
Information Retrieval, 8, 481–504, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Analysis of Statistical Question Classification
for Fact-Based Questions

DONALD METZLER
W. BRUCE CROFT
University of Massachusetts, Amherst

Abstract. Question classification systems play an important role in question answering systems and can be used
in a wide range of other domains. The goal of question classification is to accurately assign labels to questions
based on expected answer type. Most approaches in the past have relied on matching questions against hand-crafted
rules. However, rules require laborious effort to create and often suffer from being too specific. Statistical question
classification methods overcome these issues by employing machine learning techniques. We empirically show
that a statistical approach is robust and achieves good performance on three diverse data sets with little or no
hand tuning. Furthermore, we examine the role different syntactic and semantic features have on performance. We
find that semantic features tend to increase performance more than purely syntactic features. Finally, we analyze
common causes of misclassification error and provide insight into ways they may be overcome.
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1. Introduction

1.1. Overview

Question classification is the process by which a system analyzes a question and labels
the question based on its expected answer type. For example, the question “Who was the
first Prime Minister of Canada?” expects a person’s name as an answer. Given a finite set
of possible expected answer types, known as a question ontology, the goal of a question
classification system is to learn a mapping from questions to answer types. Although this
task may sound simple, there are many factors that determine how well such systems perform
and how robust they are. This paper highlights and analyzes these factors in a statistical
machine learning framework.

We focus our attention on fact-based questions. These questions are typically pointed,
trivia-like questions where a short, factual answer is expected. Examples of such questions
are: “Where is the Orinoco River?”, “What type of currency is used in Australia?”, and “What
is the speed of light?”. Although interesting, other types of questions, such as task-oriented
questions, are not explored.

Question classification systems are primarily used as components of question answering
(QA) systems. QA is the task of retrieving answers to questions posed in natural lan-
guage from a collection of documents, where an answer is generally a short fragment
of text drawn from the corpus. QA systems are a shift away from classical document
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retrieval towards information retrieval. This saves the user valuable time by eliminat-
ing the need to search through a long ranked list of documents for an answer to their
question.

There are many kinds of QA systems, all with different underlying architectures. Al-
though each system varies in the way it produces an answer to a given question, most
systems follow a general framework (Voorhees 2001). Given a question, most systems first
analyze the question and use a question classification system to determine the most likely
expected answer type or types. Next, some form of document or passage-level retrieval
is done to retrieve candidate answers from the corpus. Finally, the named entities within
the retrieved documents/passages are tagged. This allows the system to prune possible an-
swers based on the expected answer type(s) returned by the question classification system.
For instance, if the expected answer type is most likely a person, then only those docu-
ments/passages that contain person entity tags are considered possible answers. From this
list of candidates, the system determines the best answer or list of answers to present to
the user. If the original classification of the question is incorrect there is little hope of cor-
rectly answering the question. Although question classification plays a vital role in most
QA systems, many factors influence the overall ability of a system to produce the cor-
rect answer to a given question. It has been shown that parallel improvements in question
classification accuracy, retrieval of candidate answer, named entity tagging, and answer
extraction are needed to improve the overall performance of a QA system (Ittycheriah et al.
2000).

Online digital reference services (Pomerantz et al. to appear) represent another domain
may make use of a question classification system. Here, question classification can be used
as a component of a query triage system that determines whether a question is best answered
automatically by a QA system or by a human expert based on the expected answer type.
For example, a question expecting a simple result, such as a person’s name, can be routed
to an automatic QA system, whereas a question seeking a technical definition or a detailed
explanation should likely be routed to human expert. The expected answer type may also
be used by the system to choose which human expert to route the question to.

Question classification systems can be used as parts of many other applications related
to information retrieval and natural language processing. This paper tries to give a domain
independent overview of the subject from a machine learning perspective so as to not limit
applicability to only QA systems.

1.2. Related work

One of the largest QA evaluations is the Text REtrieval Conference’s (TREC) QA track.
Over the years this forum has introduced many approaches to QA and fostered a great
deal of research in the field. Many of the systems use the general QA framework de-
scribed above and thus make use of some form of question classification. A majority
of systems use hand-crafted rules to identify expected answer types (Hull 1999, Lee et
al. 1998, Prager et al. 1999). The following are examples of such rules from (Pasca and
Harabagiu 2001):
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What {is | are} < phrase to define >?
What is the definition of < phrase to define >?
Who {is | was | are | were} < person name(s) >?

The first two rules detect definition questions and the last detects biographical questions.
These rules have the potential to be very powerful. However, they are cumbersome to
create and often do not generalize well. Hand-crafted rules that work well on a specific
set of questions may give poor results when applied to another set. Rules created for a
specific question ontology must be re-tailored before being applied to different ontologies.
In addition to TREC QA track systems, several web-based QA systems have relied on such
rules with limited success (Radev et al. 2002). Therefore, there is a need for more robust
systems that can easily be adapted to handle new data sets and question ontologies.

To overcome these problems, machine learning techniques for question classification
have been researched and successfully applied. Several systems make use of statistical
approaches. Since it is not possible to list all such systems, we briefly describe several.
Among these are IBM’s TREC-9 system (Ittycheriah et al. 2000) that utilizes maximum
entropy models (Della Pietra et al. 1997). It uses a mix of syntactic and semantic features
(see Section 5). The authors use a data set of 1,900 questions specifically created and labeled
for the task in addition to a set of 1,400 questions from a trivia database. The questions
are labeled according to the MUC categories (Chinchor and Robinson 1998). On a heldout
portion of the data, the system yields an accuracy of 90.95%.

Roth and Li developed a question classification system based on the Sparse Network
of Winnows (SNoW) architecture (Li and Roth 2002). The system also makes use of a
collection of syntactic and semantic features. The data set and question ontology they use
is discussed in detail in Section 4. The system achieves 91.00% accuracy on general, coarse
grained question types, and 84.20% on more specific, fine grained types.

Finally, Zhang and Lee’s question classification system (Zhang and Lee 2003) is based on
Support Vector Machines (SVMs) (Vapnick 1998). The system uses a tree kernel (Collins
and Duffy 2002) and simple syntactic features. It is trained and tested on the same data set
and question ontology used by Roth and Li. The system achieves 90.0% accuracy on the
coarse grained question types.

It should also be mentioned that some work has made use of natural language processing
techniques to automatically construct grammars to match question types against (Hovy et al.
2001, Nyberg et al. 2003). These systems typically make use of some underlying statistical
methods, but are susceptible to poor question type coverage. The Javelin system (Nyberg
et al. 2003) combines automatically learned parsers augmented with hand built rules to
achieve 92.00% accuracy on a test set of TREC questions. Such parser-based approaches
often perform comparably to discriminative classifiers, which is the focus of this work.

Each of these systems takes a unique statistical approach to the question classification
and achieves good results (typically above 80% accuracy) on their respective data sets.
Unfortunately, most past studies only present results for a single data set and provide very
little in the way of error analysis. Therefore, in the remainder of this paper we explore
how well statistical methods perform across several data sets. Each data set has different
characteristics, such as the expressiveness of its question ontology and its source. This
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allows for a broad empirical evaluation. We also examine the role different types of features
have on system performance. Finally, we identify factors that hinder classification accuracy
by providing an analysis and explanation of common causes of misclassification.

2. System overview

Before discussing the different issues involved with question classification, we first intro-
duce the experimental framework used throughout the remainder of the paper. Like Zhang
and Lee’s system, our system is based on SVMs (Vapnick 1998). However, the two systems
differ in a number of ways. Their system uses a single classifier, whereas we train a clas-
sifier for each unique question word. Furthermore, their system makes use of a powerful
tree kernel that requires setting two parameter values, whereas we use the simpler single
parameter radial basis function (RBF) kernel. Figure 1 provides a general overview of our
system. The remainder of this section details how question words are extracted, feature
vectors are created, SVMs are trained, and how questions are classified in our system.

2.1. Determining the question word

Given a question, our system first extracts the question word. Since we only consider simple
fact-based questions there is a somewhat limited lexicon of question words. Not surprisingly,
the most common fact-based question words are who, what, when, where, why, and how. It
is assumed that the set of question words is fixed and known a priori, although it can also be
learned automatically. However, we use a manually generated list for simplicity. Also, some
questions may not contain any of the question words in the list. A simple solution to this
problem is to clump all such questions together and define their question word as unknown.
For most fact-based questions, the question word can be extracted accurately more than
99% of the time.

Figure 1. Classification system architecture.
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This process partitions the data into sets, where each set corresponds to a unique question
word. The data is split this way because the question word implies a great deal of information
about the expected answer type. This is a form of prior knowledge that we can take advantage
of. For example, questions of the form “When is . . . ” are unlikely to expect a person’s name
as an answer. Instead, it is likely to be a time-related question. Unfortunately we are unable
to extract this type of information from every question. Questions of the form “What is
. . . ” may be associated with many expected answer types (see Table 7). Therefore, what-
questions provide virtually no prior information and leave a heavy burden on the shoulders
of the statistical classifier.

2.2. Feature extraction

After the system determines the question word it then extracts pertinent features from the
question. This step is possibly the most important part of any question classification system.
Better feature sets provide more accurate question representations and ultimately translate
into better classification performance. The extracted features are used to create a feature
vector, which is the basis for learning. Since any real-valued function from the set of possible
questions to the real numbers can be a feature, there are many possibilities to choose from.
However, a small set of syntactic and semantic features are most commonly used. Section 5
gives a thorough treatment of the many different kinds of features and the impact they have
on system performance.

2.3. Learning

The core of our statistical approach lies in the training of SVMs. We refrain from giving
details of SVMs here. For a good tutorial see (Burges 1998). As figure 1 shows, rather than
learn a single classifier with k (=number of expected answer types) classes, our system
learns n (=number of distinct question words) classifiers each with ≤k classes. It has
been our experience that a classifier of this form typically outperforms a single monolithic
classifier for this task, as it is often easier to learn several classifiers with a small number
of candidate answer types than it is to learn a single classifier with many candidate answer
types.

To train the SVM that corresponds to question word q, we use only those questions in
the training set that have q as their question word. Thus, each of the disjoint question sets
induced as a result of identifying question words is used to train a single SVM. For example,
all who questions in the original training set are used as training instances for the SVMwho

classifier that is depicted in figure 1. The same process is repeated for each question word.
Of course, a system could choose not to identify the question words and use a single

monolithic classifier. However, there are advantages to training multiple classifiers. First,
as mentioned previously, extracting the question word is a form of a priori information
that can lead to improved performance. In essence we are minimizing the chances of a
noisy classification, such as a “Who is . . . ” question being classified as a time-related
question simply because a highly “time-like” feature was extracted from the question. This
is achieved at the price of less training data per classifier. Furthermore, learning multiple
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classifiers allows us to train each classifier with different parameters, such as different
kernels and costs (Morik et al. 1999).

2.4. Classification

After the n question word specific classifiers are learned our system can be used to classify
unseen questions. The classification process is simple and closely mimics the steps followed
in learning. Given an unseen question, its question word is first extracted. Next, a feature
vector is created using the same features used for training. Finally, the SVM corresponding
to the question word is used for classification, i.e. a what question will be classified with
SVMwhat. A ranked list of expected answer types is returned based on the score generated
by the SVM. Thus, the label assigned to the question is the top ranked answer type.

2.5. Experimental setup

All experiments in this paper make use of Joachims’ SVMlight (Joachims 1998) software,
a one-versus-all approach to multi-class classification, RBF kernels for the SVM (Burges
1998), and 10-fold cross-validation for test set evaluation unless otherwise noted. The pa-
rameter for the RBF kernel (the variance) is set to a value that gave good performance in
the past on similar classification tasks. No stopword removal or stemming is performed.
Although our system makes use of SVMs, it should be noted that any multi-class statistical
method can be used. Machine learning techniques applied successfully to text classifi-
cation are particularly well suited for this task and include methods such as Naive Bayes
(McCallum and Nigam 1998), maximum entropy models (Nigam et al. 1999), and k-nearest
neighbor (Yang and Liu 1999).

This section provided a brief overview of our statistical question classification frame-
work. Not all machine learning methods are created equal. As a result, system performance
depends on the underlying learning paradigm. Regardless of this, many system-independent
issues must still be resolved, such as what question ontology and set of features to use. After
explaining how system performance is measured, we will explore these issues using the
experimental framework developed in this section.

3. Performance metrics

The most common performance metric used to evaluate question classification systems
is precision. Given a set of M questions, their actual answer types, and a ranked list of
classification scores we define precision as:

precision = 1

M

M∑

i=1

δ(ranki , 1)
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where δ is the Kronecker delta function defined by:

δ(a, b) =
{

1 if a = b

0 otherwise

and ranki is the rank of the correct answer type in the list returned by the classifier. Note,
we assume that each question has a single correct expected answer type.

A less common, but generalized version of precision is the P≤n metric. It is defined as:

P≤n = 1

M

n∑

k=1

M∑

i=1

δ(ranki , k)

The traditional definition of precision only gives credit if the correct answer type appears
first in the ranked list. The generalized version is a relaxed form of this rule. It gives credit
as long as the correct answer type is found anywhere in the top n ranked answer types. We
see that precision = P≤1, precision ≤ P≤n , and P≤n ≤ P≤n+1 for all n ≥ 1.

This metric provides useful information for QA systems that allow more than one expected
answer type to be returned by the question classifier. For example, given the question “Who
invented the instant Polaroid camera?”, our system produces the following ranked list of
question types:

person 0.82
organization −0.59
biography −1.05
nationality −1.10

As we see, the two top ranked expected answer types are person and organization.
Rather than only retrieve passages containing person entity tags as possible answers the
system can also include passages containing organization entities as potential answers
as well. In this case, it may be beneficial to include both types of entities since it is not clear
if the question is expecting a person or organization as an answer. We return to this kind of
ambiguity again in Section 6.2.

A system that makes use of the results returned by a question classifier may wish to
consider the generalized precision values. For example, in a QA system, suppose that ex-
periments show that P≤1 = 65% and P≤2 = 95% for the question classification component.
Only considering the top ranked answer type may lead to poor QA performance since there
is only a 65% chance the system will extract the correct type of answer. Also considering
the second ranked answer type may increase overall QA system performance, although the
candidate answer list will be larger and noisier. Unfortunately there is no universal rule
of thumb for choosing the best number of results to request from the classifier. A reason-
able estimate can be determined by taking into account the generalized precision, system
properties, and other requirements of the task.

Finally, the mean reciprocal rank (MRR), is a common metric used to evaluate QA
systems that can also be used to evaluate question classification systems (Voorhees and
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Tice 1999). It is calculated as:

MRR = 1

M

M∑

i=1

1

ranki

The MRR is a simple method for evaluating how well, in general, a question classification
system performs. The weight of each question’s classification is inversely proportional to
how well the question was classified. If a system achieves precision = 100%, then the
MRR = 1.0 since ranki = 1 for all i . Furthermore, if a system assigns the correct answer
type the highest score in the ranked list half of the time and assigns it the second highest
score the other half of the time, then MRR = 1

M ( M
2 · 1 + M

2 · 1
2 ) = 3

4 . We will primarily use
MRR to evaluate the overall effect different feature sets have on our system.

4. Data

There are many potential data sources for question classification. Here, a data set is defined
as a collection of questions labeled with expected answer types drawn from some question
ontology. The ontology is not specific to the questions and is typically chosen to meet the
task requirements. To validate how robust a question classification system is, experiments
must be done on a number of diverse data sets. We explore three data sets with varying
qualities. Each differs in size, source, question ontology, and underlying style. These data
sets are used throughout the remainder of the paper to empirically explore how different
factors affect classification accuracy.

4.1. TREC QA track questions

As discussed in Section 1, the TREC QA track is a large scale QA evaluation first introduced
at TREC-8 (Voorhees and Tice 1999). Each year a new set of questions is created for the
track. The questions do not come labeled with an expected answer type. Many different
groups participating in TREC have created their own question ontologies and used them to
label the TREC questions. There are no fixed guidelines for creating a question ontology.
However, since most systems perform named entity tagging on retrieved passages to find
candidate answers, it is likely that a system’s question ontology contains similar types to
those that the named entity tagger is capable of extracting. Since BBN’s IdentiFinder (Bikel
et al. 1999) named entity tagger is widely used, we chose to use BBN’s question ontology,
which consists of 31 answer types. BBN also provided us with labeled TREC-8, 9, and 10
QA track questions.

Each year the set of questions are drawn from a different source and generally have
different characteristics. The 200 TREC-8 questions were specifically created for the task.
The TREC-9 questions were extracted from Encarta and Excite logs. It consists of 500
original questions and 193 additional questions that are variants on the original set. Variants
of 54 original questions were included. An example of an original question and its variants
is Voorhees (2000):
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Original: What is the tallest mountain?
Variants: What is the world’s highest peak?

What is the highest mountain in the world?
Name the highest mountain.
What is the name of the tallest mountain in the world?

Finally, the TREC-10 questions were drawn from MSNSearch and AskJeeves search
logs (Voorhees 2001). The 1,393 TREC-8,9, and 10 questions combined form what we
refer to as the TREC QA data set. Although these represent real question, it should be noted
that NIST accessors do their best to correct spelling, punctuation, and grammatical errors.
Despite their efforts, several questions still contain such errors. Even with these errors, the
data set is far from realistic. The MadSci questions described in Section 4.3 are a more
realistic set of questions.

Table 1 lists the 31 BBN question types and gives an example of each. A question is
assigned the label other if it does not fit into one of the other 30 categories. Figure 2 shows
the distribution of each question type within the data set. The distribution is very skewed.
The four question types date, definition, gpe (geo-political entity), and person account
for approximately 57% of all questions. At the opposite end of the spectrum, facility
description and time each correspond to only a single question in the data set. Therefore,
for most statistical machine learning techniques, the less commonly occurring question types
are difficult to classify correctly due to this data sparsity.

Figure 2. Number of questions per question type for the TREC QA track data set using the BBN question
ontology.
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Table 1. BBN question ontology and a sample question for each question type.

Example question Question type

What do you call a group of geese? Animal

Who was Monet? Biography

How many types of lemurs are there? Cardinal

What is the effect of acid rain? Cause/Effect/Influence

What is the street address of the White House? Contact Info

Boxing Day is celebrated on what day? Date

What is sake? Definition

What is another name for nearsightedness? Disease

What was the famous battle in 1836 between Texas and Mexico? Event

What is the tallest building in Japan? Facility

What type of bridge is the Golden Gate Bridge? Facility description

What is the most popular sport in Japan? Game

What is the capital of Sri Lanka? Geo-political entity

Name a Gaelic language. Language

What is the world’s highest peak? Location

How much money does the Sultan of Brunei have? Money

Jackson Pollock is of what nationality? Nationality

Who manufactures Magic Chef appliances? Organization

What kind of sports team is the Buffalo Sabres? Organization description

What color is yak milk? Other

How much of an apple is water? Percent

Who was the first Russian astronaut to walk in space? Person

What is Australia’s national flower? Plant

What is the most heavily caffeinated soft drink? Product

What does the Peugeot company manufacture? Product description

How far away is the moon? Quantity

Why can’t ostriches fly? Reason

What metal has the highest melting point? Substance

What time of day did Emperor Hirohito die? Time

What does your spleen do? Use

What is the best-selling book of all time? Work of art

As a baseline for comparing the effect of different data sets and feature types, we present
the results of our classification system for this data set using bag of words features. That
is, the features extracted from each question consist only of the individual words that make
up the question. This is one of the simplest feature representations. Table 2 summarizes the
results using the P≤n metric for several values of n and the MRR.
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Table 2. TREC QA track results
using simple word features.

n P≤n

1 77.59

2 86.42

3 89.51

4 91.16

5 92.60

10 95.33

MRR 0.8437

4.2. UIUC questions

In Li and Roth (2002), Li and Roth use a superset of the TREC QA track questions and
impose a different question ontology on the data. This is what we refer to as the UIUC data
set. The training data they use consists of the TREC-8 and 9 QA track questions, 4,500
questions from a USC data set, and approximately 500 manually constructed questions to
cover rare question types (Li and Roth 2002). Additionally, for testing purposes they use
the 500 TREC 10 QA track questions.1 As with the TREC QA questions, these questions
have proper grammar and spelling and again are rather ideal.

What makes this data set distinct from the TREC QA track questions is the question
ontology. Rather than using a flat ontology they make use of a hierarchical one. The
hierarchy, shown in Table 3, has 6 coarse grained classes and 50 fine grained classes. Such a
hierarchical ontology allows more flexibility than the flat one discussed previously. It allows
us to classify questions at varying degrees of granularity and possibly take advantage of the
hierarchical nature when learning. Systems using the output of the classifier may also be
able to make use of the hierarchy in different ways.

Again, we provide baseline results for our system on the UIUC data set. Note, unlike
experiments done on the other two data sets that use 10-fold cross validation, all experiment
on this data set throughout the paper use the 5,500 questions discussed above for training
and the 500 TREC-10 questions for testing. Table 4 gives system performance results for
both coarse and fine grained question types.

Caution should be taken when considering the coarse grained question type results.
Since there are only 6 question types, P≤10 is trivially 100%. Also, if the question types
were randomly ranked, then P≤5 = 5

6 (83%). More generally, given T different question
types, a random ranking of question types yields P≤n = n

T for n = 1 . . . T and P≤n = 1
(100%) for n ≥ T .

As Table 4 shows, our system performs better on the coarse grained classes. The results
expose the tradeoff between ontology specificity and accuracy. This can be attributed to the
fact that the performance of statistical machine learning techniques depends on the amount
of quality training data. Since there are 6 coarse grained and 50 fine grained question types,
each of the coarse types contain significantly more training data per class than the fine
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Table 3. UIUC hierarchical ontology. Coarse grained question types are itali-
cized. For example, if a question is classified as the coarse grained type human it is
then one of the following fine grained types: human:group, human:individual,
human:title, or human:description.

Coarse Fine

abbreviation abbreviation, explanation

entity animal, body, color, creative, currency, disease, event, food,
instrument, language, letter, other, plant, product, religion,
sport, substance, symbol, technique, term, vehicle, word

description definition, description, manner, reason

human group, individual, title, description

location city, country, mountain, other, state

numeric code, count, date, distance, money, order, other, period,
percent, speed, temperature, size, weight

Table 4. UIUC results using simple
word features.

Coarse Fine
n P≤n P≤n

1 86.20 81.00

2 95.60 87.20

3 98.80 90.20

4 99.80 92.00

5 100.0 93.40

10 100.0 95.60

MRR 0.9224 0.8628

grained types. As mentioned above, approximately 500 of the questions in the data set were
specifically created to overcome this data sparsity problem. This allows the classifier to
achieve reasonable performance using the fine grained question types. However, in a real
setting, such as the MadSci data we discuss next, such nicely distributed data may not be
available.

4.3. MadSci questions

The MadSci data set consists of science related fact-based questions culled from the Mad-
Sci2 question archive. MadSci is a science web page that provides a way for users of
all ages and backgrounds to ask scientific questions and receive answers from experts.
To ask a question a user inputs their grade level, the area of science the question relates
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to, their actual question, and any optional comments or further information they choose to
include. The only information we consider is the text of the question. The other information
can be used to further enhance question classification, but is not used at present.

The entire MadSci archive consists of 12,348 questions. From this collection we randomly
sampled 250 questions. A highly accurate classifier based on regular expression matching
was used to discriminate between fact-based and task-oriented questions to ensure only
fact-based questions were included in the sample (Murdock and Croft 2002). Throughout
the remainder of this paper these 250 questions will be referred to as the MadSci data set.

The 250 questions were labeled by hand using an augmented version of the TREC QA
ontology. We found that many questions could not be labeled under the original ontology
since the questions were inherently different. Thus, two new question types were added to
avoid a large percentage of questions being labeled other. The first new type, choose-
list, is for questions seeking an answer from a list, such as: “Were dinosaurs coldblooded
or warmblooded animals?”. Second, the question type yes-no-explain was added for
questions that expected a yes or no answer and an optional explanation, such as: “Can
scientist create atoms or is it impossible to be manmade?”

As the two examples in the previous paragraph illustrate, the MadSci questions are not
as ideal as the questions in the two other data sets. This is the most realistic of the three data
sets and presents more of a challenge to our classifier. The following are more unmodified
examples taken from the data set:

does time go frame by frame like in a movie or is it an endless continuum?
what is the h323 protocol and t30 protocol?
can i turn my ceilling fan into a neg. ion generator by using teflon blades?
which is hotter the sun or lightening?

Table 5 shows the baseline system performance for the MadSci data set using bag of
words features. This set of questions exhibits the worst performance of the three both as a
result of the realistic, noisy data and small data set size.

Table 5. MadSci results
using simple word features.

n P≤n

1 72.60

2 83.60

3 86.80

4 90.00

5 90.80

10 94.40

MRR 0.8124
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4.4. Discussion

As the baseline results for the three data sets show, our statistical approach to question
classification is robust. Each data set discussed has very different qualities, yet our system
was able to achieve relatively good performance on each using simple features. From the
results we see that statistical classifiers can be robust across multiple data sets with varying
characteristics. The same generally cannot be said of traditional hand-crafted rules. For
each data set a different collection of rules would have to be manually created, which is a
timely, expensive process. For supervised statistical classifiers, such as the one presented
here, only a set of labeled questions is necessary. Creating such a set is often less time
consuming and requires less domain knowledge than hand crafting rules. Furthermore, it
is often possible to obtain labeled training data without any human intervention (Davidov
et al. 2004). Thus, statistical classifiers, such as our SVM-based system, may be applied
to a wide range of data sets and question ontologies with very little or no hand tuning and
manual effort necessary.

From these results we also see that a great deal of information can be learned by looking at
more than just the answer type associated with the highest classification score. For example,
for the TREC QA questions, only considering the top answer type results in an accuracy
of 77.59%. However, if the second most likely answer type is also considered the accuracy
jumps to 86.42%. As discussed in Section 3, the P≤n metric should be considered along
with other system properties and requirements to determine how to best use the question
type list returned by the question classifier. In the case of the TREC QA questions, it may
be beneficial to make use of the top two types returned by the classifier.

5. Features

We showed in the previous section that a bag of words feature representation results in
relatively good performance across all three data sets. In this section we explore syntactic
and semantic question features, and empirically evaluate the impact these richer feature sets
have on system performance.

5.1. Syntactic features

Syntactic features are used to represent or encode the syntax of a question. They are appeal-
ing because questions of the same type often have the same syntactic style. That is, they
often share a similar structure and vocabulary. The simplest syntactic features are k-grams.
A k-gram is an ordered arrangement of k words. For k = 1 such features are called unigrams
and for k = 2 they are called bigrams. The bag of words features discussed previously are
simply unigrams. Higher order k-grams allow us to exploit dependencies between words.
For example, consider a question beginning with “How far. . . ”. Unigram features are inca-
pable of explicitly expressing that how is followed by far. However, bigram features allow us
to explicitly model the dependence of these two words. Using bigrams rather than unigrams
could allow us to learn that a sentence containing the phrase how far is likely a quantity
related question. However, using higher order k-grams causes the number of features to
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Table 6. Results using bigram features.

TREC QA UIUC coarse UIUC fine MadSci
n P≤n P≤n P≤n P≤n

1 78.81 (+1.57)† 87.20 (+1.16) 81.20 (+0.25) 73.20 (+0.83)

2 86.85 (+0.50) 95.80 (+0.21) 87.60 (+0.47) 82.80 (−0.96)

3 90.30 (+0.88)† 99.00 (+0.20) 89.80 (−0.43) 87.60 (+0.92)

4 91.74 (+0.64)‡ 99.80 (+0.00) 91.60 (−0.43) 90.40 (+0.44)‡

5 92.82 (+0.24) 100.0 (+0.00) 92.40 (−1.07) 92.00 (+1.33)†

10 95.40 (+0.07) 100.0 (+0.00) 94.60 (−1.05) 94.40 (+0.00)

MRR 0.8517 (+0.95) 0.9279 (+0.60) 0.8623 (−0.06) 0.8111 (−0.16)

explode and the amount of data for each feature to become sparse. Therefore systems rarely
use anything more than unigrams and bigrams. Table 6 shows system performance on the
three data sets using both unigram and bigram features. The values in parenthesis represent
the relative (percentage) difference in performance compared to the unigram baseline re-
sults. Furthermore, results that are statistically significant (p < 0.05) over the baseline are
denoted by † and those that are weakly significant (p < 0.10) are denoted by ‡, as determined
by a signed t-test (Yang and Liu 1999). We see that adding bigram features almost always in-
creases precision marginally, although only significantly for the TREC QA track questions.
Interestingly, bigram features cause the MRR to decrease for both the fine grained UIUC
questions and the MadSci questions. Such behavior is the result of data sparsity. Very few
bigrams appear more than once in each of the 50 fine grained categories and in the small Mad-
Sci sample, whereby the bigram features add unnecessary complexity and little in the way of
information.

Part of speech (POS) tags provide another set of syntactic features. Our system uses the
maximum entropy model based MXPost (Ratnaparkhi 1996) for POS tagging. Unfortu-
nately, incorporating POS tags explicitly as features in our system fails to yield improved
accuracy. As discussed in Section 1.2, SVMs allow POS tags to be used implicitly via a tree
kernel. POS tags used in this way have been shown to improve system performance (Zhang
and Lee 2003).

There exists a multitude of other syntactic features. One possible feature for question
classification is the question word. Such a feature is irrelevant for our system, since we use
question words explicitly to partition the data. However, other systems may make use of it.
Although the question word is included implicitly as a feature when using unigrams, it can
potentially be beneficial to include it as a separate feature. This can help classify questions
such as: “What color does litmus paper turn when it comes into contact with a strong
acid?”. Here, both what and when appear in the question, but what is the actual question
word. Knowing it is a what question avoids automatically misclassifying the question as a
time or date-related question.

Another possible feature is presence of a proper noun phrase. Questions with proper
noun phrases, such as names or places often are questions about locations or asking for
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biographical information. Other possible features include question length, noun phrases,
and long distance k-grams (Rosenfeld 1996). None of these additional syntactic features
have showed significant performance improvements when used in our system.

5.2. Semantic features

It is possible to achieve reasonable results using syntactic features alone. However, some
questions, such as what questions, are often incorrectly classified when only syntactic
features are used. Table 7 shows a sample of what questions from the TREC QA track
data. These questions comprise 23 different question types. Knowing that a question begins
with what provides little information about the question type. Other syntactic features of
the sentence also reveal little. The words italicized in Table 7 are those words that provide
clues as to the correct question type. For example, for the question “What is the tallest
mountain?”, knowing that a mountain is a location allows us to assign the correct type.
Notice that the syntactic features of this sentence provide very little information. Knowing
the sentence contains the word mountain is not enough to correctly classify the question,
because mountain may not appear in any other location questions. This question is nearly
syntactically identical to “What is the tallest building in Japan?”, a facility question.
Being able to differentiate between the meaning of mountain and building is the key factor
in correctly classifying these questions.

Therefore we need a way to include semantic features to solve some of these problems.
A powerful natural language processing and linguistic tool is WordNet (Fellbaum 2000).
WordNet is a lexical database that provides a wealth of semantic information. A heuris-
tic, yet simple way to incorporate WordNet features is to to extract semantic information
about the headword of the main noun phrase for each question. The main noun phrase of
a sentence contains the focus of the sentence, and the headword can be thought of as the
“important” noun within the phrase. For example, for the question “What is Nicholas Cage’s
profession” the main noun phrase is Nicholas Cage’s profession and the headword is pro-
fession. Returning to the tallest building and tallest mountain example, the headwords are
building and mountain, respectively. These are precisely the words we identified as being
important discriminators. To extract headwords we apply a simple heuristic. First, we run a
POS tagger on each question. Next, we find the first noun phrase based on the POS tags and
assume it is the main noun phrase. Finally, ignoring post-modifiers such as prepositional
phrases, we extract the rightmost word tagged as a noun. We then extract this term as the
headword. Although this method is heuristic and highly sensitive to the POS tagger output,
it accurately finds the headwords approximately 90% of the time on the TREC questions.

Next, we use WordNet to determine the hypernyms of the headword. Hypernyms can be
thought of as semantic abstractions. For instance, some of the hypernyms for dog are: canine,
carnivore, mammal, animal, and living thing. Therefore, hypernyms capture a great deal of
semantic information about the word and can be used to overcome some limitations brought
about by using purely syntactic features. All of the hypernyms of the headword returned by
WordNet are included as features. There has been work on automatically choosing the best
hypernym to use to describe a given term (Prager et al. 2001). However, such an approach is
not necessary here. The statistical classifier will determine which hypernyms are the most



ANALYSIS OF STATISTICAL QUESTION 497

Table 7. What questions from the TREC QA track data set representing 23 different question
types. The primary words that humans use the meaning of to classify the question correctly are
italicized.

Question Type

What is the proper name for a female walrus? animal

What is Nicholas Cage’s profession? bio

What is the population of Seattle? cardinal

What caused the Lynmouth floods? cause-effect-influence

What is the telephone number for the University of Kentucky? contact info

What time of year do most people fly? date

What is the name of the art of growing miniature trees? definition

What is another name for nearsightedness? disease

What was the name of the famous battle in 1836 between
Texas and Mexico?

event

What is the tallest building in Japan? facility

What was the most popular toy in 1957? game

What is the capital of Uruguay? geo-political entity

What language is mostly spoken in Brazil? language

What is the tallest mountain? location

What debts did Qintex group leave? money

What is the cultural origin of the ceremony of potlatch? nationality

What is the name of the chocolate company in San Francisco? organization

What is done with worn or outdated flags? other

What is the name of Neil Armstrong’s wife? person

What is the most heavily caffeinated soft drink? product

What is the average weight of a Yellow Labrador? quantity

What metal has the highest melting point? substance

What did Shostakovich write for Rostropovich? work of art

discriminative for a given question type during training. This essentially chooses the best
hypernyms automatically.

Table 8 shows the results and comparison to the baseline of unigram only features when we
add WordNet hypernyms to the feature representation of what, which and name questions.
As the table shows, WordNet features lead to improvements for nearly every performance
measure, even the MadSci data set that contains many grammatically irregular sentences.
Also, the TREC QA track question’s MRR is increased significantly over the baseline. The
table provides evidence that semantic features can increase performance more than simple
syntactic features such as bigrams.

Li and Roth make use of a number of semantic features in Li and Roth (2002). Their use of
“related words” is similar in nature to the method just described. Rather than automatically
extracting a word and expanding it using WordNet, though, they manually create a list of
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Table 8. Results using WordNet features.

TREC QA UIUC coarse UIUC fine MadSci
n P≤n P≤n P≤n P≤n

1 80.39 (+3.61)† 88.20 (+2.33)‡ 82.20 (+1.48) 74.80 (+3.05)

2 90.45 (+4.66)† 96.80 (+1.26)‡ 89.60 (+2.75)† 84.40 (+0.97)

3 93.10 (+4.01)† 98.80 (+0.00) 92.40 (+2.44)† 88.80 (+2.32)†

4 95.55 (+4.82)† 99.80 (+0.00) 93.40 (+1.52)‡ 91.60 (+1.79)†

5 97.34 (+5.12)† 100.0 (+0.00) 94.20 (+0.86) 93.60 (+3.10)†

10 95.40 (+0.07)† 100.0 (+0.00) 96.40 (+0.84) 95.60 (+1.27)†

MRR 0.8727 (+3.44)† 0.9344 (+1.30) 0.8768 (+1.62)‡ 0.8250 (+1.55)

semantically related words for each question type. If a word that appears in a question is also
in one of these lists then a feature is set indicating the sentence contains a word that is often
related to some question type. Although this method is effective, the list of related words
for each question type must be created by hand, whereas the WordNet method discussed
here is automatic.

Their system also extracted named entities from the questions. Such features also capture
semantic information. In their system, this led to an improvement in performance. However,
we found this actually degrades performance with our system because the entity types that
appear in a question often do not correlate with the question types.

The use of syntactic features for question classification is well studied. However, the
space of semantic features remains largely unexplored beyond the use of WordNet and
named entity tagging (Nyberg et al. 2003). Based on the results presented here and in other
works that make minimal use of semantic features it seems fruitful to explore this direction
more in the future.

5.3. Discussion

Finally, we present results from combining a number of features discussed above. Table 9
shows results for our system using the following combination of features: unigrams, bi-
grams, WordNet hypernyms, and proper noun phrase presence.

The combined feature set outperforms the baseline results in terms of MRR and P≤1.
For all data sets, excluding MadSci, precision is increased significantly. Furthermore, for
both the TREC QA track and UIUC fine grained questions the MRR is increased signif-
icantly. This feature set represents the best performance achieved by our system on the
TREC QA and UIUC coarse and fine grained question sets. However, for the MadSci data,
using unigram and WordNet features yielded the best results. Such poor generalization is
largely due to the small training set and large number of features. Thus, for larger data
sets combining both syntactic and semantic features can lead to significantly better system
performance.
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Table 9. Results using bigram and WordNet features.

TREC QA UIUC coarse UIUC fine MadSci
n P≤n P≤n P≤n P≤n

1 81.25 (+4.72)† 90.20 (+4.65)† 83.60 (+3.22)† 73.20 (+0.83)

2 88.58 (+2.50)† 95.00 (−0.63) 88.00 (+0.93) 82.80 (−0.96)

3 93.32 (+4.26)† 97.80 (−1.01) 90.40 (+0.22) 88.00 (+1.38)‡

4 94.40 (+3.55)† 99.60 (−0.20) 91.80 (−0.20) 90.80 (+0.44)

5 95.33 (+2.95)† 100.0 (+0.00) 93.40 (+0.00) 93.60 (+0.89)†

10 97.20 (+1.96)† 100.0 (+0.00) 95.80 (+0.21) 95.60 (+1.27)†

MRR 0.8737 (+3.56)† 0.9405 (+1.96)‡ 0.8771 (+1.66)† 0.8134 (+0.12)

6. Error analysis

In this section we explore common causes of classification error to develop a better under-
standing of the limiting factors involved with statistical question classification. We explore
issues involving data labels, question difficulty, POS tagger errors, and WordNet insuffi-
ciencies. Throughout this section we primarily focus is on the TREC QA track data set.
However, all analysis provided is general and valid for other data sets as well.

6.1. Inconsistent and ambiguous labeled data

With any statistical method that learns on training data, the resulting classifier is only
as good as the data that is given to it. An analysis of the incorrectly classified questions
revealed that a number of the errors were the result of incorrectly labeled data. The following
question/answer type pairs taken from the TREC data set illustrate the point:

Who is Duke Ellington? person
Who is Charles Lindbergh? biography

What does CNN stand for? organization
What does USPS stand for? definition

Clearly each pair of questions should have the same data label since they are both re-
questing the same type of answer. Hand labeling data is a monotonous human task and
thus doomed to contain errors. However, the fact that a question may not cleanly fit into a
single question type only compounds the problem. A number of questions have ambiguous
classifications. The following questions are labeled as facility, but are equally valid as
location or gpe questions depending on the exact information need of the user:

Where is the actress, Marion Davies, buried?
Where was Lincoln assassinated?
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Both of these questions are classified as gpe by our system. Such a classification is not
necessarily incorrect. Such ambiguity arises from the inability of the question ontology to
properly assign a single question type to the question. This problem can be overcome by
allowing each question to have multiple labels or by making use of a different question
ontology (Hovy et al. 2001, 2002).

For the TREC QA track data set, the most commonly misclassified questions, above and
beyond other questions are those that belong to closely related question types, such as
{gpe, location}, {quantity, cardinal, percent, and money}, and {person and
organization}. Combining these pairs of classes would likely result in better performance
at the expense of less specific question classification. This is the strategy employed with
the coarse versus fine grained UIUC questions. Based on the results presented in Section 5,
we see that classification precision improves as ontology generality increases. However,
no single question ontology is the best choice for all tasks. Instead, an ontology should
be chosen based on the task and other characteristics of the system keeping in mind the
tradeoff between classification accuracy and answer type specificity.

6.2. Inherently difficult questions

Next, there are some questions that are inherently ambiguous and/or difficult to classify.
These questions ultimately require hand built rules, a deep human understanding, or ad-
vanced natural language processing techniques to be classified correctly. Some examples,
again taken from the TREC data set, are:

What is the name of the Lion King’s son in the movie “The Lion King”? animal

Who developed potlatch? nationality

Name the designer of the shoe that spawned millions of plastic imitations, known as “jel-
lies”. organization

Each of these questions require a more general knowledge of the world or context to
accurately predict the question type. For instance, in the first example above it is crucial to
know that the Lion King is an animal, otherwise there is little hope of knowing the expected
answer type is animal. In the second example, a working knowledge of Native American
ceremonies is required to correctly classify the question type. Finally, in the last example,
it it not clear whether the question expects the name of the person who designed the shoe
or the name of the organization that designed the shoe. This issue is closely related to our
discussion of ambiguous question types.

6.3. POS tagger and WordNet expansion error

Although POS taggers are capable achieving high accuracy, they are not infallible. POS tags
are necessary in the method described in Section 5.2 to determine which word(s) to expand
using WordNet. Thus, an error in the POS tagger will be propagated through to WordNet
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expansion and may ultimately affect the classification. This can cause the classifier to be-
lieve a given what question pertains to animals rather than a location. Fortunately, these
problems do not seem to hurt performance significantly since the SVMs can overcome most
errors introduced this way. However, it often leads to easy questions being misclassified,
such as the following question:

Question: What U.S. Government agency registers trademarks? organization
Tagged: What WP U.S. NNP Government NN agency NN registers NNS trademarks N

NS ? .

The tagger incorrectly tags registers as a plural noun. Using the heuristic headword ex-
tractor described previously results in trademarks being expanded via WordNet. Ultimately
this causes the question to be incorrectly classified. If the correct headword (agency) were
expanded instead then the question most likely would have been correctly classified as
organization. Possible ways to overcome POS tag error and expanding the incorrect word
is to use a more accurate POS tagger or a less heuristic method of extracting the headword,
such as producing a full parse tree of the question.

6.4. WordNet insufficiencies

Although WordNet is an excellent natural language processing and linguistic tool, we
encounter some problems when trying to use it for question classification. WordNet is
primarily used to help classify what questions. For these questions we assume that the
headword provides the most evidence about the expected answer type. This assumption
holds for a majority of questions. However, we must also assume that WordNet provides
a good abstraction for the headword via its hypernym hierarchy. For example, an ideal
abstraction for the words cat, dog, and walrus is animal. Unfortunately, it is not that simple.
WordNet’s hypernym hierarchy is very complex. Problems arise when it fails to express the
most basic human understanding of a word or when it fails to reveal a connection between
strongly related words. For example, consider the following question:

Question: What cereal goes “snap, crackle, pop”? product
Tagged: What WP cereal NN goes VBZ “ “ snap NN , , crackle NN , , pop NN ” ” ? .

The headword of this question is cereal. When most humans think of cereal, they first think
of breakfast food. To humans, it very obvious that cereal is a breakfast food, and that foods are
products. However, WordNet returns three senses of the word cereal. If we assume that users
asking questions use simple vocabulary, then we can assume they use the most common or
basic meaning of words. For cereal, the first sense is “cereal, cereal grass”, which concerns
plants. This expansion is detrimental to classifying this question as product. The second and
third senses of cereal are more familiar senses of the word. Therefore, the ordering of the
hypernyms isn’t always intuitive. Although WordNet expansion introduces a certain amount
of noise into our data, it does improve classification as we showed in Section 5.2. The use
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of word sense disambiguation techniques (Brown et al. 1991) could be useful to overcome
such issues. Furthermore, other semantic ontologies such as the Suggested Upper Merged
Ontology (SUMO) (Niles and Pease 2001) have been created based on WordNet and may be
provide useful tools for extracting better semantic meaning from questions. Clearly, if a sys-
tem used a perfect POS tagger, a perfect method of extracting headwords, and a perfect way
of abstracting a noun to a general idea, then what questions could be classified with very high
accuracy.

7. Conclusion

In this paper, we presented an overview of statistical question classification applied to fact-
based questions. Many past approaches resorted to building specialized hand-crafted rules
for each question type. Although such rules prove effective, they do not scale well and
are tedious to create. Statistical classifiers provide a more robust framework for exploring
question classification. Our statistical classifier is based on SVMs and uses prior knowl-
edge about correlations between question words and types to learn question word specific
classifiers. Under such a statistical framework, any data set, question ontology, or set of
features can be used.

We showed empirically that statistical classifiers are robust in handling different types
of features. In general, semantic features are more powerful than syntactic features. They
endow the statistical classifier with a certain understanding of a question’s meaning via
the use of WordNet hypernyms. Furthermore, combining both syntactic and semantic fea-
tures allows for the most flexibility and generally achieves better performance, increasing
precision significantly on three of the data sets.

The analysis of common misclassifications gives insight into possible improvements to
our system and other statistical classifiers. First, data sets require expressive yet unam-
biguous question ontologies to guard against mislabeling errors or ambiguities. Next, more
sophisticated labeling methods, such as allowing questions to be associated with one or
more question types, are necessary to overcome the problem of questions with ambiguous
question types. Although this may solve some problems, difficult questions will always ex-
ist that escape being correctly classified with only a limited understanding of the question.
Also, inaccurate POS taggers often cause errors to propagate through to the final result.
Finally, WordNet’s ability to abstract common concepts can lead to problems when it is
used to extract features in a system, as we showed in the case of cereal. Therefore, natural
language processing techniques, such as word sense disambiguation, could prove to be
beneficial.

There are many avenues of future work left to explore. Our results show that simple
semantic features can improve system performance more than syntactic features. Unfor-
tunately, these features are not as well studied or understood compared to their syntactic
counterparts. Therefore, more advanced methods of including semantic information need
to be explored. Also, better question ontologies need to be developed to be both expressive
enough to cover most question types and as unambiguous as possible. If the ontology is
being designed for a QA system, we must also take into account whether or not a named
entity tagger can extract candidate answers for each question type. Finally, a larger realistic
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data set like the MadSci data should be created as a standard test collection that would allow
comparison across different classification systems and help further advance the state of the
art.
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Notes
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