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Abstract. Simulation and decision support tools can help airport ground controllers to improve surface operations
and safety, leading to enhancements in the process of traffic flow management. In this paper, two planning approaches
for automatically finding the best routes and sequences for demanded operations are proposed and analyzed. These
approaches are integrated into a general decision support system architecture. The problem addressed is the global
management of departure operations, moving aircraft along airport taxiways between gate positions and runways.
Two global optimization approaches have been developed together with a suitable problem representation: a modified
time-space flow algorithm and a genetic algorithm, both aimed at minimizing the total ground delay. The capability
and performance of these planning techniques have been illustrated on simulated samples of ground operations at
Madrid Barajas International Airport.
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1. Introduction

International air traffic organizations are calling for an
effort to improve ground operations. When traffic de-
mand increases beyond the available resources, conges-
tion and ground delays occur, and both passengers and
airlines suffer from disrupted services and their eco-
nomic consequences. Over the previous few decades,
airport capacities have become clearly insufficient to
meet air traffic demand, which has been growing on a
worldwide scale. During peak periods of traffic flow
or when capacity falls due to bad weather conditions,
demand temporarily exceeds the available operational
capacity, and severe congestion occurs resulting in ex-
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pensive delays for users and airlines. Often, the obvious
solution of building new airports or additional runways
to enlarge existing facilities is either not feasible or
very limited. Therefore, there is a need for research on
new ATM procedures to increase efficiency in the us-
age of current resources. Current control methods used
at most airports rely on visual surveillance from the
control tower, oral communication with pilots, or traf-
fic monitoring and planning by human-mediated pro-
cesses performed by controllers. These methods are
quite inefficient when the number of ground operations
increases, especially where there are complex aero-
drome configurations, or when visibility falls due to
weather conditions, leading to controller overload and
a sharp drop in airport capacity.

Air traffic organizations, such as FAA (Federal Avi-
ation Administration) or ICAO (International Civil
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Figure 1. A-SMGCS functional architecture.

Aviation Organization), have set up some important in-
ternational programs to increase the levels of automa-
tion in these areas. The set of technologies and pro-
cedures identified as support for future airport traffic
management are what constitute the A-SMGCS (Ad-
vanced Surface Movement, Guidance and Control Sys-
tems, [1]) concept, whose development will be aimed at
increasing safety and efficiency in surface airport oper-
ations. Basically, four interdependent functional layers
have been identified as part of this concept (see Fig. 1):
surveillance, control, planning and guidance.

These layers will implement independent intercon-
nected modules, interchanging information to carry out
different tasks in the traffic management process. These
tasks include gathering and fusion of information from
sensor and information systems (surveillance), semi-
automatic supporting tools to detect hazardous traffic
conflicts (control), selection of appropriate sequences
and ground routes for operations (planning) and distri-
bution of aids to pilots for landing and surface naviga-
tion (guidance). The ultimate objective of A-SMGCS
development is improved efficiency in airport surface
movements. Both the ICAO and FAA indicate several
aids and operational modifications to be considered
[2, 3]. Basically, surface traffic planning should assist
controllers to manage departure and arrival operations,
considering time schedules and taxiing maneuvers. The

most critical situation arises when total demand tem-
porarily exceeds airport capacity. A decision must be
made on which operations should be delayed at gates
(ground holding) and which routes should be assigned
to minimize total delay.

A prototype A-SMGCS system is currently be-
ing implemented at Madrid Barajas International Air-
port, Spain’s busiest airport. Our group has already
researched the early steps toward automated airport
traffic management, regarding sensor data fusion [4],
image processing [5] and conflict detection [6]. With
respect to planning, the current mode of operation is a
segregated scheme, with one runway used exclusively
for landings and the other for takeoffs, simply for the
benefit of direct management and fixed configurations.
However, a mixed mode, with runways used for both
landings and takeoffs, could potentially increase avail-
able capacity, since the en-route separation between
aircraft necessarily leads to lower runway usage when
they are assigned for landings only. Currently, the flight
plans have pre-assigned gates and runways, there are
fixed routes from gates to runways depending on air-
port configuration, and ground controllers select the
starting time to meet the time slots delivered by Eu-
ropean Central Flow Management Unit (CFMU). An
automatic scheme that would dynamically select appro-
priate routes and schedules for demanded departures to
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achieve minimum ground delay is an open line of re-
search, considering what potential advantages it could
have over current modes of operation.

The work presented here is aimed at analyzing
some important aspects of the airport-planning prob-
lem, which is one of the least mature of A-SMGCS
functions. Alternative techniques have been developed
and integrated in a prototype system [7]: IPAGO (In-
telligent Planning for Airport Ground Operations). The
techniques analyzed here have been developed to im-
prove the performance currently achieved using con-
ventional procedures (a purely mental process per-
formed by human controllers). The goal is to integrate
the information available in A-SMGCS to automati-
cally provide controllers with satisfactory suggestions
on the complex situations that they face.

The planning problem of searching optimal time-
space assignments is NP hard. A possible strategy for
dealing with this complexity would be to transform the
problem, using some reasonable simplifications, so that
it can be solved by classical techniques, such as net-
work flow algorithms on a space-time basis or dynamic
programming. As this search is complex in computa-
tional terms, artificial intelligence techniques, such as
planning or stochastic optimization [8], could also be
used to allow more details concerning the problem to
be addressed. If formulated in general abstract terms,
the problem to be solved becomes a search problem
in the possible-solutions space, where different tech-
niques can be explored and compared.

A lot of research has been done on Traffic Flow
Management problems, in both the communication and
transport networks fields. In the case of airspace traf-
fic, there are approaches based on temporal and spa-
tial operations research techniques complemented with
heuristics [9–12], dynamic programming [13], and evo-
lutionary algorithms for different levels of Air Traf-
fic Control, such as traffic assignment [14, 15], design
of airspace sectors [16] or en-route conflict resolution
[17].

Regarding traffic flow management at airports, there
is strong interest in improving the use of available ca-
pacity. Simulation tools modeling airport operations,
such as TAAM (Total Airspace and Airport Mod-
eller) ([18]), SIMMOD (Simulation Model) (FAA) or
TARMAC (Taxi and Ramp Management and Control)
(DLR) [19], have been applied to analyze alternative
configurations and bottlenecks at airports like Schiphol
[18], Orly, C. De Gaulle, [20] or St. Louis [21]. Sim-
ulation has been complemented with data analysis to

study the capacity enhancement derived from expan-
sions or reconfigurations at airports such as DWF [22]
or Newark [23].

With respect to specific techniques for planning air-
port operations, most approaches aim to optimize the
use of runways or minimize congestion at destination
airports. So, there are techniques aimed at comput-
ing appropriate landing sequences, such as [24], and
schedules to assign multiple runways to landings [25]
(segregated mode). Integer programming has also been
applied to on-line optimize the mixed assignment of
takeoffs and landings to runways depending on de-
mand in [26, 27] and has recently been expanded to
include collaborative decision-making paradigms [21,
28]. Other approaches, such as [29–31], decide the de-
lays on the ground to solve future problems on arrival
at destination airports. Finally, airport ground planning
may address the details of surface operations, consider-
ing surface routes for taxiing. Some approaches search
for optimal routes, considering individual operations
one by one and taking the previously assigned traffic
as constraints, [32], while only a few papers address
the search for global solutions [20, 33, 34]. They use
heuristics and genetic algorithms to explore appropri-
ate decisions.

In this paper, two different approaches have been
applied to the problem of global airport surface plan-
ning to evaluate their problem-solving capability and
assess their performance. A modified flow algorithm
has been developed to get the optimal flow distribution
over airport segments, starting from gates and ending
at runways. It calculates the maximum number of de-
manded operations that can be routed during a fixed
planning period for a given situation of airport occupa-
tion (current and predicted) and demanded operations.
This is done after modeling the planning problem as a
network with time- constrained arcs. Therefore, flow
distribution techniques are applied to dynamically get
solutions with a deterministic (non-heuristic) optimal
scheme. The drawback of this method is the loss of the
individual route plans for each demanded operation, as
this method considers the operations as indistinguish-
able flow units.

The other approach analyzed uses a stochastic-
optimization method: the genetic algorithm paradigm.
The problem was addressed the other way around. The
number of demanded departures was fixed, and the aim
of the optimization method was to minimize the time
required to carry out all operations, allowing a more
flexible problem representation and including specific
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Figure 2. Inputs and outputs of surface traffic planning.

considerations for individual operations, such as as-
signed runway or weight category. In the final section,
both techniques have been quantitavely compared un-
der similar conditions, and we have explored what ad-
vantages automatic planning has over current methods
with fixed routes.

The paper is organized as follows. First, a generic
formulation of system architecture and information in-
puts is given in Section 2, introducing the main compo-
nents of the DSS and the graph-based representation of
airport status. Then, Section 3 states the problem to be
solved by the airport planning function. The character-
istics and specific features of the problem are compared
with other traffic flow management situations, stress-
ing the simplifications considered to develop the ana-
lyzed approaches. Section 4 details the techniques pro-
posed for airport planning. First, we give some back-
ground on network flow algorithms and genetic algo-
rithms, and then we detail the proposed adaptations
and enhancements for applying these paradigms to the
problem considered. Section 5 presents some experi-
mental results from simulating representative scenar-
ios on the available platform, illustrating the feasibility
of the proposed techniques and goal achievement. Fi-
nally, some conclusions and further work are presented
in Section 6.

2. System Architecture

An A-SMGCS planning function, generally conceived
as a DSS, should integrate the elements needed to rep-
resent real situations and to implement the techniques
supporting airport traffic flow management. A func-

tional graph of the information gathered and outputs of
surface traffic planning is shown in Fig. 2.

The inputs for the planning procedure are basically
the operations scheduled in the departure queue and
all the available airport resources to be allocated. The
airport resources are the runways and all alternative
routes linking them with the apron areas. They will
be represented in the airport layout and affected by
the currently observed situation of surface traffic and
planned operations.

The architecture developed for the surface traffic
planning system is shown in Fig. 3 and has three ba-
sic elements: user interface, intelligent planning sys-
tem, and information gathering modules. The infor-
mation gathering modules are the link connecting the
core planning algorithms with the current airport situ-
ation, gathering all the necessary information from the

Figure 3. System structure.



Methods for Operations Planning in Airport Decision Support Systems 187

available information systems. This information is inte-
grated and transformed into an internal representation
that the system uses to represent the search problem
and then work out the solutions.

The basic element for representing resources, the air-
port layout (runways, taxiways and aprons), is loaded
first to build a directed graph containing constrained
capacity arcs, transit nodes and flow-source nodes. All
the constraints to be considered for each planned in-
terval should be collected and entered in this graph.
Constraints cover runway status, including time slots
previously allocated for other operations, the current
and predicted surface-traffic situation, safety alerts and
controller-imposed modifications. Graph source nodes
represent the origin of the demanded operations, basi-
cally airport passenger terminals for takeoffs and land-
ings fixes from close airspace.

The system will be illustrated by an example of traffic
planning at Madrid Barajas International Airport. An
internal representation of airport layout, in the shape
of a directed graph, is generated first, as illustrated in
Fig. 4. It depicts the two runways, three passenger ter-

Figure 4. Graph representation of Madrid Barajas International Airport.

minals and taxiways linking them at Madrid Barajas
International Airport.

The graph is divided into two different basic ele-
ments: nodes and arcs. A node is a reference place in
the airport layout, where an aircraft can be located,
representing both a waypoint in a trajectory, generally
junctions between runways and taxiways or holding
areas before accessing runways. An aircraft path, or
route, is defined as a sequence of nodes, each one also
associated with an estimated time of arrival. Nodes are
linked by means of arcs. An arc has three attributes:
direction, represented in Fig. 4 by arrows, cost, repre-
senting the time needed to cover the arc, and capacity.
The available capacity of each arc represents the free
space, where flow units (operations) may be allocated
over time for each planned interval. Capacity, there-
fore, represents the real resources to be managed by
the system. These resources have been represented as
capacity vectors for each arc. This will reflect the dif-
ference between maximum capacity and planned oper-
ations. Additionally, the existing and predicted traffic
for each arc reported by the A-SMGCS Surveillance
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Figure 5. Example of departure queue.

subsystem should also be considered in the available
capacity, allowing the deviations between planned op-
erations and real-time observation to be dynamically
corrected. When a planned route is occupying a seg-
ment, the capacity of this segment is decreased one unit
for the intervals during which the aircraft is supposed
to be crossing the segment. Explicit representation of
available capacity is mainly to be used by planning
techniques, although it is also useful as a graphical
tool in the DSS for reporting the occupation status for
all possible routes to the controller and justifying why
the suggested solutions are appropriate for the current
situation.

The maximum available capacity for each arc, de-
fined as the number of possible incoming operations by
time unit, depends basically on the safe minimum lon-
gitudinal separation between operations, and aircraft
groundspeeds. Depending on these characteristics, spe-
cific values for costs and arc capacities in the graph
representing the airport will be detailed in Section 5.

The demanded operations that are to make use of
the available airport resources are represented by six
attributes: operation identification, airport origin and
destination points, initiation and estimated completion
times, and priority. Going back to the example, Fig. 5
illustrates a possible situation with 12 operations to be
planned in the next 30 minutes. These operations are en-
tered in the departure queue. They will share the airport
resources (runways and some taxiways) also assigned
to some landing operations that will take place in the
same time interval (and, therefore, representing con-
straints on the search for minimum-delay solutions).

The operations to be served have the following note-
worthy feature. The origin points (terminals T1 or T2)
of some operations, like the second one, JKK424, have

been defined, whereas the destination points have not.
This means that any destination point (in this case
RUNWAY1 or RUNWAY2) would be valid for these
operations. The planning procedure is, therefore, free
to allocate the takeoff runway, achieving the solution
with a global minimum delay. When there are not many
constraints, as in this case, the system is potentially able
to find more solutions and improve the global objective
function (at the cost of extending the search space). As
explained in the next section, the planning function is
aimed at optimizing the departure sequence, assigning
a route and a starting time to each demanded operation.
Solutions will be a set of routes, each one represented
by vectors of waypoints, referred to as nodes in the
directed graph and associated with the estimated time
interval for passing through. The implemented algo-
rithms will try to optimize the maximum flow, while
minimizing the average delay of operations.

Taking into account the format selected to represent
the airport planning problem (both resources and op-
erations), the core intelligent system (see Fig. 2) has
been implemented using two alternative techniques to
search for appropriate solutions, according to the opti-
mization criterion, capacity constraints and demanded
operations for each planned interval.

3. Airport Planning Problem

As mentioned in Section 1, the A-SMGCS plan-
ning function is aimed at efficiently managing airport
ground traffic, reducing delays of operations. Like other
Traffic Flow Management problems, it searches for
the optimal allocation of resources to maximize traffic
flow, where the definition of resources and flows is do-
main specific. Here, resources can be represented as a
set of space-time positions (4-D trajectories), and the
flow assignation problem has to do with how to design
and assign these space-time trajectories to demanded
traffic, where the solution should satisfy an optimiza-
tion criterion and constraints.

3.1. Problem Definition

Airport planning should provide routes for each air-
craft, considering demanded operations for both land-
ing and takeoff. These operations share the airport re-
sources, namely runways, taxiways and aprons (gates).
Therefore, the system must sequence and time-allocate
operations to minimize a global cost function: the sum
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of all taxiing and waiting times. Thus, the problem to
be solved has basically two aspects:

• Finding routes for operations with minimum delays
(taxiing length).

• Finding a sequence of operations and time schedule
(allocation of time delays) to achieve optimal use of
capacity.

With these considerations, the planning system
should provide time-space trajectories (each repre-
sented as a series of nodes in the graph) and associated
times to be assigned to the demanded operations shar-
ing airport resources. As mentioned earlier, the system
must contain a suitable and complete representation
of the real problem to be solved, including the opera-
tions for allocation, the status of resources occupation,
constraints, controller instructions, close airspace sit-
uation with the traffic arriving from the terminal area,
etc. This internal representation will be filled in with the
available information in the system, including access to
surveillance function output, information systems and
databases, user interface, etc. Then, planning function
algorithms will generate the possible alternative solu-
tions according to this problem representation, which
will then be translated into the final actions to be taken
by the controller and pilots. The planning process is
conceived as part of the DSS. It must, therefore, be
flexible and responsive to indications, modifications,
etc., introduced by the controller through the interface.
To be useful to end users, the two basic characteris-
tics required of the searched solutions are that they
must generated from a global and dynamic point of
view:

• The generation of global solutions implies consider-
ing all operations to be served and the status of all
resources at the same time, rather than generating
particular solutions useful only for individual inter-
ests. So, a global cost function, such as the sum of all
delays resulting from a solution, must be evaluated
to decide the most profitable actions.

• The scheme must dynamically integrate the informa-
tion gathered about the current status of traffic, op-
erations served, and other events, such as controller
instructions, conflicts, etc. So, it should be reactive to
the evolution of the global status and select the best
solution at any time. If anomalous or hazardous situ-
ations are detected, or there is controller interaction
to indicate adequate modifications or constraints, the

flow management system should dynamically adapt
and find the best solution.

These requirements on the search for global solu-
tions can be illustrated by an incremental example. If
a single departure operation in the queue is to be as-
signed, considering an empty airport, the system would
obviously output the shortest path to the closest run-
way, generated straightforwardly by a shortest-path
algorithm, such as Dijkstra’s or A∗ algorithms [20].
However, if this shortest path is already occupied by
another operation, i.e. considering a non-empty but pre-
assigned airport situation, the system must now decide
between two basic alternatives: delaying the starting
time until the resources are freed or selecting alterna-
tive routes for the two operations to follow at the same
time. Finally, there are situations that will involve sev-
eral simultaneously demanded operations competing
for the same planning interval, while sharing resources
with other operations in progress. The system will now
have to decide their sequence, scheduled timetable and
routes assigned to each operation to achieve the final
goal of global minimum delay. Section 5 details some
illustrative examples of problems to be solved.

So, airport traffic flow management is a planning
problem with particular features. Decisions must be
taken about the details of a set of operations to be
served, where the control tower is a centralized posi-
tion. It must take into account constraints on operations,
such as separation to guarantee safety and minimum
time intervals in the use of runways, and constraints
on available resources, since they may be occupied
by other pre-assigned operations (for instance, land-
ings delivered by the close airspace ATC center have
higher priority). If all possible maneuvers for individ-
ual trajectories were considered, the decision variables
for planning would certainly be complex. By way of a
simplification, the system will decide only about routes
and initial delays, supposing that each operation spends
any waiting time required to reach its allocated slot sta-
tionary at the gate, which is the preferred situation from
the viewpoints of safety and manageability.

Going back to the example of ground operations
planning at Madrid Barajas International Airport, all
operations will be allocated to time-space routes or de-
layed until later intervals once the planning has been
completed. The system displays the status of opera-
tions against time, where the position of each aircraft
is indicated by its operation identification, as shown in
Fig. 6.
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Figure 6. On-line information of surface operations.

3.2. Simplifying Assumptions for Modeling the
Airport Planning Problem

For the planning algorithms considered here, we have
developed a simplified model of airport conditions and
aircraft motion on the ground. A simplified representa-
tion of the airport, operations and capacities has been
selected, allowing a preliminary analysis of potential
advantages derived from the introduction of a global
and dynamic planning function. The main assumptions
are listed below:

1. Aircraft move on ground with uniform motion be-
tween the gates and runways. The same value of
average groundspeed has been considered for all
operations.

2. Once the ground movement plan is delivered for an
aircraft, there is no uncertainty about the trajectory
it will follow. It will take the allocated route and start

at the indicated time, moving with uniform motion
from the gate to the runway.

3. All the delay suffered by an operation is translated to
the initial waiting time at the gate, which is the pre-
ferred situation under normal conditions. The plan-
ning function will decide the starting time for an
operation and, once it starts to move, it will not stop
until it arrives at its destination.

4. All information about ground operations is well
known in advance for the whole duration of the
planning interval. It is assumed that traffic plans
for operations performed during the medium-term
planning period are known and that all aircraft
will tightly follow their plans. This aspect is not
in conflict with the requirement of dynamic re-
action for planning, since the continuous oper-
ation of algorithms will be renewing informa-
tion about predicted scenarios throughout this time
interval.
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Therefore, summarizing these assumptions, all the
information about airport surface occupation and de-
manded operations for allocation is known in ad-
vance for a centralized function to decide plans,
and information is continuously renewed in time
to allow dynamic search of best decisions against
time.

So, the tool suggests the optimum solutions under
these conditions, which can be helpful for suggesting
to the controller which the promising alternatives are.
To be a completely useful tool in operational condi-
tions, some further steps would be needed. The most
important aspect would be a flexible interface to con-
tinuously re-define the problem, taking into account
modifications made by controllers. Deviations in op-
erations with respect to allocated plans could be con-
sidered to correctly model the available resources and
then decide appropriate plans for reaction. Changes in
plans should, as far as possible, rule out “jumps”. To do
this, only the deviated operations should be considered
as variable decisions, not moving the other already as-
signed plans. After identifying a deviation, the other
assigned operations can be considered as fixed con-
straints in the available capacity, and then the affected
operation can be re-designed. The exception is when,
due to a deviation, some allocated operations violate
constraints, in which case they must be also consid-
ered for re-planning.

Finally, more details about the operations should be
included in the models, such as holding positions at
taxiing or before takeoff, variations in groundspeed,
or variable time separations in runways depending on
weight categories. Finally, the uncertainty in maneu-
vers and speed throughout the planned time could be
considered in the generated plans.

4. Techniques for Ground Planning

Having represented the airport planning problem in a
directed graph format as described in previous sections,
here we analyze some applicable techniques to gener-
ate the solutions, according to the pursued goals, de-
manded operations and constraints. Then, the finally
proposed schemes are detailed.

In the first place, the above-mentioned simplifica-
tions have transformed the airport- planning problem
into a flow management problem so that we can ap-
ply classical network flow algorithms, now extended
to cover a space-time search space. The basic approach
in this case has been to fix a planning time period, repre-

sent the demanded operations as flow units, and search
paths in the graph to achieve a maximum flow with
minimum transit delays. This must be done considering
all operations for planning at the same time and their
possible schedules against the available time-varying
capacities. In this case, the required minimum sepa-
rations and assumed aircraft groundspeeds have been
translated to arc capacities, as indicated in the previous
section, fixing the flow constraints to be handled by
these algorithms.

The second approach considered in this paper in-
volves running an explicit search using an artifi-
cial intelligence technique based on stochastic opti-
mization: the GA paradigm. To do this, the routes
and time schedules for all demanded operations are
represented as decision variables in a constrained
space, where the minimum separations between air-
craft are explicitly modeled and the optimum solution is
searched.

However, the two techniques do not work in exactly
the same way. The GA approach directly includes the
individual operations in the encoded problem. The so-
lution, therefore, refers to each operation: allocated
route and schedule. This does not apply to the flow
management algorithm, MCMF, where operations for
allocation are first abstracted as flow units. This will
deliver the optimum flow distribution, from which the
individual operations should be extracted later. There-
fore, the designed MCMF algorithm has the advantage
of finding the optimum distribution, but only when op-
erations are not distinguishable: it takes the number
of operations from each terminal and selects how and
when to deliver them to runways in order to minimize
the sum of delays. However, only the GA technique can
consider limitations concerning individual operations.
For instance, some operations may be constrained to
depart only from a certain runway. Therefore, it should
consider only routes from the departing terminal end-
ing at that runway. Another constraint may be a time
separation depending on the specific weight category of
aircraft, which can be considered only when individual
operations are analyzed.

Finally, any technique applied within this framework
could consider a set of priority levels. The simplest pos-
sibility is iterative algorithm operation, each iteration
dealing with one level of priority and assigning the
operations in this set, and leaving these allocations as
constraints for the next iteration. One possibility would
be to increase the priority of operations delayed during
the last planning interval.



192 Herrero et al.

In the following, the bases for both approaches are
summarized and then each of the proposed approaches
is detailed.

4.1. Classical Flow Algorithms

The algorithms for flow management on networks
come from the field of operations research [35,36],
specifically from optimization techniques applied to
integer-constrained linear programming. They are
well-known methods for outputting optimal routes and
flow distributions in networks under stationary condi-
tions (all flows are characterized with constant values
or long-term statistics).

The basic structure handled by these algorithms is
a directed graph (V, E), where V is a set of nodes and
E is a set of directed arcs or edges linking the nodes.
The network is able to move some commodity along
the arcs, where the flow is defined as the quantity of
commodity moved per time unit. A positive-valued real
variable, x1, is defined containing the flow distribution
for all arcs in the network, 1 ∈ E , according to the
direction defined by each arc. Each node N in the graph
is classed as one of three possible types, depending on
the flow balance of arcs leaving and arriving at the node,
bN : source, if bN > 0, sink: when bN < 0 and transit:
when bN = 0.

The main results available for network flows are for
a simple type of network, referred to as a basic network,
characterized by two properties:

• There is a single source, S, and a single sink, T .
• For every arc, there is a positive number called ca-

pacity, c1, defining the maximum flow that can be
assigned (x1 ≤ c1).

Besides, when there are defined costs per flow unit
for each arc, d1, we have a weighted basic network. As
we will see later, the assumption of basic networks is
not a severe constraint, since there are simple transfor-
mations that can be applied to more generic networks
to convert them into basic networks [35]. The three
main results from network flow algorithms that will be
considered are briefly presented below.

4.1.1. Maximum Flow Algorithm. This problem in-
volves searching the flow distribution in the network
arcs, x1, that maximize the flow between S and T and
satisfy all network constraints (the same flow leaving
S arrives at T , the flow balance in transit nodes is zero,

and the condition 0 ≤ x1 ≤ c1 is satisfied by all arcs
1 ∈ E).

A classical algorithm, taken from Ford and Fulkeson
[36], computes the maximum flow in the network by
incrementally increasing, whenever possible, the flow
along augmenting paths. It works with an extension of
the edge set, defining, for each occupied arc, another
in the opposite direction with as much capacity as the
assigned flow in the original direction. This allows a
backtracking mechanism to find new flow-augmenting
paths by re-allocating previous routes and increasing
the flow in the network.

4.1.2. Minimum Cost Path. This problem involves
searching the route with minimum cost between S and
T to send a flow unit: minimize x1, 1 ∈ E{∑1∈E d1x1},
satisfying the same network constraints as above.

An optimal and efficient algorithm for this problem is
Dijkstra’s algorithm [36], which computes the solution
in O(m log n) time, where n, m are the number of nodes
and arcs, respectively. Unfortunately, Dijkstra’s algo-
rithm is only applicable when all costs d1 are positive.
A solution for the general case with positive and neg-
ative costs is the Bellman-Ford algorithm [37], which
finds the solution in O(nm) time. As we will see next, al-
though the original airport graph has positive costs (the
time needed to cross each edge), the transformation of
Ford-Fulkerson’s method to discover flow-augmenting
paths introduces arcs with negative costs, which rules
out the application of Dijkstra’s algorithm.

4.1.3. Minimum-Cost Maximum-Flow (MCMF) Al-
gorithm. Finally, a combination of the algorithms
solving the two above-mentioned problems, maximum
flow and minimum cost, can send a certain amount
of flow, F, between source and sink nodes in a basic
network, at minimum cost. Besides, if the flow quan-
tity F is increased until the network is fully saturated,
the problem addressed is then the delivery of maxi-
mum flow between source and sink at minimum cost
(Minimum-Cost Maximum Flow, MCMF [36], algo-
rithm). The MCMF steps are as follows:

• Step 0. Find the shortest path between source S and
sink T and send as much flow as possible.

• Step 1. Find the shortest path between S and T, con-
sidering an expanded network. Non-saturated arcs
have the original cost, saturated arcs have infinite
cost, and for each arc with flow higher than zero, a
fictitious arc in the opposite direction and with neg-
ative cost is considered.
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• Step 2. Send the maximum possible quantity of flow
along the shortest path found in step 1. For fictitious
arcs included in the path, the allocated flow will be
subtracted from the respective original arcs in the
original directions.

• Step 3. Repeat steps 1, 2 until there are no more
unsaturated arcs available to find new paths.

Therefore, this algorithm alternates steps to find flow
augmenting paths in the constrained network and to se-
lect those with minimum cost. Step 0 is the first action
for initialization, which is equivalent to step 1 before
having sent any flow unit. The algorithm iterates un-
til no more flow units can be sent from S to T , so it
achieves the maximum flow through the network with
minimum cost.

4.2. Proposed Planning Algorithm Based on
Extensions of Classical Flow Algorithms

The main goal here was to extend the classical network-
flow algorithms described in 4.1 and adapt the airport
problem representation to develop the desired solutions
according to the formulation stated in Section 3. The
goal is to find routes and schedules for the required op-
erations (flow units), achieving an optimum usage of
available capacity, adapted to dynamic conditions. The
enhancements proposed here are two-fold. First, the
introduction of time scheduling for operations (deci-
sion on time slots) in the search space variables of flow
management algorithms, extending the dimensions of
variables usually handled (which do not consider dy-
namic variations in flows or capacities). Secondly, the
application of some basic transformations to the graph
representing the problem so as to address important
practical issues, such as deciding the initial operation
delays, assigning multiple sources to multiple sinks
and explicitly considering intersections. The decided
plans allocated to the demanded operations will dy-
namically depend on the airport conditions (available
capacities of runways and taxiways during the planning
period, other operations required for the same period,
etc.).

So, the decision variables (flows for each arc) will
consider the time dimension. To do this, both allocated
flows and available capacities have now been repre-
sented by vectors, with as many components as time
units considered for the planning interval. The MCMF
algorithm has been reformulated for a representation
of flows and capacities with N components, corre-

sponding to N time intervals considered for planning:
x1[k], c1[k], k = 1, . . . , N .

The MCMF procedure is now applied considering
time dependence. To allocate a flow quantity to an
arc, the occupied time interval is first computed and
then compared with the available capacity in the re-
spective interval. The key aspect for calculating the re-
spective time interval (index of vectors) is the assumed
constant-speed motion with known mean value for air-
craft groundspeeds. Once this correspondence between
node positions and time intervals has been defined, the
basic structure of the MCMF algorithm (Section 4.1.3)
is unchanged.

This extension of the MCMF algorithm, together
with the explicit representation of waiting nodes in the
graph to be considered in the route-decision variables,
will allow us to find flow vectors for allocation. So
the sequence and schedule of operations have been
naturally included in the flow optimization process.
The examples presented in Section 5.1 illustrate how
the solutions handle time and space criteria to search
the optimum distribution of demanded operations:
those achieving a maximum “packing” of departures.

The other aspects covered before applying it to air-
port planning are the above-mentioned transformations
of the graph representing the airport: multiple sources
and sinks, delay nodes and intersection nodes, which
are briefly presented next.

4.2.1. Multiple Sources and Sinks. Multiple sources
and sinks (representing, for instance, the allocation of
operations coming from several terminals to several
runways) can be solved by a simple transformation
[36]. Original sources and sinks are transformed into
transit nodes connected to two unique “super-nodes”:
SS, including all source nodes, and ST, including all
sink nodes. The edges linking original sources and
sinks with super nodes have zero cost, and capacity
equals the number of demanded operations in the case
of source nodes or infinity capacity in the case of sink
nodes. Figure 7 presents an example where a network
with three sources and two sinks has been transformed
into a basic network. Arc capacities are specified in
Fig. 7 between brackets, while the costs are entered in
squares drawn on the arcs.

4.2.2. Waiting Nodes. To account for waiting periods
in the generated routes, each source node will be linked
to a series of new nodes in the graph: the waiting nodes.
There will be as many waiting nodes as there are time
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Figure 7. Multiple sources and sinks.

Figure 8. Introduction of two waiting nodes: S1, S2.

intervals considered for delay (if an operation is not
assigned after considering all possible waiting nodes,
it will be delayed until the next planning interval). The
edges connecting waiting nodes with each other (for
instance, go from status with a one-interval delay to
status with a two-interval delay, and so on) have un-
limited capacity, but cost equals the number of delayed
time intervals. Arcs connecting new waiting nodes with
the other original nodes in the network have the same
cost as the original ones, but their capacity vectors will
be shifted to the left along the time axis as many units
as the time delayed. Figure 8 shows an example, with
the original nodes on the left-hand side (a source node
S connected to transit node A), and the introduction of
two waiting nodes on the right side.

c = [4, 4, 2, 2, 3, 3, 4, 4, 4, 4]

c1 = [4, 2, 2, 3, 3, 4, 4, 4, 4, 4]

c2 = [2, 2, 3, 3, 4, 4, 4, 4, 4, 4]

Two delay nodes are included, S1, S2, each delayed
one time unit. Therefore, the cost for each arc is 1 and
the original vector capacity, c, is shifted 1 and 2 units
to left.

Figure 9. Constrained-capacity intersection node.

4.2.3. Intersection Nodes. Finally, it is interesting to
note that the computation of the available arc capacities
explicitly considers minimum separation, but affects
only longitudinal separation. Depending on velocity,
the longitudinal separation is defined by the maximum
number of operations that can enter an arc in a time
unit. However, the number of operations crossing a
node sometimes needs to be limited. For instance, the
number of operations that can access a junction area
where several routes may intersect needs to be fixed to
avoid separation conflicts. This can be done by a sim-
ple transformation, introducing a fictitious new transit
node and arc with zero cost, but bounded capacity (note
this is the opposite situation to waiting nodes). An ex-
ample is given in Fig. 9, where node B is expanded
with fictitious node B’ and a new arc with zero cost
and constrained capacity (for instance, the same as the
other taxiway arcs).

The same transformation could be applied in other
situations if the model were further extended. For in-
stance, we could identify nodes in a path with special
capacities, such as holding areas at the end of taxiways
or areas in front of runway departure zones.

4.3. Stochastic Optimization

Network problems are one of the earliest applications
of a kind of stochastic global optimization technique
namely evolutionary computation [8]. Genetic algo-
rithms (GA) search the space of combinatorial so-
lutions, providing fast and accurate solutions. In the
field of transportation management, and particularly
air traffic management, the work developed by [14–16,
20, 24, 33] proposed a GA to improve some aspects
of ATM. In this paper a GA, inspired by the above-
mentioned work, incorporating an ad hoc mutation op-
erator and fitness function, schedules the demanded
operation.
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4.4. Genetic Algorithms for Operation Planning

In this paper, the algorithm described in [38], namely
the canonical genetic algorithm, was applied to gen-
erate the surface movements plan. The canonical GA
was chosen for its simplicity and because it is a generic
procedure, which is desirable when there is not infor-
mation about the structure of the search space. We de-
fined a plan as the departure schedule and the paths that
a set of aircraft follow from gates to takeoff runways.
The objective is to find the plan that reduces the av-
erage delay per operation, subject to the conflict-free
operations constraint.

J. Holland formally introduced genetic algorithms
(GA) [39], and their characteristics have made them
widely applied in optimization problems, especially to
combinatorial problems. The procedure of searching
the solution provides some important characteristics
like robustness and parallelism, but their use is inad-
visable if the search space is small or global optimality
is required. The planning of the surface operations at
an airport, formulated as a combinatorial problem, has
a very large solutions space and an approximate solu-
tion should be good enough. Thus, the use of the GA
paradigm is justified because the trade-off between the
quality of the solutions and processing time is advan-
tageous.

The three most important aspects of using GA are
the definition and implementation of:

• The genetic representation. Each solution is coded
as an instance of the vector of the decision variables.
This codification is called the “genotype” of a solu-
tion.

• The objective function. The criteria to measure “the
goodness” of a solution are typically implemented by
means of a function, namely a “fitness function”. The
fitness function is applied to convert the genotype
into a phenotype.

• The genetic operators. The search space is explored
and exploited by applying three operators that pro-
duce new solutions starting from preexisting ones.

4.4.1. The Genetic Representation. For GA, an air
traffic ground plan, P = (�r , �t), is codified with two
sequences of numbers of length equal to the demanded
departures, d.

�r = (r1, r2, . . . , rd )

�t = (t1, t2, . . . , td )

For each i-th operation, a plan allocates a route, ri ,
selected from a predefined set of all possible routes,
and the time, ti , that the aircraft will delay its depar-
ture from the gate. This special codification provides
an easy implementation of the crossover and mutation
operators, adapted to the characteristics of the problem.
Restriction of unfeasible solutions, such as operations
allocated to the same route at the same time, cannot be
taken into account in the codification, the fitness func-
tion will penalize the solutions that violate the con-
straints. The codification only restricts ri and ti to valid
values, ri in the range of possible operations and ti as
an integer between 0 and the maximum delay.

4.4.2. The Objective Function The fitness value mea-
sures how a solution solves a problem. The solution
schedules the demanded departures and allocates a
path for each one. Demanded operations are registered
as a list of two-dimensional vectors, (g, p), contain-
ing the departure gate and the takeoff runway. The
gate is always assigned but the takeoff runway may
or may not be not specified. Figure 10 shows an ex-
ample of the allocation of operations with a plan. We
find that the order of the departure schedule starts with
operations BAW465 and DHL6554 and the operation
AFR1801 starts moving along the allocated route af-
ter a twenty-second delay. The last operation, JKK424,
routed through path 38, has a five-minute delay.

To calculate the fitness values, the surface move-
ments are simulated according to the assumptions listed
in Section 3.2. The following quality measures are as-
sessed and used as parameters of the following fitness
function:

f = o · to + w · tw + t + 50c − 50k + r

Figure 10. Operations demanded and solution.



196 Herrero et al.

The terms are defined as follows:

• Number of incorrect origin gates and destination
runways, o, w. When a route is allocated, the gate
or the destination runway could be wrong, and not
matchthe requirements for the operation. Any re-
strictions on the permitted destination runway or ori-
gin gates are included in the time intervals concerned
for as long as these restrictions are violated.

• Time to carry out the whole plan, t . The simulation
finishes when the last aircraft has taken off. The op-
timization process will tend to minimize this total
time needed to carry out all operations.

• Number of conflicts, c. When two aircrafts violate
the safety distance, a conflict is reported. Obviously,
any plan containing just one conflict is unacceptable.
Therefore, this parameter is strongly weighted. By
the twentieth generation or so, the best plan has no
conflicts.

• Number of takeoffs, k. The objective is to get plans
that process all demanded departures.

• Average delay per operation, r . The time that an oper-
ation is delayed must be as short as much as possible.

The GA is designed to minimize the fitness value
of solutions. This technique transforms optimization
problems into search problems, subject to the require-
ment of incorporating the domain constraints into the
fitness function. Therefore, the solutions to this prob-
lem are searched by relaxing the constraints and in-
cluding penalties for the solutions that do not satisfy
the constraints. All constraints are global, since they
depend on the relationship between pairs of individ-
ual solutions. This is the usual methodology in similar
constrained problems (see [38]) and is more efficient
at finding appropriate solutions than a direct encoding
with constraints.

The parameters of the GA applied in this paper are
summarized in Table 1.

Table 1. GA parameters.

Population size 200

Ending criteria Generations = 200

Selection Tournaments of size 4

Crossover rate 100%

Mutation rate 1%

Time Decrement Mutation rate 5%

4.4.3. The Genetic Operators. The main idea behind
GA performance is cumulative selection. This in it-
self, however, does not provide a full explanation of
the question of why it works. Cumulative selection is
by no means a new concept. It appears in stochastic
optimization and other similar descent gradient meth-
ods. The innovation is the incorporation of inheritance
of characteristics and the variation triad. These fea-
tures resemble, in a simplified form, biological natural
selection. The genetic operators: selection, crossover
and mutation, implement these features.

Because the operator must be adapted to a particular
problem, many genetic operators have been reported
in the literature. In this paper, tournaments selection
[38] was the selection scheme chosen for selecting the
individuals in the population that reproduce to gen-
erate the next generation. This selection is scheme is
appropriate for wide search spaces where it is likely to
find solutions with similar properties, so it is important
avoiding premature convergence. Tournaments selec-
tion gives more opportunities to explore solutions with
worse initial fitness, with the cost of slower conver-
gence. The crossover operator produces new solutions
by recombining existing ones. In this paper, a single-
point crossover has been used. The crossover operator
had to be modified because plans are coded as two
sequences of numbers. The same crossover point is ap-
plied to both parts of two parent plans to engender the
two offspring.

Two mutation operators are used in this paper. One
is traditional mutation described in the canonical GA,
and the other was included to decrease the delay time
of the operations. A random variation of the delay time,
uniformly distributed in the range [−8, 2], is applied
with 5% probability. The range of variation is skewed
towards negative values, for the sake of favoring the
solutions with small delay time. This new mutation
operator was included to speed up the appearance of
small delay-time solutions, and these parameters were
tuned after exploring different experiments.

Figure 11 describes the main steps of the algorithm
for generating a new population of solutions.

5. Experimental Results

In this section, we present results after applying the
two proposed planning techniques to scenarios gener-
ated by simulation. They have been analyzed using the
airport represented as a directed graph as defined pre-
viously. The platform tool, IPAGO, can represent and
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Figure 11. Steps of GA algorithm.

analyze the planning problem and is able to simulate
representative airport scenarios, although the system is
conceived to be finally connected with real airport data
networks, access the necessary information, and then
provide solutions to real scenarios. In this case, simu-
lated departure operations have been used by both tech-
niques to find solutions containing the best sequence,
routes and schedule for the operations. As mentioned
above, MCMF and GA algorithms are not always com-
parable, because MCMF provides a benchmark for situ-
ations where operations can be indistinguishable. Only
the GA technique can deal with flights where limita-
tions, such as pre-assigned runways, apply. The results
discussed in this section are mainly concerned with sit-
uations where both algorithms can be applied to gen-
erate the solutions.

The graph representing Madrid Barajas International
Airport (Fig. 4) was considered, including 24 nodes and
29 arcs. The capacities and costs of the constrained arcs
linking the nodes were adjusted assuming the following
parameters for motion on the ground and operational
procedures:

• Taxiing: average speed of 10 m/s and minimum
longitudinal separation of 200 m. The junction ar-
eas of crossing taxiways have also been charac-
terized with a minimum spatial separation of 200
m between aircraft by entering additional arcs in
the extended model for network flow algorithms
(Section 4.3.3).

• Runways. The runways are the ending points of de-
parture operations (flow sinks) and require a one-
minute separation between consecutive takeoffs.

With these parameters, the costs of all arcs located
between gates and runways, assessing the time needed
to cross them, are directly computed as their spatial
length divided by average speed. This can be done by
assuming that aircraft move at constant speed and do
not stop once they have started their trajectories (as in-
dicated in the model assumptions listed in Section 3.2).
Regarding arc capacity, this depends on the type of
area they represent. For runways, due to the time con-
straint between consecutive takeoffs, one flow unit can
go across a runway node per minute. Since we have se-
lected a time unit of one minute to represent flow and
capacity vectors, the maximum capacity of an arc link-
ing a runway and the sink node is 1. For taxiways, the
maximum number of operations, moving with an aver-
age speed of 10 m/s, that can cross a node respecting
the specification of longitudinal separation of 200 m is
10/200 operations per second. With the selected time
unit of one minute, the capacity of arcs linking taxiway
segments is 3 operations per minute.

For example, the window at the bottom of Fig. 12
shows the nodes connected to node F(C, E, P and G),
and the available capacity along each path during the
next 30 minutes.

Capacity is represented by a gray scale in the graph.
By way of an example, ithere are some dark segments
in the arcs representing access to runways, RUNWAY1
and RUNWAY2, in Fig. 4. They indicate that some time
slots have already been assigned for landing operations
to be carried out in the following 30 minutes. Therefore,
these runways cannot be used for the takeoff operations
to be planned in this interval. Once the solutions have
been generated for the demanded operations, the con-
troller can select the operation to display detailed in-
formation about a specific route. This information with
routes and schedules for each individual demanded op-
eration is extracted from the solutions generated by the
algorithms and then presented to controllers in the DSS
interface.

In the following sections, both schemes are first ap-
plied to different scenarios with an increasing number
of departure operations for allocation, all of which can
be allocated to any runway. The solutions proposed by
both techniques are compared by means of the details
of space-time flow distribution. Performance is sum-
marized as the ratio between total delay and number of
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Figure 12. Capacity of arcs.

departures demanded for both systems. Finally, an anal-
ysis is presented comparing solutions achieved with
automatic planning and solutions generated using a
fixed-routes procedure, simulating planning similar to
what human controllers currently produce using oper-
ator rules.

5.1. Capacity and Flow Analysis

Both the flow allocation and GA algorithms were
run under several conditions, varying the number of
demanded operations and which gates were used to
start departures (sources of demanded departure oper-
ations). In these experiments, the airport was first taken
to be empty (all arcs with full capacity available) and
flow units were allocated in a single planning horizon
of 20 minutes.

Figure 13 illustrates a situation with six demanded
departures, two from each airport terminal (T1, T2,

T3). The time distribution of solutions provided by both
techniques is shown. The MCMF solutions are shown
on the left and the GA solutions on the right. The time
distribution of operations as they cross the segments in
the airport graph is indicated for the 20 minutes consid-
ered for planning. Only the nodes in the airport graph
representing the sources (airport terminals) and sinks
(runways) have been depicted. From Fig. 13, we can
see that both the algorithms decide to start the two oper-
ations from the nearest terminal (T3) in the first minute
(although they must be at least 20 seconds apart to guar-
antee a distance of 200 m). MCMF chooses to start an
operation from T2 at the same time. One and two min-
utes later, it starts an operation from terminal T1 and
another from terminal T2, respectively. Finally the sec-
ond operation from terminal T1 is delayed by at least
two minutes. The GA starts operations at terminal T1
at minutes 1 and 3, while operations from terminal T2
start at minutes 2 and 4. As we can see on the left-hand
side (MCMF solutions), five operations are routed to
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Figure 13. Flows with six allocated operations (terminal and runway nodes).

Figure 14. Flows with 12 operations assigned (terminal and runway nodes).

runway RW1 and one to RW2 to guarantee that the
objective of minimum total time (period within which
all demanded departures are completed) is achieved. In
this case, the six operations takeoff within ten minutes
after the starting time of planning. The first takeoff at
RW1 starts at minute 5 and the first at RW2 at minute
10. These are the minimum time intervals needed to
arrive at these nodes with the assumed aircraft ground-
speeds. Looking at the GA solutions (right-hand side),
they also end at minute 10, although there is an extra
one-minute delay for the last three operations at runway
RW1.

Figure 14 shows the case with 12 demanded opera-
tions, four from each terminal T1, T2, T3. The MCMF

system again first serves all the operations from termi-
nal T3, closest to runway RW1, and selectively delays
the rest. The objective is again accomplished, as shown
by the runway occupation figures, with a compact se-
quence of takeoffs achieving efficiency in the use of
airport capacity. All operations are served within 13
minutes from the start of the planning interval. The
GA solution, on the right-hand side, is a bit sparser,
with some unused capacity and achieving a total time
of 14 minutes. Occupation appears to be a bit tighter
“packed” in the flow algorithm. This result is to be
expected, as the GA provides a non-optimal solution.

Finally, Fig. 15 illustrates saturation cases, where
there are many operations from all terminals and the



200 Herrero et al.

Figure 15. Flows with maximum operations allocated under saturation (terminal and runway nodes).

Figure 16. Flows with MCMF under saturation (detail of taxiway nodes).

system decides how many of them will be served in
a 20-minute planning time period to minimize global
delay. As we can see on the left-hand side, the MCMF
algorithm decides to start 9 operations from terminal
T3, 11 from T2 and 7 from T1. The system again
achieves optimum usage of runway capacities, with
a continuous occupation for each runway starting at
the minimum time instants needed to reach the run-
ways from the gates. Therefore, in this situation and
assuming the above-mentioned conditions, the max-
imum airport capacity is 27 operations in 20 min-

utes. In the case of GA algorithm, it delivers 16 op-
erations within the 20 minutes, that is, 11 opera-
tions fewer than the MCMF. Obviously, if the situa-
tion were to be prolonged after the transient period,
the maximum theoretical capacity under these condi-
tions would be 40 operations per 20-minute time inter-
val (120 operations per hour), with full usage of both
runways.

The scattering in the use of resources is shown in
the Fig. 15 for sink and source nodes (airport termi-
nals and runways) and in Figs. 16 and 17 for the other
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Figure 17. Flows with GA under saturation (detail of taxiway nodes).

Figure 18. Time-to-take-off with MCMF and GA algorithms.

airport segments (inner nodes represent taxiway seg-
ments). As we can see, none of the taxiway arcs is
filled to maximum capacity, since the limiting fac-
tor is runway capacity, as runways are only able to
serve one operation per minute, while the capacity con-
straint on taxiways for moving operations is a lot less
restrictive.

The flow-allocation algorithm was run in a number of
different situations and the results with time-to-takeoff
versus demanded departures are shown in Fig. 18. The
number of demanded operations for departure was var-
ied from 1 to the maximum number of operations that
can takeoff within 20 minutes for each technique and
configuration. In the case of the MCMF algorithm,
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Figure 19. Comparison of training and takeoff times.

three different situations were considered: all opera-
tions coming from a single airport terminal, T1 and T2,
and a situation in which demanded operations are inter-
leaved according to the sequence T1-T2-T3. There are
basically two regions in Fig. 18, corresponding to the
usage of one or both runways. When there are few de-
manded operations, they are all sent to the closest run-
way RW1, with a slope of one minute per operation. As
soon as total time is higher than needed to reach RW2,
operations are sent to both runways, with a new slope
of 0.5 minutes per operation. In the transition, the num-
ber of operations served depends on the specific time
needed to access runways from terminals in each case.
Minimum total time is achieved when all operations
come from the closest terminal and two operations are
lost in the additional time needed to reach runways in
the cases of only operations from T2, T3. In the case
of operations demanded from all terminals, the sys-
tem decides the flow distribution with optimal usage of
capacity.

Regarding the GA technique, we find that the time
to takeoff grows linearly with the number of demanded
departures (in the evaluated range). This behavior is a
consequence of graph topography. As mentioned ear-
lier, in the case of the GA technique, each operation
may have a predetermined or unspecified destination
runway. Three different lists of operations consider-
ing this possibility have been designed. The fraction
of operation with the predefined destination runway
has been set at 0, 0.5 and 1.0 for both runways. As
expected, if all operations have a fixed destination run-

way, the total sum of delay increases. When the desti-
nation runway is not fixed, the algorithm searches for
the best allocation to get the lowest average delay per
operation.

With respect to the time consumed, the results pre-
sented in this section were achieved in runs on a Pen-
tium IV 1.5 Ghz. The highest demand for computation
was for the GA technique. We therefore assessed the
training time required, illustrated in Fig. 19. Like the
time-to-takeoff, the time to run the GA grows more
or less linearly, with a steeper gradient than time-to-
takeoff. When the training time cuts the time of take-
off, the projection over the demanded departures axis
will provide the maximum number of takeoffs that
the GA can schedule. As Fig. 9 shows, the values
for this time are always lower than required for take-
off in the range of the assessed operations. This re-
sult is very important because it means that the GA
can be used to output schedules in 30-minute time
stages.

5.2. Comparison with Manual Planning

Finally, this section presents, for illustrative purposes,
some performance figures for the planning techniques
compared against a manual system with fixed routes.
This reference procedure considers each terminal with
a predetermined route to each runway (the runway
with the shortest distance, generated by an off-line
Dijkstra’s algorithm run). If an operation is allocated
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to a fixed route, and this route is occupied at that
time, the operation is delayed. Besides, the assumed
operation mode classes landings as top-priority op-
erations, and departures are assigned in the remain-
ing space. Results were obtained by simulating se-
quences of 15 30-minute intervals (7.5 hours) with
different loads for demanded operations and landings,
simulated as uniform discrete events. The figures pre-
sented show the average time-to-takeoff versus the av-
erage load of demanded departure operations, taking
the average demands for landing at the airport as a
parameter.

The average demands for operations were:

• departures: 14, 27, 40, 63, 86, 120
• landings: 0, 10, 20, 30, 40, 60

The maximum capacity of both runways, with the
simplified model taken, is 60 + 60 = 120 operations
per hour. Therefore, the value simulated last is a situa-
tion of congestion, which is worse when there are also
landings using the runways. Under these conditions,
operations cannot be served and are accumulated in
the queue throughout the simulated time interval. The
results are given in Fig. 20, which shows that maxi-
mum advantage is gained from dynamic and automatic
planning when the situation is close to congestion. The
definition of practical airport capacity [40] considers a
maximum delay for the number of operations. There-
fore, this procedure has an important advantage. The
quantitative numbers are not completely representative
of real capacity, since it is a simplified model under
ideal conditions.

The right-hand side of Fig. 20 shows behavior when
there are some segments in the airport that cannot
be used (temporally restricted, special configurations,
other operations in progress, etc.). As usual, it has been
assumed that this information is known in advance by
the planning function and it is input in the modeled
capacity vectors. The probabilities of non-closed seg-
ments were set at 0.1, 0.2, 0.3, while the operation loads
were:

• takeoffs: 14, 27, 40, 63, 86, 120
• landings: 0, 20

The same observations apply. The advantage of us-
ing information about available resources allows alter-
native routes to be computed, minimizing the impact
of final delays compared with a rigid procedure.

6. Conclusion and Further Work

This paper applies two different approaches to show
that the possibility of optimizing aircraft ground traffic
at an airport is a useful support tool for assisting con-
trollers. The results indicate promising performance,
where the optimal capacity and flow distribution is cal-
culated by means of a network flow algorithm and the
departure schedule and aircraft routes have been com-
puted by means of a genetic algorithm.

These techniques were integrated in a prototype
decision support system, IPAGO, supporting the A-
SMGCS concept. This integration improved the effi-
ciency of the planning process, providing controllers
with a means of automatically searching for adequate
solutions, helping them to handle highly complex situ-
ations and assisting them with ground traffic manage-
ment. Several planning techniques solve the problem
of allocating taxiing routes to operations. Assuring the
safety of operations while minimizing their average
delay is, generally, the condition imposed on planning
procedures, reflected as constraints taken into account
in the search. The global system provides a standard
representation of the planning problem, including both
the routing and scheduling aspects, to be automati-
cally processed by alternative techniques. This repre-
sentation of solutions is useful for handling by other
A-SMGCS functions, especially guidance, intended to
help pilots to move on the surface following the routes
allocated by controllers. Also, we mentioned interac-
tion with the control function for checking that aircraft
correctly follow routes.

Regarding the relation between the two specific tech-
niques explored, the first strategy deals the planning
problem as a network with timely constrained arcs to
obtain the solutions with an optimal time-space distri-
bution. It uses a simplified representation of the prob-
lem, where the time dimension has been discretized to
produce vectors for decision variables and constraints,
and specific elements have been proposed to include
particular conditions of the airport ground planning
problem in the modelled graph. The second strategy
was the use of a genetic algorithm to directly search the
combination of individual routes and schedules mini-
mizing the time required to carry out all operations. A
specific encoding has been designed to have a full and
flexible representation of the problem.

Both techniques were compared only in simplified
conditions. This was due to the fact that the flow
distribution provided by the first technique provides
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Figure 20. Average delays vs. demanded operations with automatic and manual planning.

indistinguishable flow units, losing the route plans and
schedules for each individual demanded operation. In
those cases where all demanded operations are equiv-
alent and there are no individual constraints for op-

erations, the solution directly extracted from the flow
distribution is the optimum one and so has always supe-
rior performance. On the other hand, the GA technique
is able to include specific considerations for individual
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operations such as assigned runway or separations de-
pending on weight category, so it has capacity to deal
with more realistic problems. The application of GA’s
requires from ad hoc adjustment, such as a careful de-
sign of fitness function or refinements in genetic op-
erators (selection, combination, mutation). The ability
to obtain effective solutions has been illustrated in the
results, although the complexity of search space makes
difficult the achievement of optimal solutions.

So, both techniques have a complementary relation,
and it is open for future work the development of
solutions by the hybridization of GA paradigm with
the obtained flow distribution. Besides, the simplified
model could be improved to incorporate more real-
istic procedures, such as acceleration and uncertain-
ties on aircraft speeds, holding nodes, deviations from
plans, etc., and the possibility of re-building plans con-
sidering the real trajectories observed and maneuvers
performed. The genetic algorithm could be extended
by incorporating new genetic operators and parame-
ters into the fitness function but the problem represen-
tation as a transformed, flow-management technique-
solvable problem is a more restricted approach. Al-
though several transformations were proposed to rep-
resent the problem as a constrained-capacity-arcs di-
rected graph, there are probably other simplifications
(variations in speed, different constraints for individ-
ual operations) that cannot be removed without giving
up the flow-distribution approach. In these conditions,
flexible problem solvers with explicit representation,
such as GA techniques, are the next step towards a full
real-world representation, and here the use of an initial
global solution, although over-simplified, may help to
achieve an effective search.
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