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Abstract. Although Yager has presented a prioritized operator for fuzzy subsets, called the non-monotonic oper-
ator, it can not be used to deal with multi-criteria fuzzy decision-making problems when generalized fuzzy numbers
are used to represent the evaluating values of criteria. In this paper, we present a prioritized information fusion
algorithm based on the similarity measure of generalized fuzzy numbers. The proposed prioritized information
fusion algorithm has the following advantages: (1) It can handle prioritized multi-criteria fuzzy decision-making
problems in a more flexible manner due to the fact that it allows the evaluating values of criteria to be represented
by generalized fuzzy numbers or crisp values between zero and one, and (2) it can deal with prioritized information
filtering problems based on generalized fuzzy numbers.
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1. Introduction

Yager [5] presented an important prioritized operator
for fuzzy subsets, called the non-monotonic operator.
Bordogna et al. [1] regarded the process of informa-
tion retrieval as a multi-criteria fuzzy decision-making
activity, and they used the prioritized operator to deal
with fuzzy information retrieval. Hirota et al. [2] used
the prioritized operator to deal with two applications,
i.e., an estimation of default fuzzy sets and a default-
driven extension of fuzzy reasoning. Yager [3] used the
prioritized operator to deal with multi-criteria fuzzy
decision-making problems and presented a type of cri-
terion called a second order criterion. Furthermore, he
pointed out that the second order criterion acts as an ad-
ditional selector or a filter. Yager [4] used the prioritized
operator in fuzzy information fusion structures. From
[1–5], we can see that the prioritized operator is use-
ful to deal with multi-criteria fuzzy decision-making
problems.

∗Author to whom all correspondence should be addressed.

The multi-criteria fuzzy decision-making models
provide a useful way to deal with the subjectiveness and
vagueness in multi-criteria decision-making problems
[1, 6]. In many situations, fuzzy numbers are very use-
ful to represent evaluating values of criteria to deal with
multi-criteria fuzzy decision-making problems [7–10].
Some researchers used generalized fuzzy numbers [11]
to deal with multi-criteria fuzzy decision-making prob-
lems [12–15], where the generalized fuzzy numbers
are non-normal fuzzy numbers. Chen [11] presented
the operations of generalized fuzzy numbers with the
function principle. Dubois [14] pointed out that when
a fuzzy number is not normalized, this situation could
be interpreted as a lack of confidence in the informa-
tion provided by such numbers. Some researchers also
used generalized fuzzy numbers to represent fuzzy in-
formation and their associated degrees of uncertainty
[12], degrees of confidence [13], and the certainty de-
grees of the represented values [15]. However, the pri-
oritized operator presented in [5] can not deal with
multi-criteria fuzzy decision-making problems when
generalized fuzzy numbers [11] are used to represent
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evaluating values of criteria due to the fact that the
operator can not measure the degree of intersection be-
tween two sets of generalized fuzzy numbers. Thus, it
is obvious that to extend the prioritized operator pre-
sented in [5] and to develop a prioritized information fu-
sion algorithm for aggregating the evaluating values of
the criteria represented by generalized fuzzy numbers
are important research topics in multi-criteria fuzzy
decision-making problems.

In this paper, we extend the prioritized operator pre-
sented in [5] to propose a prioritized information fu-
sion algorithm based on similarity measures of gen-
eralized fuzzy numbers for dealing with multi-criteria
fuzzy decision-making problems. The proposed prior-
itized information fusion algorithm plays the role of a
filter in the multi-criteria fuzzy decision-making prob-
lems. It allows the evaluating values of the criteria of
decision-maker’s subjective assessments to be repre-
sented by generalized fuzzy numbers or crisp values
between zero and one. The proposed information fu-
sion algorithm can overcome the drawback of the pri-
oritized operator presented in [5]. The proposed algo-
rithm is useful to deal with query and filtering problems
for fuzzy information retrieval and is useful to deal
with decision-making problems based on second order
structures [3] when users need to use fuzzy numbers to
represent linguistic evaluating values.

The rest of this paper is organized as follows. In
Section 2, we briefly review the concepts of general-
ized fuzzy numbers from [11, 12], the simple center
of gravity method (SCGM) [16], the similarity mea-
sure based on SCGM we presented in [17], and the
ranking method of generalized fuzzy numbers based
on the SCGM we presented in [18]. In Section 3, we
briefly review Yager’s prioritized operator [5] and some
properties of the prioritized operator. In Section 4, we
extend Yager’s prioritized operator to propose a pri-
oritized information fusion algorithm. In Section 5,
we apply the proposed information fusion algorithm
for handling prioritized multi-criteria fuzzy decision-
making problems. The conclusions are discussed in
Section 6.

2. Preliminaries

In this section, we briefly review the concepts of gener-
alized fuzzy numbers from [11, 12], the simple center
of gravity method (SCGM) [16], the similarity measure
of generalized fuzzy numbers based on the SCGM we
presented in [13], and the ranking method of general-

Figure 1. A generalized trapezoidal fuzzy number.

ized fuzzy numbers based on the SCGM we presented
in [18].

2.1. Generalized Fuzzy Numbers

Chen [11] represented generalized fuzzy numbers and
their operations. Figure 1 shows a generalized trape-
zoidal fuzzy number Ã = (a1, a2, a3, a4; w Ã), where
0 < w Ã ≤ 1, and a1, a2, a3 and a4 are real values.
The value of w Ã represents the certainty degree of the
evaluating value of a decision-maker’s opinion. The
generalized fuzzy number Ã of the universe of dis-
course X is characterized by a membership function
µ Ã, where X takes its number on the real line R and
µ Ã: X → [0, 1]. If w Ã = 1, then the generalized fuzzy
number Ã is called a normal trapezoidal fuzzy number,
denoted as Ã = (a1, a2, a3, a4). If a1 = a2, a3 = a4

and w Ã = 1, then Ã is called a crisp interval. If a2 = a3,
then Ã is called a generalized triangular fuzzy num-
ber. If a1 = a2 = a3 = a4 and w Ã = 1, then Ã is
called a crisp value. From [12–15], we can see that
some researchers are using generalized fuzzy numbers
to represent fuzzy information and their associated de-
grees of uncertainty [12], degrees of confidence [13],
the certainty degrees of the represented values [15], and
lack of confidence in the information provided by such
numbers [14].

2.2. A Simple Center of Gravity Method
(SCGM) [16]

The center-of-gravity (COG) of an object is a geomet-
ric property of the object, and it is the average location
of the weight of an object [19]. The center-of-gravity
(COG) method can be used to deal with defuzzifica-
tion problems [20–22] and fuzzy ranking problems
[8, 23]. In [16], we have pointed out that there are some
drawbacks in the traditional COG method, i.e., it cannot
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Figure 2. A COG point (x̂ Ã, ŷ Ã) of the generalized trapezoidal
fuzzy number Ã.

directly calculate the COG point of a crisp interval or a
real number, and it is very time-consuming to calculate
the COG point. Thus, in [16], we presented the sim-
ple center of gravity method (SCGM) to calculate the
COG point of a generalized fuzzy number based on the
concept of the medium curve [24]. The method we pre-
sented in [16] can overcome the drawbacks of the tradi-
tional COG method. Let Ã be a generalized trapezoidal
fuzzy number, where Ã = (a1, a2, a3, a4; w Ã). The
SCGM method for calculating the COG point (x̂ Ã, ŷÃ)
of the generalized trapezoidal fuzzy number Ã is shown
as follows:

ŷ Ã =




w Ã × ( a3−a2
a4−a1

+ 2
)

6
, if a1 �= a4 and

0 < w Ã ≤ 1,
w Ã

2
, if a1 = a4 and

0 < w Ã ≤ 1,

(1)

x̂ Ã = ŷ Ã(a3 + a2) + (a4 + a1)(w Ã − ŷ Ã)

2w Ã
. (2)

Based on formulas (1) and (2), we can obtain the COG
point (x̂ Ã, ŷ Ã) of a generalized trapezoidal fuzzy num-
ber Ã. The SCGM method is used for calculating the
COG point (x̂ Ã, ŷ Ã) of the generalized trapezoidal
fuzzy number Ã as shown in Fig. 2. Furthermore, in
[13, 18], we have used the proposed SCGM method to
calculate the ranking order of generalized fuzzy num-
bers and to measure the degree of similarity between
generalized fuzzy numbers, respectively.

2.3. A Similarity Measure of Generalized Fuzzy
Numbers Based on the SCGM [13]

Some similarity measures of trapezoidal fuzzy num-
bers have been presented to calculate the degree of sim-

ilarity between trapezoidal fuzzy numbers [7, 10, 25].
In [13], we have pointed out that there are some draw-
backs in the existing similarity measures, i.e., they can
not correctly calculate the degree of similarity between
trapezoidal fuzzy numbers in some situations. There-
fore, in [13], we presented a method to evaluate the
degree of similarity between generalized trapezoidal
fuzzy numbers and we used the method to deal with
fuzzy risk analysis problems. The proposed similarity
measure can overcome the drawbacks of the existing
similarity measures presented in [7, 10, 25].

In [13], we let the universe of discourse U of gen-
eralized fuzzy numbers be between zero and one (i.e.,
standardized generalized fuzzy numbers). Assume that
there are two generalized trapezoidal fuzzy numbers Ã
and B̃, where Ã = (a1, a2, a3, a4; w Ã), B̃ = (b1, b2,
b3, b4; wB̃), 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1 and
0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1. First, we use for-
mulas (1) and (2) to obtain the COG points COG( Ã)
and COG(B̃) of the generalized trapezoidal fuzzy num-
bers Ã and B̃, respectively, where COG( Ã) = (x̂ Ã, ŷ Ã)
and COG(B̃) = (x̂ B̃, ŷ B̃). Then, the degree of similar-
ity S( Ã, B̃) between the generalized trapezoidal fuzzy
numbers Ã and B̃ can be calculated as follows:

S( Ã, B̃) =
(

1 −
∑4

i=1 |ai − bi |
4

)

× (1−|x̂ Ã − x̂ B̃ |)B(SÃ, SB̃ ) × min(ŷ Ã, ŷ B̃)

max(ŷ Ã, ŷ B̃)
,

(3)

where S( Ã, B̃) ∈ [0, 1], the values ŷ Ã and ŷ B̃ are ob-
tained by formula (1), the values x̂ Ã and x̂ B̃ are obtained
by formula (2), and B(SÃ, SB̃) is defined as follows:

B(SÃ, SB̃) =
{

1, if SÃ + SB̃ > 0,

0, if SÃ + SB̃ = 0,
(4)

where SÃ and SB̃ are the bases of the generalized trape-
zoidal fuzzy numbers Ã and B̃, respectively, defined as
follows:

SÃ = a4 − a1, (5)

SB̃ = b4 − b1. (6)

The larger the value of S( Ã, B̃), the more the similar-
ity between the generalized fuzzy numbers Ã and B̃.
In formula (3), the values of |ai − bi | and |x̂ Ã − x̂ B̃ |
are positive values, respectively, due to the fact that
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the symbol “| |” denotes the “absolute” operator. Fur-
thermore, because 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1
and 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1, from formulas
(5) and (6), we can see that the values of SÃ and SB̃

are positive values between zero and one, respectively.
Therefore, from formula (4), we can see that the value
of B(SÃ, SB̃) is either zero or one. Because the val-
ues of x̂ Ã and x̂ B̃ obtained by formula (2), respectively,
are between zero and one, and because the values of
|ai − bi | and |x̂ Ã − x̂ B̃ | are between zero and one, we
can see that formula (3) is not a negative value. In [13],
we have shown that the value of S( Ã, B̃) in formula (3)
is between zero and one.

The proposed similarity measure of generalized
fuzzy numbers has the following properties [13]:

Property 2.1. Two generalized fuzzy numbers Ã and
B̃ are identical if and only if S( Ã, B̃) = 1.

Property 2.2. S( Ã, B̃) = S(B̃, Ã).

Property 2.3. If Ã = (a, a, a, a; 1.0) and B̃ = (b, b,

b, b; 1.0) are two real numbers, then S( Ã, B̃) = 1 −
|a − b|.

In [17], we have pointed out that formula (3) can be
further simplified. Thus, in [17], we modified formula
(3) into formula (7) to simplify the calculation process
shown as follows:

S( Ã, B̃) =
[(

1 −
∑4

i=1 |ai − bi |
4

)

×(1 − |x̂ Ã − x̂ B̃ |)
] 1

2

× min(ŷ Ã, ŷ B̃)

max(ŷ Ã, ŷ B̃)
, (7)

where S( Ã, B̃) ∈ [0, 1]. The larger the value of
S( Ã, B̃), the more the similarity between the gener-
alized fuzzy numbers Ã and B̃. From the previous dis-
cussions, we can see that the values of |ai − bi | and
|x̂ Ã − x̂ B̃ | are positive values, respectively, and the val-
ues x̂ Ã and x̂ B̃ obtained by formula (2) are between zero
and one. Therefore, in formula (7), we can see that:

(
1 −

∑4
i=1 |ai − bi |

4

)
× (1 − |x̂ Ã − x̂ B̃ |) ≥ 0.

In [17], we have shown that the value of S( Ã, B̃) in
formula (7) is between zero and one.

2.4. A Ranking Method of Generalized Fuzzy
Numbers Based on the SCGM [18]

From [23, 26, 27], we can see that some centroid-index
ranking methods of fuzzy numbers have been presented
to calculate the ranking order between fuzzy numbers.
However, according to [18], we can see that there are
some drawbacks in the existing methods, i.e., they can-
not correctly calculate the ranking order of the gener-
alized fuzzy numbers in some situations. Thus, in [18],
we presented a method to evaluate the ranking order be-
tween generalized fuzzy numbers, based on center-of-
gravity (COG) points and standard deviations of gen-
eralized fuzzy numbers. The proposed ranking method
can overcome the drawbacks of the existing ranking
methods presented in [23, 26, 27]. Assume that there
is a generalized fuzzy number Ãi , where Ãi = (ai1,
ai2, ai3, ai4; w Ãi

), represented as an evaluating value of
an alternative xi , where 1 ≤ i ≤ n. The ranking value
R( Ãi ) of the generalized fuzzy number Ãi is calculated
as follows:

R( Ãi ) = x̂ Ãi
+ (

w Ãi
− ŷ Ãi

)ŝ Ãi × (
ŷ Ãi

+ 0.5
)1−w Ãi ,

(8)

where the values of x̂ Ãi
and ŷ Ãi

are calculated by for-
mulas (1) and (2), respectively, and the value of ŝ Ãi

is
the standard deviation of the generalized fuzzy number
Ãi , defined as follows [18]:

ŝ Ãi
=

√√√√1

3

4∑
j=1

(ai j − āi )2

=
√√√√1

3

4∑
j=1

a2
i j − 2ā2

i + ā2
i

=
√√√√1

3

4∑
j=1

a2
i j − ā2

i

=
√√√√1

3

4∑
j=1

a2
i j −

(
4∑

j=1

ai j

/
3

)2

. (9)

The larger the value of R( Ãi ), the better the rank-
ing of Ãi (i.e., xi is the better alternative), where
1 ≤ i ≤ n. In [18], we have used the proposed
ranking method for handling the outsourcing targets
selection problems. In [28], we have used the pro-
posed ranking method for handling multi-criteria fuzzy
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Table 1. Three t-norms and t-conorms [4].

T -Norms T -Conorms

min(a, b) (Logical Product) max(a, b) (Logical Sum)

a × b (Algebraic Product) a + b − a × b (Algebraic Sum)

max(a + b − 1, 0) (Bounded Product) min(a + b, 1) (Bounded Sum)

decision-making problems based on the FN-IOWA
operator.

3. A Prioritized Intersection Operator

Zadeh [29] developed the theory of approximate rea-
soning. Yager [30] introduced non-monotonic logics
into the theory of approximate reasoning for repre-
senting default knowledge or commonsense reasoning.
Furthermore, in [5], Yager presented a prioritized inter-
section operator, called the non-monotonic intersection
operator η, to emulate common sense reasoning. Let X
be the universe of discourse, and let A and B be two
fuzzy subsets in X . The non-monotonic intersection
operator η is defined as follows:

η(A, B) = D, (10)

where D is also a fuzzy subset of X, such that

µD(x) = µA(x) ∧ (µB(x) ∨ (1 − Poss[B | A])),

(11)

where Poss[B | A] is defined as follows:

Poss[B | A] = Maxx [µA(x) ∧ µB(x)]. (12)

Dubois and Prade [14] pointed out that Poss[B | A]
denotes the possibility of B given A. Yager [4] summa-
rized three t-norms (i.e., ∧) and t-conorms (i.e., ∨) as
shown in Table 1, where a ∈ [0, 1] and b ∈ [0, 1].

Yager [4] pointed out that Poss[B | A] essentially
measures the degree of intersection between the fuzzy
subsets A and B, and 1− Poss[B | A] can be seen as a
measure of conflict between the fuzzy subsets A and B.
In [3], the two operators ∧ and ∨ can be replaced by any
t-normss and t-conormss as shown in Table 1, respec-
tively. As explained in [3, 21], we can see that there are
two properties of Yager’s non-monotonic intersection
operator shown as follows:

Property 3.1. If Poss[B | A] = 1, then µD(x) =
µA(x) ∧ µB(x). It means that the fuzzy subset A can
be revised by the fuzzy subset B entirely due to the fact
that the fuzzy subset B is completely compatible with
the fuzzy subset A.

Property 3.2. If Poss[B | A] = 0, then µD(x) =
µA(x). It means that the fuzzy subset A can not be
revised by the fuzzy subset B due to the fact that the
fuzzy subset B is completely incompatible with the fuzzy
subset A. Thus, we disregard the fuzzy subset B.

Yager [33], used the non-monotonic intersection op-
erator to deal with multi-criteria fuzzy decision-making
problems and presented a type of criterion called a sec-
ond order criterion. From [3], we can see that the sec-
ond order criterion is a criterion that does not interfere
with our getting satisfactory solution using the first or-
der criterion. Let us consider the following statement
[3]:

“I want a car that is luxurious and inexpensive and
if possible I would like to buy it from my brother.”

The statement reflects a natural language formulation
of a combination of the first order criteria (i.e., a car
that is luxurious and inexpensive) and the second order
criterion (i.e., if possible I would like to buy it from my
brother). Yager [3] pointed out that the criterion A and
the criterion B of formula (11) are called the first order
criterion and the second order criterion, respectively,
and he modified formula (11) into

µD(x) = µA(x) ∧ (µB(x) ∨ (1 − ω(Poss[B | A]))),

(13)

where ω is a qualifier defined as follows:

ω(r ) =
{

0, if r < α,

1, if r ≥ α,
(14)

where α ∈[0, 1]. Yager [3] pointed out that the second
order criterion B acts as an additional selector (or a
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filter) for those elements which satisfy the first order
criterion A. Yager [4] used the operator in fuzzy in-
formation fusion structures and he called the operator
“non-monotonic/prioritized intersection operator” be-
cause the operator supports a concept of priority, i.e.,
in η(A, B), A has the priority over B [5].

Example 3.1. Assume that we use the algebraic prod-
uct (i.e., a×b) and the algebraic sum (i.e., a+b−a×b)
to represent t-norms and t-conorms (i.e., ∧ and ∨), re-
spectively. Assume that there are two different criteria
A and B, three alternatives x1, x2, x3, and their evalu-
ating values are shown as follows:

A =
{

1.0

x1
,

0.4

x2
,

0.5

x3

}
, B =

{
0.2

x1
,

1.0

x2
,

0.3

x3

}
.

We can see that Poss[B | A] = Max
x

[A(x) ∧ B(x)] =
Max [(1.0 ∧ 0.2), (0.4 ∧ 1.0), (0.5 ∧ 0.3)] = 0.4. By
applying formula (11), we can see that

µD(x1) = 1.0 ∧ (0.2 ∨ (1.0 − 0.4)) = 0.68,

µD(x2) = 0.4 ∧ (1.0 ∨ (1.0 − 0.4)) = 0.4,

µD(x3) = 0.5 ∧ (0.3 ∨ (1.0 − 0.4)) = 0.36.

Because µD(x1) > µD(x2) > µD(x3), we can see that
the preferring order of the alternatives is x1 > x2 > x3.
Thus, the best alternative among the alternatives x1, x2

and x3 is x1.

4. A Prioritized Information Fusion Algorithm

From [1–5], we can see that the prioritized operator
shown in formula (11) is very useful to deal with prior-
itized multi-criteria fuzzy decision-making problems.
However, the prioritized operator shown in formula
(11) can not deal with multi-criteria fuzzy decision-
making problems if we use generalized fuzzy numbers
to represent evaluating values of criteria due to the fact
that the operator can not measure the degree of inter-
section (i.e., formula (12)) between two sets of gen-
eralized fuzzy numbers. Thus, to develop a prioritized
information fusion algorithm for aggregating the evalu-
ating values represented by generalized fuzzy numbers
is one of the important research topics of multi-criteria
fuzzy decision-making problems.

In [31, 32], we can see that t-norms and t-conorm op-
erators can apply to the fuzzy number environment. The
results of t-norms and t-conorms operations of fuzzy

numbers are still fuzzy numbers [33]. Assume that there
are two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4)
and B̃ = (b1, b2, b3, b4), where 0 ≤ a1 ≤ a2 ≤
a3 ≤ a4 ≤ 1 and 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1.
Let T be a t-norm and let S be a t-conorm, where T:
[0, 1] × [0, 1] → [0, 1] and S : [0, 1] × [0, 1] →
[0, 1]. The t-norm and t-conorm operations between
the trapezoidal fuzzy numbers Ã and B̃ are shown as
follows:

T ( Ã, B̃) = (a1 ∧ b1, a2 ∧ b2, a3 ∧ b3, a4 ∧ b4),

(15)

S( Ã, B̃) = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3, a4 ∨ b4),

(16)

where ∧ and ∨ are any t-norm and t-conorm as shown
in Table 1, respectively. According to formulas (15) and
(16), we can see that the results of t-norm and t-conorm
operations of fuzzy numbers are linear. However, the
traditional t-norm and t-conorm operators with fuzzy
numbers do not preserve the linearity [33]. Thus, in
[34], Junghanns et al. pointed out that the results of
t-norm and t-conorm operations of fuzzy numbers us-
ing formulas (15) and (16) are approximate results.

In the following, we extend Yager’s prioritized op-
erator to propose a prioritized information fusion algo-
rithm for aggregating evaluating values represented by
generalized fuzzy numbers. Let X be the universe of
discourse, X = [0, k]. Assume that there are n alter-
natives x1, x2, . . . , and xn , and assume that there are
two different prioritized criteria A and B as shown in
Table 2, where A = ( Ã1, Ã2 ,. . . , Ãi , . . . , Ãn) is called
the first order criterion, B = (B̃1, B̃2,. . . , B̃i , . . . , B̃n)
is called the second order criterion, Ãi and B̃i are gen-
eralized fuzzy numbers, Ãi = (ai1, ai2, ai3, ai4; w Ãi

),
B̃i = (bi1, bi2, bi3, bi4; wB̃i

), 0 ≤ ai j ≤ k, 0 ≤ bi j ≤ k,
0 < w Ãi

≤ 1, 0 < wB̃i
≤ 1, 1 ≤ i ≤ n, and 1 ≤ j ≤ 4.

The proposed information fusion algorithm is now
presented as follows:

Table 2. Evaluating values of the alternatives using two different
criteria A and B.

Alternatives

Different criteria x1 x2 · · · xi · · · xn

First order criterion A Ã1 Ã2 · · · Ãi · · · Ãn

Second order criterion B B̃1 B̃2 · · · B̃i · · · B̃n
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Step 1: If the universe of discourse X = [0, k] and
k �= 1, then translate the generalized trapezoidal
fuzzy numbers Ãi = (ai1, ai2, ai3, ai4;w Ãi

) and B̃i =
(bi1, bi2, bi3, bi4; wB̃i

) into standardized generalized
trapezoidal fuzzy numbers Ã∗

i and B̃∗
i , respectively,

where 1 ≤ i ≤ n, shown as follows:

Ã∗
i =

(
ai1

k
,

ai2

k
,

ai3

k
,

ai4

k
; w Ã

∗
i

)
= (

a∗
i1, a∗

i2, a∗
i3, a∗

i4; w Ã
∗
i

)
, (17)

B̃∗
i =

(
bi1

k
,

bi2

k
,

bi3

k
,

bi4

k
; wB̃∗

i

)
= (

b∗
i1, b∗

i2, b∗
i3, b∗

i4; wB̃∗
i

)
. (18)

where 0 ≤ a∗
i j ≤ 1, 0 ≤ b∗

i j ≤ 1, w Ã
∗
i
= w Ãi

, wB̃∗
i
=

wB̃i
, 1 ≤ i ≤ n, and 1 ≤ j ≤ 4. The standardized

generalized fuzzy numbers mean that the universes
of discourse U of the generalized fuzzy numbers are
between zero and one.

Step 2: Based on formulas (1), (2) and (7), evaluate the
degree of compatibility C(A, B) between the first
order criterion A and the second order criterion B
shown as follows:

C(A, B) = Max
{
Min

[(
x̂ Ã

∗
1
∧ x̂ B̃∗

1

)
, S( Ã∗

1, B̃∗
1)

]
,

Min
[(

x̂ Ã
∗
2
∧ x̂ B̃∗

2

)
, S( Ã∗

2, B̃∗
2)

]
,

...

Min
[(

x̂ Ã
∗
i
∧ x̂ B̃∗

i

)
, S( Ã∗

i , B̃∗
i )

]
,

...

Min
[(

x̂ Ã
∗
n
∧ x̂ B̃∗

n

)
, S( Ã

∗
n, B̃∗

n)
]}

, (19)

where

1. the operators ∧ can be replaced by any t-norms
as shown in Table 1;

2. the value x̂ Ã
∗
i

of the standardized generalized
fuzzy number Ã∗

i and the value x̂ B̃∗
i

of the stan-
dardized generalized fuzzy numberB̃∗

i are cal-
culated by formula (2), respectively;

3. S( Ã∗
i , B̃∗

i ) denotes the degree of similarity be-
tween the standardized generalized fuzzy num-
bers Ã∗

i and B̃∗
i calculated by formula (7).

The value of C(A, B) of formula (19) is a real value
between zero and one due to the fact that values x̂ Ã

∗
i
∈

[0, 1], x̂ B̃∗
i
∈ [0, 1], S( Ã

∗
i , B̃∗

i ) ∈ [0, 1] and 1 ≤ i ≤ n.
The value C(A, B) essentially measures the degree of
compatibility between two sets of generalized fuzzy

numbers A and B, where A = { Ã∗
1, Ã∗

2, . . . , Ã∗
n} and

B = {B̃∗
1, B̃∗

2, . . . , B̃∗
n}.

Step 3: Based on formulas (15), (16) and (19), extend
formula (11) into

D̃i = Ã∗
i ∧ (B̃∗

i ∨ (1 − C(A, B))), (20)

where D̃i is a generalized fuzzy number denoting
the fusion result of the generalized fuzzy numbers
Ã∗

i and B̃∗
i , 1 ≤ i ≤ n, and the operators ∧ and ∨ can

be replaced by any t-norm and t-conorms as shown
in Table 1, respectively. 1-C(A, B) can be seen as a
measure of conflict between two sets of generalized
fuzzy numbers A and B. Assume that 1 − C(A, B) =
p, where p ∈ [0, 1], using formulas (15) and (16) to
calculate D̃i as follows:

D̃i = Ã∗
i ∧ (B̃∗

i ∨ (1 − C(A, B))) = Ã∗
i ∧ (B̃∗

i ∨ p)

=
((

a∗
i1, a∗

i2, a∗
i3, a∗

i4; w Ã∗
i

)
∧ ((

b∗
i1, b∗

i2, b∗
i3, b∗

i4; wB̃∗
i

) ∨ p
)

= (a∗
i1 ∧ (b∗

i1 ∨ p), a∗
i2 ∧ (b∗

i2 ∨ p), a∗
i3

∧ (b∗
i3 ∨ p), a∗

i4 ∧ (b∗
i4 ∨ p);

w Ã
∗
i
+ wB̃∗

i
× C(A, B)

1 + C(A, B)

)
= (di1 , di2 , di3 , di4 ; wD̃i

), (21)

where dik = (a∗
ik ∧(b∗

ik ∨ p), wD̃i
= w Ã∗

i
+wB̃∗

i
×C(A, B)

1+C(A, B) ,
1 ≤ k ≤ 4, and 1 ≤ i ≤ n. From formula (21), we
can see that the calculation result D̃i is still a general-
ized fuzzy number. In formula (21), we use the mean

value
w Ã∗

i
+wB̃∗

i
×C(A, B)

1+C(A, B) to represent the fusion result
of the two certainty degrees of the evaluating values
w Ã

∗
i

and wB̃∗
i

in different degrees of compatibility
C(A, B), where C(A, B) ∈ [0, 1].

Step 4: Apply formula (8) to obtain the ranking order
R(D̃i ) of the fusion results D̃i , where 1 ≤ i ≤ n.
According to formula (8), the ranking value R(D̃i )
of a generalized fuzzy number D̃i , where D̃i = (di1,
di2, di3, di4; wD̃i

), can be calculated as follows:

R(D̃i ) = x̂ D̃i
+ (

wD̃i
− ŷ D̃i

)ŝD̃i × (
ŷ D̃i

+ 0.5
)1−wD̃i .

(22)

The larger the value of R(D̃i ), the better the ranking
of D̃i , where 1 ≤ i ≤ n. Assume that R(D̃i ) is the
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largest value among the values of R(D̃1), R(D̃2), . . .
and R(D̃n), then the alternative xi is the best choice,
where 1 ≤ i ≤ n.

In Step 2 of the proposed algorithm, we use the de-
gree of compatibility C(A, B) (i.e., formula (19)) to
replace Poss[B | A] (i.e., formula (12)). The degree of
compatibility C(A, B) has considered two different sit-
uations shown as follows:

Situation 1: If we use the crisp values between zero
and one to represent evaluating values of criteria,
then the degrees of similarity S( Ã

∗
1, B̃∗

1), S( Ã
∗
2,

B̃∗
2), . . . , S( Ã

∗
n , B̃∗

n) play a minor role and the re-
sult of the degree of compatibility C(A, B) is
equal to the result of Poss[B | A] in formula
(12).

Situation 2: If we use the generalized fuzzy numbers to
represent evaluating values of criteria, then the de-
grees of similarity S( Ã

∗
1, B̃∗

1), S( Ã
∗
2, B̃∗

2), . . . , S( Ã
∗
n ,

B̃∗
n) play an important role to obtain the degree of

compatibility C(A, B), due to the fact that the gener-
alized fuzzy numbers have different types of shape,
as discussed in Section 2.

In the following, we prove that formula (20) still sat-
isfies the two properties of Yager’s non-monotonic in-
tersection operator (i.e., Property 3.1 and Property 3.2)
as follows:

Property 4.1. If C(A, B) = 0, then D̃i = Ã
∗
i , where

1 ≤ i ≤ n.

Proof: From formula (21), if C(A, B) = 0, then we
can see that

D̃i = Ã
∗
i ∧ (B̃∗

i ∨ (1 − C(A, B)))

=
(

a∗
i1 ∧ (b∗

i1 ∨ 1), a∗
i2 ∧ (b∗

i2 ∨ 1),

a∗
i3 ∧ (b∗

i3 ∨ 1), a∗
i4 ∧ (b∗

i4 ∨ 1);
w Ã

∗
i
+ wB̃∗

i
× 0

1 + 0

)

=
(

a∗
i1 ∧ 1, a∗

i2 ∧ 1, a∗
i3 ∧ 1, a∗

i4 ∧ 1;
w Ã

∗
i
+ 0

1

)

= (a∗
i1, a∗

i2, a∗
i3, a∗

i4; w Ã
∗
i
)

= Ã
∗
i ,

where the operators ∧ and ∨ can be replaced by any
t-norms and t-conorms, respectively, and 1 ≤ i ≤ n.

Property 4.2. If C(A, B) = 1, then D̃i = Ã
∗
i ∧ B̃∗

i ,
where 1 ≤ i ≤ n.

Proof: From formula (21), if C(A, B) = 1, then we
can see that

D̃i = Ã∗
i ∧ (B̃∗

i ∨ (1 − C(A, B)))

=
(

a∗
i1 ∧ (b∗

i1 ∨ 0), a∗
i2 ∧ (b∗

i2 ∨ 0), a∗
i3

∧ (b∗
i3 ∨ 0), a∗

i4 ∧ (b∗
i4 ∨ 0);

w Ã
∗
i
+ wB̃∗

i
× 1

1 + 1

)

=
(

a∗
i1 ∧ b∗

i1, a∗
i2 ∧ b∗

i2, a∗
i3 ∧ b∗

i3, a∗
i4

∧ b∗
i4;

w Ã
∗
i
+ wB̃∗

i

2

)

= Ã∗
i ∧ B̃∗

i ,

where the two operators ∧ and ∨ can be replaced by
any t-norms and t-conorms, respectively, and 1 ≤ i
≤ n.

The proposed information fusion algorithm can
handle multi-criteria fuzzy decision-making prob-
lems in a more flexible and more intelligent man-
ner due to the fact that it allows the evaluating val-
ues of the criteria to be represented by generalized
fuzzy numbers or crisp values between zero and
one. In the following, we use an example to com-
pare the proposed information fusion method with
Yager’s operator η [5], where the evaluating values
are represented by crisp values between zero and
one.

Example 4.1. We use the proposed information fu-
sion algorithm to deal with Example 3.1. Assume
that the algebraic product (i.e., a × b) and the alge-
braic sum (i.e., a + b − a × b) are used to represent
the t-norm and the t-conorm (i.e., ∧ and ∨), respec-
tively. Assume that there are two different criteria A
and B and assume that there are three alternatives,
x1, x2 and x3, where their evaluating values are as
follows:

A =
{

1.0

x1
,

0.4

x2
,

0.5

x3

}
,

B =
{

0.2

x1
,

1.0

x2
,

0.3

x3

}
.
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Table 3. A comparison of the prioritized information fusion method with the prioritized
intersection operator proposed by Yager [5].

Properties

Satisfy the properties of non- Deal with Deal with
Methods monotonic intersection operator crisp values fuzzy numbers

Prioritized intersection Yes Yes No
operator [5]

Prioritized information Yes Yes Yes
fusion method

The evaluating values of the two criteria A and B can
be seen as follows:

A =
{

(1.0, 1.0, 1.0, 1.0; 1.0)

x1
,

(0.4, 0.4, 0.4, 0.4; 1.0)

x2
,

(0.5, 0.5, 0.5, 0.5; 1.0)

x3

}

=
{

µA(x1)

x1
,

µA(x2)

x2
,

µA(x3)

x3

}
,

B =
{

(0.2, 0.2, 0.2, 0.2; 1.0)

x1
,

(1.0, 1.0, 1.0, 1.0; 1.0)

x2
,

(0.3, 0.3, 0.3, 0.3; 1.0)

x3

}

=
{

µB(x1)

x1
,

µB(x2)

x2
,

µB(x3)

x3

}
.

By applying formulas (2), (7) and (19), we can obtain
the degree of compatibility C(A, B) between the criteria
A and B as follows:

C(A, B) = Max{Min[(1.0 ∧ 0.2), S(µA(x1), µB(x1))],

Min[(0.4 ∧ 1.0), S(µA(x2), µB(x2))],

Min[(0.5 ∧ 0.3), S(µA(x3), µB(x3))]}
= Max{Min[0.2, 0.2], Min[0.4, 0.4],

Min[0.15, 0.8]}
= 0.4.

It is obvious that the value C(A, B) is equal to the value
of Poss[B|A] shown in Example 3.1, and we can see that
the degree of compatibility between the criteria A and
B is 0.4. Based on the value of C(A, B) and formula
(21), we can calculate the fusion result D̃1 shown as

follows:

D̃1 = Ã∗
1 ∧ (B̃∗

1 ∨ (1 − C(A, B)))

= (1.0, 1.0, 1.0, 1.0; 1.0)

∧ ((0.2, 0.2, 0.2, 0.2; 1.0) ∨ 0.6)

= (0.68, 0.68, 0.68, 0.68; 1)

= 0.68.

In the same way, we can calculate the fusion result D̃2

and D̃3 shown as follows:

D̃2 = Ã∗
2 ∧ (B̃∗

2 ∨ (1 − C(A, B)))

= 0.4,

D̃3 = Ã∗
3 ∧ (B̃∗

3 ∨ (1 − C(A, B)))

= 0.36.

Because of D̃1 > D̃2 > D̃3, we can see that the
preferring order of the alternatives x1, x2 and x3 is
x1 > x2 > x3. Thus, x1 is the best alternative among
the alternatives x1, x2 and x3. This result coincides with
Yager’s method [5] shown in Example 3.1.

In the following, we compare the proposed priori-
tized information fusion method with the prioritized
intersection operator proposed by Yager [5], as shown
in Table 3.

In the next section, we will illustrate that the pro-
posed information fusion algorithm can be used in
the multi-criteria decision-making environment, where
generalized fuzzy numbers are used to represent eval-
uating values.

5. A Numerical Example

In this section, we apply the proposed information fu-
sion algorithm to deal with a multi-criteria decision-
making (MCDM) problem, where we use generalized
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Table 4. Evaluating values represented by generalized fuzzy num-
bers of the priority criteria A and B.

Alternatives
Different
criteria First order criterion A Second order criterion B

Evaluating values
x1 Ã 1 = (10, 10, 10, 10; 1.0) B̃ 1 = (3, 4, 4, 5; 1.0)

x2 Ã2 = (0, 0, 0, 0; 1.0) B̃2 = (10, 10, 10, 10; 1.0)

x3 Ã3 = (3, 4, 4, 5; 1.0) B̃3 = (3, 3.5, 4.5, 5; 1.0)

x4 Ã4 = (0, 1, 1, 2; 1.0) B̃4 = (1, 2, 2, 3; 1.0)

x5 Ã5 = (10, 10, 10, 10; 1.0) B̃5 = (0, 0, 0, 0; 1.0)

x6 Ã6 = (3, 4, 4, 5; 1.0) B̃6 = (5, 6, 6, 7; 0.9)

x7 Ã7 = (4, 5, 5, 6; 1.0) B̃7 = (9, 9.5, 10, 10; 1.0)

x8 Ã8 = (0, 1, 1, 2; 0.9) B̃8 = (6, 7, 7, 8; 1.0)

fuzzy numbers to represent the evaluating values of two
different criteria A and B. Assume that there are eight
alternatives x1, x2, x3, x4, x5, x6, x7, x8 and two different
criteria A and B, where A is the first order criterion and
B is the second order criterion. We use the generalized
fuzzy numbers to represent the evaluating values Ãi

and B̃i of the alternatives xi , where 1 ≤ i ≤ 8, and the
generalized fuzzy numbers are defined in the universe
of discourse X = [0, 10] as shown in Table 4.

From [3], we can see that there are two multi-criteria
decision-making (MCDM) frameworks, i.e., (i) with-
out considering the second order criterion B and (ii)
considering the second order criterion B as shown in
Fig. 3, respectively.

Yager [3] pointed out that the second order crite-
rion could be seen as an additional selector or a filter as
illustrated in Fig. 3(ii). In the following, we use two dif-
ferent cases to discuss two different conditions, i.e., (1)
The MCDM framework only considers the first order
criterion A; (2) The MCDM framework both considers
the first order criterion A and the second order crite-
rion B, and we see the second order criterion B as a
filter. Firstly, we use formulas (17) and (18) to trans-
late the generalized trapezoidal fuzzy numbers shown

Figure 3. The MCDM frameworks: (i) without considering the second order criterion B, and (ii) considering the second order criterion B.

in Table 4 into standardized generalized fuzzy numbers
shown in Table 5.

Then, we use the algebraic product (i.e., a × b) and
the algebraic sum (i.e., a + b − a × b) as shown in
Table 1 to represent the t-norm and the t-conorm (i.e.,
∧ and ∨), respectively. In the two cases, the alternatives
x1, x2, . . . , x8 can be seen as eight different books and
a decision maker wants to choose a most suitable book
from these books.

Case 1: The MCDM framework only considers the first
order criterion A. Assume that the decision maker’s
statement is as follows:

“I want a book which is talking about fuzzy the-
ory.”

In this statement, the first order criterion A is “fuzzy
theory”. According to Table 5, we can see that the
books x1 and x5 completely satisfy the first order cri-
terion A, the books x3 and x6 have the same satisfying
degrees with respect to the first order criterion A, and
the book x2 does not satisfy the first order criterion
A at all. In this case, because the MCDM framework
only considers the first order criterion A, we use for-
mula (22) to calculate the ranking values R( Ã∗

i ) of
other evaluating values Ã∗

i , where the ranking values
R( Ã∗

i ) of the evaluating values Ã∗
i , where 1 ≤ i ≤ 8,

of the first order criterion A are shown in Table 6.
From Table 6, we can see that the ranking order of

these ranking values R( Ã∗
i ) of evaluating values Ã∗

i
is R( Ã∗

1) = R( Ã∗
5) > R( Ã∗

7) > R( Ã∗
6) = R( Ã∗

3) >

R( Ã∗
4) > R( Ã∗

8) > R( Ã∗
2). Thus, the preferring or-

der of these books is as follows:

x1 = x5 > x7 > x6 = x3 > x4 > x8 > x2,

and we can see that the most suitable books for the
decision maker are x1 and x5.

Case 2: The MCDM framework both considers the first
order criterion A and the second order criterion B,
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Table 5. Standardized generalized fuzzy numbers of the priority criteria A and B.

Alternatives
Different
criteria First order criterion A Second order criterion B

Evaluating values
x1 Ã∗

1 = (1.0, 1.0, 1.0, 1.0; 1.0) B̃∗
1 = (0.3, 0.4, 0.4, 0.5; 1.0)

x2 Ã∗
2 = (0.0, 0.0, 0.0, 0.0; 1.0) B̃∗

2 = (1.0, 1.0, 1.0, 1.0; 1.0)

x3 Ã∗
3 = (0.3, 0.4, 0.4, 0.5; 1.0) B̃∗

3 = (0.3, 0.35, 0.45, 0.5; 1.0)

x4 Ã∗
4 = (0.0, 0.1, 0.1, 0.2; 1.0) B̃∗

4 = (0.1, 0.2, 0.2, 0.3; 1.0)

x5 Ã∗
5 = (1.0, 1.0, 1.0, 1.0; 1.0) B̃∗

5 = (0.0, 0.0, 0.0, 0.0; 1.0)

x6 Ã∗
6 = (0.3, 0.4, 0.4, 0.5; 1.0) B̃∗

6 = (0.5, 0.6, 0.6, 0.7; 0.9)

x7 Ã∗
7 = (0.4, 0.5, 0.5, 0.6; 1.0) B̃∗

7 = (0.9, 0.95, 1.0, 1.0; 1.0)

x8 Ã∗
8 = (0.0, 0.1, 0.1, 0.2; 0.9) B̃∗

8 = (0.6, 0.7, 0.7, 0.8; 1.0)

Table 6. Ranking values R( Ã∗
i ) of each eval-

uating value Ã∗
i of the first order criterion A.

Evaluating values Ã∗
i Ranking values R( Ã∗

i )

Ã∗
1 2.0

Ã∗
2 1.0

Ã∗
3 1.3674

Ã∗
4 1.0674

Ã∗
5 2.0

Ã∗
6 1.3674

Ã∗
7 1.4674

Ã∗
8 1.038

and we see the second order criterion B as a filter.
Assume that the decision maker’s statement is as
follows:

“I want the most suitable book which is talking
about fuzzy theory and if possible I want this
book to be concerning management.”

In this statement, the first order criterion A is “fuzzy
theory”, the second order criterion B is “management”.
In this case, we apply the proposed information fusion
algorithm to deal with the MCDM framework as fol-
lows:

Step 1. Based on formulas (17), (18) and (22), we can
translate the generalized trapezoidal fuzzy numbers
shown in Table 4 into the standardized generalized
fuzzy numbers as shown in Table 5.

Step 2. Based on formulas (2), (7) and (19), we can
evaluate the degree of compatibility C(A, B) between
the first order criterion A and the positive criterion

B as follows:

C(A, B) = Max
{
Min

[(
x̂ Ã

∗
1
∧ x̂ B̃∗

1

)
, S( Ã

∗
1, B̃∗

1)
]
,

Min
[(

x̂ Ã
∗
2
∧ x̂ B̃∗

2

)
, S( Ã∗

2, B̃∗
2)

]
,

Min
[(

x̂ Ã
∗
3
∧ x̂ B̃∗

3

)
, S( Ã∗

3, B̃∗
3)

]
,

Min
[(

x̂ Ã
∗
4
∧ x̂ B̃∗

4

)
, S( Ã∗

4, B̃∗
4)

]
,

Min
[(

x̂ Ã
∗
5
∧ x̂ B̃∗

5

)
, S( Ã

∗
5, B̃∗

5)
]
,

Min
[(

x̂ Ã
∗
6
∧ x̂ B̃∗

6

)
, S( Ã

∗
6, B̃∗

6)
]
,

Min
[(

x̂ Ã
∗
7
∧ x̂ B̃∗

7

)
, S( Ã

∗
7, B̃∗

7)
]
,

Min
[(

x̂ Ã
∗
8
∧ x̂ B̃∗

8

)
, S( Ã

∗
8, B̃∗

8)
]}

= Max{0.2667, 0.0, 0.16, 0.02, 0.0, 0.24,

0.4308, 0.07}
= 0.4308.

Step 3. Based on formulas (15), (16) and (21), we can
calculate the fusion results D̃1, D̃2, D̃3, D̃4, D̃5, D̃6,
D̃7 and D̃8, respectively, shown as follows:

D̃1 = Ã∗
1 ∧ (B̃∗

1 ∨ (1 − 0.4308))

= (0.6984, 0.7415, 0.7415, 0.7846; 1.0),

D̃2 = Ã∗
2 ∧ (B̃∗

2 ∨ (1 − 0.4308))

= (0.0, 0.0, 0.0, 0.0; 1.0),

D̃3 = Ã∗
3 ∧ (B̃∗

3 ∨ (1 − 0.4308))

= (0.2095, 0.288, 0.3052, 0.3923; 1.0),

D̃4 = Ã∗
4 ∧ (B̃∗

4 ∨ (1 − 0.4308))

= (0.0, 0.0655, 0.0655, 0.1397; 1.0),

D̃5 = Ã∗
5 ∧ (B̃∗

5 ∨ (1 − 0.4308))

= (0.5692, 0.5692, 0.5692, 0.5692; 1.0),
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Table 7. Ranking values R(D̃i ) of each fu-
sion result D̃i .

Fusion results D̃i Ranking values R(D̃i )

D̃1 1.7273

D̃2 1.0

D̃3 1.2677

D̃4 1.0455

D̃5 1.5692

D̃6 1.2933

D̃7 1.4561

D̃8 1.0523

D̃6 = Ã∗
6 ∧ (B̃∗

6 ∨ (1 − 0.4308))

= (0.2354, 0.3311, 0.3311, 0.4354; 0.9699),

D̃7 = Ã∗
7 ∧ (B̃∗

7 ∨ (1 − 0.4308))

= (0.3828, 0.4893, 0.5, 0.6; 1.0),

D̃8 = Ã∗
8 ∧ (B̃∗

8 ∨ (1 − 0.4308))

= (0.0, 0.0871, 0.0871, 0.1828; 0.9699).

where we use the t-norm “a × b” and the t-conorm
“a + b − a × b” shown in Table 1 to denote the
operations of the operators ∧ and ∨, respectively.

Step 4. By applying formula (22), we can get the rank-
ing values R(D̃1), R(D̃2), R(D̃3), R(D̃4), R(D̃5),
R(D̃6), R(D̃7) and R(D̃8) of the fusion results D̃1,
D̃2, D̃3, D̃4, D̃5, D̃6, D̃7 and D̃,

8 respectively, shown
in Table 7.

From Table 7, we can see that the ranking order of
these ranking values is R(D̃1) > R(D̃5) > R(D̃7) >

R(D̃6) > R(D̃3) > R(D̃8) > R(D̃4) > R(D̃2). Thus,
the preferring order of these books is as follows:

x1 > x5 > x7 > x6 > x3 > x8 > x4 > x2,

and we can see that the most suitable book for the
decision maker is x1.

From the results of Case 1 and Case 2, we can see
that if we do not consider the second order criterion B
as a filter, we can not distinguish the preferring order
between the books x1 and x5; x3 and x6. However, if
we use the proposed information fusion algorithm to
consider the second order criterion B in the MCDM
framework, we not only can distinguish the preferring
order between the books x1 and x5; x3 and x6, but also
can hold the preferring order of the other books using
the first order criterion A. Furthermore, in Case 1, we

can see that the book x4 is more suitable than the book
x8 for the decision maker’s need if we only consider the
first order criterion A. However, in Case 2, we can see
that the book x8 is more suitable than the book x4 for the
decision maker’s need if we consider the two different
criteria A and Bsimultaneously. The main reason is that
the evaluating values Ã∗

4 and Ã∗
8 of the books x4 and

x8, respectively, of the first order criterion A are very
similar, where Ã∗

4 > Ã∗
8; the evaluating values B̃∗

4 and
B̃∗

8 of the books x4 and x8, respectively, of the positive
criterion B are very dissimilar, where B̃∗

4 < B̃∗
8. Thus,

the preferring order between the books x4 and x8 will
be changed when we consider the two different criteria
A and B simultaneously.

6. Conclusions

In this paper, we have extended the prioritized operator
presented in [5] to propose a prioritized information
fusion algorithm based on similarity measures of gen-
eralized fuzzy numbers for handling prioritized multi-
criteria fuzzy decision-making problems. The prior-
itized multi-criteria fuzzy decision-making problems
have two different criteria A and B, where A is the first
order criterion and B is the second order criterion. From
Section 5, we can see that the second order criterion B
can be seen as a filter to choose the most suitable book
from those books which satisfy the first order crite-
rion A. Furthermore, the proposed information fusion
method can handle the decision-making problems in
a more flexible manner due to the fact that it allows
the evaluating values of the criteria to be represented
by generalized fuzzy numbers or crisp values between
zero and one, where the generalized fuzzy numbers
can indicate certainty degrees of the evaluating values
of the decision maker’s opinions.

The prioritized information fusion method presented
in this paper can deal with single-level information
filtering problems. In the future, we will extend the
proposed prioritized information fusion algorithm to
develop a recursive algorithm for handling multi-level
information filtering problems due to the fact that the
decision makers may deal with multi-level information
filtering in the real world.
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