1 (top-right). The

following lemmas expose why the dictionary we propose is adequate in terms of space.

Lemma 6 If the number of blocks of the LZ78 parsing of T is n then T 78 has at most 2n
nodes, i.e. d B 2n.

Proof Observe that every suffix of a Zi
R is a Zj

R for some j. Therefore the set {Z1
R,…,Zn

R} is

suffix closed. Hence a suffix tree based on {Z1
R,…,Zn

R} will have at most 2n nodes. (

Lemma 7 If the number of blocks of the LZ78 parsing of T is n then the T 78-maximal
parsing of T has at most n blocks, i.e. f B n.

Proof The idea is to show that if a block vi of the T 78-maximal parsing is a substring of

some Zj
R then it is a suffix. Suppose that vi is a substring of Zj

R. We have that Zj
R = a.vi.b.

Since the dictionary is a suffix tree and Zj
R is a node, vi b is also a node and hence a

dictionary word. Since the parsing is maximal, we have that vi.b = vi, i.e. that vi is a suffix

of Zj
R. (

5.1 Space and time complexity

With the previous results we will now determine the space and time complexity of our

algorithm using an LZ78 dictionary.

Lemma 8 The Dfs’78 operation can be supported over T 78 in O(1) time with o(ulog r)

bits.

Proof This result is obtained from Lemma 4. Observe that t, the number of points of T 78;
can be at most u. Moreover the largest value of uH0 can be at most 2 u/logr u since the

number of 1’s in the bitmap is at most 2n and Ziv and Lempel (1978) showed that n B (u/

log u)log r. A few calculations show that the space occupied by this bitmap is at most 2

ulog r(log log u/log u) + o(ulog log u/log u) bit, which is o(ulog r). (
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We will refer to the index that uses LZ78 dictionaries as the Inverted-LZ-Index. The

next theorem gives an overview of the space/time complexity of this structure. A previous

version of this result (Russo and Oliveira 2006), required more space.

Theorem 4 Let d and d0 be the number of nodes of T 78 and ST 78 respectively. Let t be
the number of points of T 78. Let f be the size of the T 78-maximal parsing of T. The space/
time trade-off of the Inverted-LZ-Index can be summarized as follows:

Space in bits
h

d
n ð1þ �Þ þ d0

n ð1þ �Þ þ
f
n

i
uHk þ oðulog rÞ

B(5 + 4e)Hk + o(ulog r)

Time to count O((occ + m/e)log n)

Time to locate free after counting

Time to display l chars O(l/e), improvable to O(l/(elogr u)) with u extra bits

Conditions k = o(logr u), r = O(n), 0 \ e B 1, e is constant

Proof (Space) The space requirements come from adding up the space of T 78, ST 78 and

the range data structure. The T 78 suffix tree requires at most (1 + e)dlog d + 5d + o(d),

according to Lemma 3. Moreover, to support Dfs’78 we need o(ulog r) extra bits. The

ST 78 sparse suffix tree requires (1 + e)d0log d0 + 5d0 + o(d0) bits, according to Lemmas

3. The range data structure (wavelet tree) requires another flog f (1 + o(1)) bits. The

dominant factors are the ones associated with log u. According to Lemmas 6 and 7 these

are the factors of log d, log d0 and log f. Hence the overall log factor is

d(1 + e) + d0(1 + e) + f. Ziv and Lempel (1978) showed that
ffiffiffi
u
p
� n� u=logr u, and,

therefore n = o(ulog r), which means that all remaining requirements are o(ulog r). The

relation between n and Hk was established by Kosaraju and Manzini (1999) who showed

that nlog u = uHk + o(ulog r) for k = o(logr u). Therefore, the expression in the theorem

accounts for the space requirements of the ILZI.

(Count/Locate) We have already seen that Algorithm 1 runs in O((m/e)log r) time. The

time to find occurrences of type 1 is O((1 + occ1)log n). Observe that the number of

queries computed is less than or equal to twice the number of leaves below P. By Lemma 5

we know that the queries at the leaves must return occurrences. Therefore the total time

amortizes to O((1 + occ1)log n). The time to find occurrences of type [ 1 is the time of

Algorithm 2, plus m weak descents and m range queries. Therefore the total time for

occurrences of type[ 1 is O((occ[1 + m/e)log n), where occ[1 is the number of type[ 1

occurrences.

(Display) Observe that even though we do not store RðT 78ðTÞÞ explicitly, we have O(1/e)
access time to it. The idea is to store a pointer to the leaf of ST 78 with path-label RðT 78ðTÞÞ,
denoted by FirstLeafST . Therefore RðT 78ðTÞÞ½i� ¼ LetterSTðFirstLeafST ; iÞ. Hence, we

can compute the jth letter of RðT 78ðTÞÞ½i� as LetterðLetterSTðFirstLeafST ; iÞ; jÞ, in O(1/e)
time. To achieve optimal Oðl=ð�logr uÞÞ time we use an approach based on the work of

Sadakane and Grossi (2006), similar to Arroyuelo et al. (2006). We define a new bitmap D0,
similar to bitmap D, used to retrieve the first log u bits of a node v instead of the first letter.

This requires d + o(d) bits. We also need a bitmap Q that indicates which sequences of log

u/2 bits do appear as the first bits of some v. By (i)2 we denote the binary representation of i,
with log u/2 bits. The Q bitmap is defined as Q[i] = 1 iff (i)2 is the prefix of some (v)2 padded

with zeros. Bitmap Q contains 2log u=2 ¼
ffiffiffi
u
p

bits and can therefore be stored in o(u) bits.

With these bitmaps we are able to retrieve log u/2 bits from a block in O(1) time,
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i.e. logr u/2 letters. We repeat these bitmaps for ST 78 and hence are able to retrieve log u/2

bits from consecutive blocks. Finally we need another bitmap to be able to skip blocks. We

use a bitmap V that marks the beginnings of the blocks in RðT 78ðTÞÞ. This requires u + o(u)

bits. As pointed out by Arroyuelo et al. (2006), this bitmap can be used to report the

occurrences of P as positions in T instead of as a block and an offset. (

The worst-case of the space expression is (5 + 4e)Hk + o(ulog r). However the worst

example we were able to find, based on De Bruijn cycles, yielded (4 + 3e)Hk + o(ulog r)

bits. In the next section we show concrete values for the space expression.

Finally note that the bound by Kosaraju and Manzini (1999) concerns Hk(T) not Hk(T
R).

This makes little difference. In theory Ferragina and Manzini (2005) showed that

uHk(T) - O(log u) B uHk(T
R) B uHk(T) + O(log u). In practice, Hk(T) and Hk(T

R) can

also be shown to be similar. Moreover, we can switch the roles of T and TR in our approach

and search for PR instead of P. In fact our prototype works precisely in this way. However

we believe this would have made the exposition more complex and it would make it harder

to point out the importance of the T R
78 suffix tree.

6 Practical issues and testing

6.1 Practical considerations

We implemented a prototype to test these ideas. Navarro (2004) pointed out that, by using

a naive search instead of the range data structure, it was possible to build a smaller index

that was faster in practice. The naive way to compute an orthogonal range query is to

choose the smallest range and, for each point of that range, check whether the point

belongs to the other range. Suppose, for example, we wish to compute the range query

WðRootST ; 2
0Þ ¼ ½1�; 4�� : ½0; 9� ¼ ½0; t � 1�. First, observe that, when we refer to the

smallest range, we are referring to the range in the [1, f] 9 [1, f] grid not in the

[0, d0 - 1] 9 [0, t - 1] space. Therefore we reduce the [1*, 4*]:[0, 9] query to the [1p*,

3p*]:[1p, 6p] query. Obviously, the smallest range is [1p*, 3p*]. Since, for this particular

query, the second range covers the whole space, the result is [1p*, 3p*], which corresponds

to {2*, 3*, 4*}. We have already seen that this type of queries is used for type 1 occur-

rences. Therefore, using this method, the time to compute the range queries for type 1

occurrences is O(occ1). For type [ 1 occurrences this procedure has no worst case guar-

antees. However, in practice, this is acceptable and more efficient. Therefore we did not

implement the range data structure and we used this approach instead. This immediately

removes our capability of reducing [0, t - 1] to [1, f], which means that we cannot use

points of T to support the linking points. This means that there is no reason to use a

compressed bitmap to support the DFS’ operation for points that are not nodes, as described

in Lemma 4. Instead we store hDfsðRðVðv1. . .viÞÞÞ;Dfsðviþ1Þi when i \ f and

hDfsðRðVðv1. . .viÞÞÞ; 0Þi when i = f, since vi+1 is the largest prefix of vi+1 …vf that is a

node in T . Observe that the linking points in our example actually coincide exactly with

this definition, (see Fig. 1 bottom-right). To find the linking points associated with a node v
of T , we find the leaves below point R(v) in ST . Moreover, to decide which range is

smaller, we estimate the number of points in I0(v) as the number of points in

WðRootST ;RðvÞÞ. In Navarro’s approach, occurrences of type [ 1 are further distin-

guished between type 2 and type[ 2. Navarro did not use dynamic programming, because

it is possible to guarantee that there are not too many occurrences of type [ 2. Type [ 2
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occurrences span more than two blocks. The fundamental argument is that, since the LZ78-

blocks are all distinct, a given Zi occurs in at most one position. Therefore the P[i..j]
substrings of P occur in at most O(m2) positions. Hence there cannot be more than O(m2)

type [ 2 occurrences of P in the LZ78 parsing of T. For T ðTÞ no such result exists.

However, even though a word v may correspond to more than one block of T ðTÞ, in

average it does not correspond to many. Therefore we do not use dynamic programming

either. Instead, we use different procedures for type 2 and type [ 2 occurrences.

There is not a very compelling reason to store ST 78 as a suffix tree when not using

dynamic programming. Inverted files store a list of occurrences for every dictionary

word. These lists are usually ordered by the position in T of the occurrences of the

words. This regularity is usually explored, for example, with delta coding, to store these

lists in compressed form. This property is also important when searching for patterns

because, since the type [ 1 search scans the text sequentially, it provides better cache

performance. Our implementation of ST 78 is similar to a sparse suffix array, i.e. a suffix

array for RðT ðTÞÞ. However, the suffixes of RðT ðTÞÞ are only sorted by the first block.

Suffixes that start with the same block are ordered by position in RðT ðTÞÞ, just like in

inverted files.

A very important aspect of our prototype is that the implementation of T 78 differs

considerably from the succinct representation we presented. The fundamental reason for

this fact is that the succinct implementation would suffer from poor cache performance.

Instead we opted for a more cache aware implementation. The T 78 tree is implemented in

a pointer like fashion. Every node is stored in a memory cell indexed by its breath-first

time-stamp. For example, node cb will be stored in cell 3. The LETTER operation is

replaced by a HEAD pointer, that, for every node v with father node v[..i - 1], points to

node v[i..]. This information suffices to read edge-labels, by using suffix links. Every node

v stores a CHILD pointer, its DFS time, a suffix link, the string depth, the HEAD pointer and

pointers indicating WðRootST 78
; vRÞ over T 78. This provides better cache performance in

several points. First, we store the information in the nodes and the topological structure of

the tree together. Second, there is no need to traverse back and forth from T 78 to T R
78 to

read edge-labels or compute suffix links. Third, the BFS ordering avoids some cache faults

in branching. Clearly, implementing T 78 this way requires more space than the succinct

implementation. This constitutes a severe problem. In order to solve it, we infer a smaller

dictionary, i.e. a T 78 tree with less nodes. In practice, we use the following variation of the

LZ78 parsing:

Definition 13 The LZ78 parsing with quorum l of a string T is the sequence Z1,…,Zn of

strings such that T = Z1… Zn and, for every i, Zi = Zjc where c is a letter and Zj is the

largest prefix of Zi…Zn that appears at least l + 1 times among the Z1,…,Zi-1.

Clearly the LZ78 parsing with quorum 0 corresponds to the usual notion of LZ78

parsing. In practice a quorum of 2 compensates for the space requirements of T 78 without

affecting performance too much. Table 3 shows the size of the ILZI for different quorum

values. Variable i represents the size of different indexes, in bits. Therefore i/223 is the size

in megabytes, i/8u is the ratio with respect to the size of the original string and i/uHk is the

ratio with respect to the size of the compressed string. Our results show that increasing the

quorum value significantly reduces the space requirements of the ILZI while degrading the

time performance only slightly. Observe that with a quorum of 2 our index has acceptable

space requirements, in practice. Our results also show the ILZI has acceptable space

requirements in theory. For example the results show that for the xml file the practical

value is 2.65uHk bits and the theoretical value is (2.49 + 1.62e)uHk + o(ulog r) bits.
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6.2 Experimental results

We compared our implementation the Inverted-Lempel–Ziv-Index (ILZI), against the

implementations provided in the Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl/).3 As

texts, we used the files in the Pizza&Chili corpus, with approximately 50 Megabytes each.

The indexes were parametrized to occupy approximately the same space whenever pos-

sible. The indexes used were the following: Raw is the raw string, ILZI is the inverted-

Lempel–Ziv-index using the algorithm described in this paper, LZI Navarro’s LZ-index,

LZI-1 is the improvement of the LZI by Arroyuelo et al., NFMI is an implementation of

the FM-index by Navarro, CSAx8 is Sadakane’s compressed suffix array, SSA is the

succinct suffix array, RL is the run-length FM-index, AFFMI is the alphabet friendly FM-

index, FMI2 is the second version of the FM-index and SAC is the suffix array in

uncompressed form, packed in bits. We omitted the compressed compact suffix array,

because it was not competitive. We also omitted the suffix array packed in words because it

was very similar to SAC.

In Table 4 we show the space requirements of different compressed indexes for the

sample files. The par line gives the parameters used for indexes that require it. The

parameters were chosen so that the resulting index occupied approximately the same size as

the ILZI. However, some minimal values were used for performance reasons. For the

CSArray we give the D value, for CSAx8 we have that L = 8 9 D. Figures 4–7 show the time

performance of different compressed indexes. The performance of compressed indexes can

be described as H(m.C + occ.R + out.O), where out is the number of letters that we wish to

display, C is the counting factor, R is the reporting factor and O is the outputting factor. For

some compressed indexes it is possible to run the indexes in counting mode and the resulting

time is H(m.C). However for Lempel–Ziv indexes this is not possible, and our index runs in

H(m.C + occ.R) even for counting, albeit with a smaller R constant. We determined the

factors and overall query time for all the indexes. We show the results for different values of

m in Figs. 4–7. To obtain these results we ran tests of 60 seconds each with a minimal

number of 5 repetitions. For counting, this means that we tested from 6 9 104 to 6 9 108

patterns. For reporting, we tested from 5 to 6 9 106 patterns and each pattern had at least one

occurrence. For outputting, we displayed 60 characters per occurrence.

The fact that LZ-based indexes cannot operate in counting mode can be observed

empirically since the time of these indexes is not constant in the time to count graphs. As

expected, when m increases occ decreases and the time also decreases. Eventually, the

overall time becomes competitive with other compressed indexes. For most examples this

happens when m is around 20. The counting graphs also show that reducing the depen-

dency on m from O(m2) to O(m) had significant impact in the query time. This makes our

index up to an order of magnitude faster than LZI and LZI-1 for counting when m is large.

On the contrary, for small patterns (m = 5) it is up to 2.6 times slower than LZI and up to

four orders of magnitude slower than the other compressed indexes.

On the other hand LZ-based indexes are extremely fast at reporting occurrences. In fact

they are the only self-indexes using O(uHk) bits able to spend O(log n) time per occurrence

in practice. This is also visible in the graphs since the reporting factor of LZ-based indexes

is around an order of magnitude smaller than that of other compressed indexes.

The displaying time per character is not a very decisive factor to tell indexes apart since

all of them are very fast. The FM-index performed extremely well on natural language

3 Tested on Pentium 4, 3.2GHz, 1MB of L2, 1GB of RAM, with Fedora Core 3, compiled with
gcc� 3:4� O9.
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Fig. 4 Time results for counting. These graphs shows the impact of our improvement. This can be observed
by comparing the ILZI and LZI indexes. The graphs also show the fact that LZ based indexes cannot count
in optimal time. However they do become competitive when m increases, causing occ to decrease
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Fig. 5 Time results for reporting
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Fig. 6 Time results for reporting factor (R). This value is obtained by subtracting the counting time and
dividing by the number of occurrences found. These graphs confirm that in fact LZ based indexes are the
fastest at reporting occurrences. These results show that this factor is comparable to that of suffix arrays,
being orders of magnitude faster than the alternatives
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Fig. 7 Time results for outputting factor (O). These results show that the ILZI is among the fastest
compressed indexes at outputting
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based files. The LZ-based indexes had more stable performance and are among the fastest

for all samples. The suffix arrays are around two orders of magnitude faster than the

compressed indexes, most likely due to cache effects

7 Conclusions

This paper presents two fundamental observations on LZ78 based compressed indexes. The

first one is that the tree (T 78) build with the reverse blocks of the LZ78 parsing is a suffix

tree. This structure was first presented by Kärkkäinen and Ukkonen (1996a), but this

version required T to be present and since it was based in LZ77, it was not necessarily a

suffix tree. In the work presented by Navarro (2004) the structure is called RevTrie, but its

suffix tree nature is not explored and, in fact, reading an edge-label requires O(m2). In the

work presented by Ferragina and Manzini (2005) it appears as an FM-Index of TR
$ . They

present a proof that its space requirements can be related to the entropy of the text T, in a

different way from us. Moreover, its suffix tree structure is also not explored. This

observation is fundamental for our approach since it allows us to compute a descend and

suffix walk instead of having to search for all the substrings of P. The second observation is

about the way the same string appears in the LZ78 parsing. A string S may appear in O(m)

different ways as the concatenation of LZ78 blocks. This, in turn, forces algorithms based

on the LZ78 parsing to have quadratic behavior. We solve this problem by discarding the

original parsing and using a maximal parsing. In the maximal parsing, a string S appears in

at most one way as the concatenation of blocks. Navarro uses the original LZ78 parsing.

Ferragina and Manzini discard the parsing and solve the problem by using an FM-index,

i.e. resorting to the Burrows-Wheeler transformation.

Our index is a significant contribution to LZ-based compressed indexes. We improved

the counting time performance of LZ-based indexes to linear time on m. At the same

time, the structure we propose is smaller than LZI, for all the files we tested. In practice,

with the terms we obtained in Table 4, we can choose an e to make the index smaller than

4uHk + o(ulog r). In fact it can be seen in Table 4 that our implementation of the ILZI is

always smaller than the LZI. However a new version of the LZ-index proposed by

Arroyuelo et al. (2006) requires only (2 + e)uHk + o(ulog r) with worst case guarantees.

Without worst case guarantees it requires (1 + e)uHk + o(ulog r) bits and it has O(m2)

average search time for m C 2logr u. It is interesting to notice that Arroyuelo et al.

independently explored the suffix tree structure of T 78 to reduce the time to read an edge-

label to O(m). We cannot achieve the reduced space requirements of Arroyuelo et al.

essentially because we are storing more structures. In fact, as a second contribution of this

paper, we pointed out a possible representation of suffix trees (Lemma 3). This repre-

sentation is not very competitive when compared to the compressed suffix trees presented

by Sadakane (in press). Nevertheless, it is adequate for our goals. For suffix trees, in

general, it requires more space than the representation of Sadakane. In fact, the problem is

the space required to store R and R-1, (1 + e)n log n bits. Arroyuelo et al. (2006) showed

how to reduce the space requirements of R. However, even with such an improvement, it is

still not comparable to Sadakane’s approach in terms of space. We expect further work

based on this approach to produce a competitive representation.
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Ferragina, P., Manzini, G., Mäkinen, V., & Navarro, G. (2007). Compressed representations of sequences

and full-text indexes. ACM Transactions on Algorithms (TALG), 3(2), article 20
Geary, R. F., Raman, R., & Raman, V. (2004) Succinct ordinal trees with level-ancestor queries. In

Proceedings of SODA, pp. 1–10.
Grabowski, S., Navarro, G., Przywarski, R., Salinger, A., & Mäkinen, V. (2006). A simple alphabet-

independent fm-index. International Journal of Foundation of Computer Science, 17(6), 1365–1384.
Grossi, R., Gupta, A., & Vitter, J. S. (2003). High-order entropy-compressed text indexes. In Proceedings of

SODA, pp. 841–850.
Grossi, R., & Vitter, J. S. (2005). Compressed suffix arrays and suffix trees with applications to text indexing

and string matching. SIAM Journal of Computing, 35(2), 378–407.
Gusfield, D. (1999). Algorithms on strings, trees, and sequences. Cambridge University Press.
Jacobson, G. (1989). Space-efficient static trees and graphs. In Proceedings of FOCS, pp. 549–554.
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