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INTRODUCTION

Data on crystal–melt partitioning of elements are
crucial for understanding the nature of chemical differ-
entiation in crystallization processes and enable con-
trolled doping of synthetic crystals and the preparation
of materials with tailored properties. Experimental
studies demonstrate that the partition coefficient of
impurities depends on their atomic radius and charge,
temperature, pressure, crystal composition, and, in the
case of elements of variable valence, on the oxygen
fugacity at which crystallization occurs.

Experimental determination of the partition coeffi-
cient 

 

K

 

 requires, in some cases, considerable effort and
time. Thermodynamic evaluation of 

 

K

 

 was successfully
used in many studies dealing with crystallization of
alkali halides (see, e.g., [1, 2]) and oxide and silicate
systems [2]. Significant advances have been made to date
in computer simulation of structures, which allows the
solution energies 

 

E

 

s

 

 of impurities to be estimated [3]. In
the case of forsterite, however, the solution energies of
tetravalent impurities and those of mono- and trivalent
impurities self-compensated by native defects have not
yet been reported. Calculated 

 

E

 

s

 

 values are difficult to

convert to 

 

K

 

 because it is necessary to take into account
the effects of temperature, defect density, the entropy
contribution to the solution energy, and the properties
of the melt. The most accurate evaluation of 

 

K

 

 is
ensured by molecular dynamics simulation (Monte
Carlo method) [4]. This approach is, however, also con-
fronted with a number of limitations and unresolved
problems.

Correlation approaches allow one to systematize
available information, predict unknown 

 

K

 

, and correct
data that are inconsistent with the general trend. In a
number of systems, 

 

K

 

 was found to correlate with the
impurity solubility in the crystalline phase, standard
electrode potential of the impurity, its melting point,
lattice energy, and diffusion coefficient in the host crys-
tal [1, 5]. A strong correlation was also found between

 

K 

 

and the difference in ionic radius (

 

∆

 

r

 

) between the
host atoms and the substituent. Onuma 

 

et al.

 

 [6] fitted
experimental data to a parabolic relation between ln

 

K

 

and the ionic radius of the impurity. The parabolic rela-
tion between ln

 

K

 

 and 

 

∆

 

r

 

 was confirmed in many stud-
ies by analyzing impurity partitioning for a wide vari-
ety of inorganic substances and minerals [2, 3, 7–17].
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Abstract

 

—The forsterite–melt partition coefficients 

 

ä

 

 are determined experimentally for a large number of
mono-, di-, tri-, and tetravalent impurities. The energies of native defects and impurities (

 

E

 

d

 

) and the solution
energies (

 

E

 

s

 

) of impurities in forsterite are evaluated using computer simulation. The defect energy is shown to
vary linearly with the difference in ionic radius between the host and substituent atoms (

 

∆

 

r

 

) and with the impu-
rity cation charge, while the partition coefficient and solution energy of impurities are quadratic functions of

these parameters. The plots of ln

 

K

 

 versus 

 

(

 

∆

 

r

 

)

 

2

 

 and 

 

E

 

s

 

 versus 

 

(

 

∆

 

r

 

)

 

2

 

 

 

for isovalent substitutions (  and

) pass close to the origin, in contrast to the plots for heterovalent substitutions (  and ). The
significant 

 

y

 

 intercept of the latter plots is interpreted as evidence for the formation of extra defects maintaining
electroneutrality. The

 

 y

 

 intercept of the plot of 

 

E

 

s

 

 versus 

 

(

 

∆

 

r

 

)

 

2

 

 is 2 eV, which is about half the formation energy
of Frenkel defects in forsterite. The best fit equations representing the correlation between the partition coeffi-
cients and solution energies of impurities demonstrate that heterovalent substitutions increase the entropy con-
tribution to the free energy of solution of impurities.

MeMg
×

MeSi
× MeMg

' MeSi

.
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Experimentally determined partition coefficients can
also be fitted to a cubic relation between 

 

K

 

 and the ionic
radius of the impurity (difference in atomic volume
between the host atoms and the substituent) [18].

In this paper, we report experimental data on forster-
ite–melt partition coefficients of impurities and analyze
in detail the effects of the ionic radius and charge state
of impurities on 

 

K

 

. The experimental data are compared
with computer simulation results on native and impu-
rity defects in forsterite in order to correlate the exper-
imentally determined macroscopic properties of impu-
rities with their calculated solution energy.

EXPERIMENTAL DETERMINATION 
OF THE FORSTERITE–MELT PARTITION 

COEFFICIENTS OF IMPURITIES
Forsterite single crystals (melting point, 1890

 

°

 

C)
were grown by the Czochralski technique. The growth

charge was prepared by reacting stoichiometric mix-
tures of extrapure-grade SiO

 

2

 

 and MgO at 1200

 

°

 

C for
24 h and was then pressed into pellets. Impurities were
introduced into the growth charge in the form of oxides
or carbonates. The crystals were pulled from Ir cruci-
bles in an inert atmosphere, using single-crystal forster-
ite seeds oriented in the [010] direction (

 

Pnma

 

 setting).
For some elements of variable valence, growth runs
were carried out under different redox conditions. Oxy-
gen fugacity was varied in the range –4 

 

≤

 

  

 

≤

 

−

 

0.9. The rotation rate was 12–20 rpm. In most growth
runs, the pulling rate was 2 mm/h. In a number of
experiments, the pulling rate was increased to 7 mm/h
in order to assess its effect on 

 

K

 

. The grown crystals
were cooled at a rate of about 100

 

°

 

C/h. The fraction of
the solidified melt was typically within 5–10%.

The impurity concentration in the crystals was
determined by electron probe x-ray microanalysis
(EPXMA) on a CAMEBAX x-ray microanalyzer, neu-
tron activation analysis (NAA), ICP optical emission
spectroscopy (ICP OES), atomic absorption (AA), and
flame OES (FOES).

According to EPXMA and chemical analysis data,
the pure forsterite crystals had the stoichiometric cation
composition. The crystals contained iridium impurity
(2–10 ppm as determined by NAA), which originated
from the crucible material. The impurities were typi-
cally uniformly distributed over the length of the crystal
because the fraction of the solidified melt was rather
small. We also determined the impurity concentration
in the residual melt after crystal growth in order to
assess impurity losses through vaporization. In addi-
tion, we compared the impurity concentrations in crys-
tals prepared in several consecutive growth runs. In
most growth runs, impurity losses from the melt were
insignificant, except for nickel: according to EPXMA
and NAA data for the residual melt, about 20% of the
Ni was lost through vaporization in each growth run.

The partition coefficient 

 

K 

 

was evaluated by extrap-
olating 

 

C

 

S

 

/  

 

to 

 

g

 

 = 0, where 

 

C

 

S

 

 is the impurity con-

centration in the crystal,  is the initial impurity con-
centration in the melt, and 

 

g

 

 is the fraction of the solid-
ified melt. Note that the growth rate had little effect on
the partition coefficient.

The experimental results are presented in Table 1
together with earlier reported data [10, 19]. The parti-
tion coefficients of Sr, Ba, and tetravalent impurities are
reported for the first time. Table 1 lists Shannon’s ionic
radii 

 

r

 

 of impurities [20], initial impurity concentra-
tions in the melt , partition coefficients 

 

K

 

, confi-
dence intervals 

 

∆

 

K

 

, and analytical techniques used.
For ions of variable valence, 

 

K

 

 may depend on oxy-
gen fugacity because of changes in the relative amounts
of different valence states. In studies of the vanadium
and chromium solubilities in forsterite, oxygen fugac-
ity during crystal growth was varied in the range –4 

 

≤

f O2
log

CL0

CL0

CL0

 

Table 1.  

 

Forsterite–melt partition coefficients of impurities

Impu-
rity

 

r

 

, Å , wt %

 

K

 

∆

 

K

 

Analytical 
technique

Monovalent impurities

Li 0.76 0.2 0.007 0.001 ICP OES, 
FOES

Divalent impurities

Ni 0.69 0.8–3.3 0.75 0.04 EPXMA

Co 0.745 0.18–0.2 0.53 0.04 EPXMA

Mn 0.83 1.0 0.39 0.02 EPXMA

Ca 1.0 1.12 0.073 0.005 EPXMA

Sr 1.18 1.22 0.0007 0.0002 AA

Ba 1.35 1.44–1.91 0.0004 0.0002 ICP OES

Trivalent impurities

Cr 0.615 0.14 0.18 0.018 EPXMA

Ga 0.62 4.4 

 

× 

 

10

 

–4

 

0.055 0.009 NAA

Sc 0.745 2.8 

 

× 

 

10

 

–4

 

0.19 0.02 NAA

Lu 0.861 1 

 

× 

 

10

 

–3

 

0.1 0.01 NAA

Er 0.89 0.4–0.6 0.02 0.002 EPXMA

Gd 0.938 4.9 

 

× 

 

10

 

–3

 

0.022 0.003 NAA

Eu 0.947 9.4 

 

× 

 

10

 

–4

 

0.0054 0.0009 NAA

Sm 0.958 1 

 

× 

 

10

 

–3

 

0.007 0.001 NAA

Nd 0.983 0.17–0.19 0.002 0.0005 NAA

La 1.032 8 

 

× 

 

10

 

–4

 

0.002 0.0007 NAA

Tetravalent impurities

Ti 0.42 0.34–0.67 0.06 0.003 ICP OES, 
EPXMA

V 0.46 0.35–2 0.07 0.005 EPXMA

Hf 0.58 1.25 0.0017 0.0008 NAA

Zr 0.59 0.65–1.26 0.002 0.0008 ICP OES, 
NAA

CL0
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≤

 

 –0.92

 

. The forsterite–melt partition coeffi-
cient of vanadium was determined to be 0.07. 

 

K

 

V

 

 was
independent of oxygen fugacity because most of the
vanadium in the range of oxygen fugacities studied was
in the oxidation state 4+ [21]. At the same time, the par-
tition coefficient of chromium, present mainly as Cr

 

3+

 

and Cr4+, varied from 0.18 to 0.09. According to earlier
experimental studies [22], KCr = 0.18 for crystals con-
taining chromium mainly in the form of Cr3+ ions (at

 = 10–4). Note that, according to Shenjun et al. [23],
forsterite crystals grown in an inert atmosphere contain
titanium mainly in the form of Ti4+ ions.

Comparison of our results with the data reported by
Kobayashi and Takei [24], who determined the parti-
tion coefficients of several trivalent impurities in for-
sterite, indicates that, in most cases, their values of K
are slightly higher (Fig. 1), presumably because Koba-
yashi and Takei [24] added Na+ ions, which may act as
charge compensators.

CRYSTAL-CHEMICAL ANALYSIS
OF IMPURITY PARTITION COEFFICIENTS

The experimentally determined values of K are pre-
sented in Fig. 1 as a function of the difference in ionic
radius between the host cations and the substituent. ∆r
was determined under the assumption that di- and triva-
lent ions in forsterite substitute on the magnesium
(octahedral) site, while tetravalent impurities substitute
on the silicon (tetrahedral) site.

For a given valence, lnK is a linear function of (∆r)2

(Fig. 2), with the best fit equations

lnK = –31.91(∆r)2 – 0.41 for Me2+,

lnK = –47.44(∆r)2 – 1.23 for Me4+,

lnK = –50.68(∆r)2 – 1.96 for Me3+.

The only exception is the forsterite–melt partition
coefficient of barium, which is larger than would be
expected from the general trend for divalent ions. The
increased value of KBa may be due to difficulties in
detecting low-solubility impurities and also to micro-
impurity trapping [2], which is very likely for impuri-
ties differing markedly in properties from the host.

At a given ionic radius, the forsterite–melt partition
coefficient decreases in the order Me2+ > Me4+ > Me3+ >
Me+, which provides further evidence that isovalent
substitutions are energetically more favorable than het-
erovalent substitutions. The Li+ ion, which is close in
size to Mg2+ (0.76 and 0.72 Å, respectively) but has a
lower valence, has the lowest K among the heterovalent
substitutions considered. This is in line with Gold-
schmidt’s isomorphism polarity rule [11], which states

f O2
log

f O2

that ions in higher charge states are incorporated into
crystals more readily.

Figure 3 shows the variation of K with the charge
of  cations substituting for Mg. The solid line repre-
sents data for ∆r = 0.04 Å, where we use the experimen-
tally determined KLi and the values of K for di- and
trivalent impurities estimated using correlation equa-
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Fig. 1. Forsterite–melt partition coefficients of impurities
vs. difference in ionic radius between the host cations and
the substituent (Onum curves).
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Fig. 2. Plots of lnK vs. (∆r)2 for different valence states of
impurities; R2 is the goodness-of-fit index.
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tions. The same equations were used to calculate K for
di- and trivalent impurities with ∆r from 0.1 to 0.3. In
addition, Fig. 3 presents the experimental data for
impurities close in size to the Mg2+ ion (Li, Ni, and Sc;
∆r ≤ 0.04 Å) and for impurities differing substantially
in size from Mg2+ (Ca and Nd, ∆r = 0.28 and 0.26 Å,
respectively). As seen, K varies parabolically with cat-
ion charge. With increasing ∆r, the parabola becomes
flatter. The parabolic variation of the partition coeffi-
cient with the charge of cations substituting on the M2
site of clinopyroxene was reported by Wood and
Blundy [25].

DEFECT FORMATION AND INTERACTION
IN THE FORSTERITE–MELT SYSTEM

The forsterite structure is made up of isolated zigzag
chains formed by Mg octahedra and running along the
b axis (Fig. 4). Each M1 octahedron share edges with
two M1 and two M2 octahedra. Each M2 octahedron
share edges with two M1 octahedra. Within each layer,
the chains of Mg octahedra are separated by similar
chains of octahedral interstices, M3 and M4. Adjacent
layers are displaced relative to one another so that the
occupied Mg chains of the upper layer reside over the
chains of interstices of the lower layer, and vice versa
[26]. The chains of occupied octahedra in the first and
third layers are linked by S1 silicon tetrahedra and sep-
arated by S2 and S3 tetrahedral interstices.

Impurity dissolution in forsterite can be considered
in terms of exchange reactions between the crystalline
phase and the melt containing the host and guest cations
in the form of ionic oxides. Isovalent substitutions of

Me2+ for Mg2+ can be represented by the quasi-che-
mical reaction1 

(1)

For Me4+ ions on the Si site, we have

(2)

The solution energies Es of impurities in reactions (1)
and (2) can be found as

Es(Me2+) = Ed( ) + El(MgO) – El(MeO), (3)

Es(Me4+) = Ed( ) + El(SiO2) – El(MeO2), (4)

where Ed is the energy of impurity defects (  or

) in forsterite and El is the lattice energy of pure
oxides.

Heterovalent substitution of Me+ or Me3+ for Mg2+

leads to the formation of an impurity defect carrying an
excess positive or negative charge, which must be com-
pensated. Charge compensation may occur by different
mechanisms. The excess negative charge of a monova-
lent impurity in forsterite can be compensated by native
defects (oxygen vacancies  and magnesium intersti-

tials ):

(5)

(6)

The excess positive charge of trivalent impurities may
be compensated through the process

(7)

where  is a magnesium vacancy. Also possible is
charge compensation via combined substitution of
mono- and trivalent ions on the Mg site,2 

(8)

1 Hereafter, we use standard Kröger notation: subscripts specify
lattice sites, and superscripts indicate an excess positive (�) or
negative (') charge relative to the charge of the ion on its own
site (×); V is a vacancy.

2 To differentiate impurity ions in Eqs. (8), (9), (13), (14), and (16),
one of them is designated Me.

MgMg
× MeO          Me Mg 

× MgO.++

SiSi
× MeO2          Me Si 

×
 SiO 2 .++

MeMg
×

MeSi
×

MeMg
×

MeSi
×
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..

Mgi

..

1
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---Me2O MgMg

× 1
2
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..
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Fig. 3. 

 

Variation of 

 

K

 

 with the charge of cations substituting
for Mg
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 in forsterite crystals at different values of 

 

∆

 

r
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or two trivalent ions on the Mg and Si sites,

 
(9)

 

The solution energies for reactions (5)–(9) can be
evaluated by the equations

1
2
---Me2O3

1
2
---Me2O3 2MgMg

×+ +

+ SiSi
×          Me Si ' Me Mg .

 2MgO SiO 2 .+++ 

(10)

(11)

Es Me+( ) Ed MeMg'( ) 1
2
---Ed VO

..
( )+=

+ El MgO( ) 1
2
---El Me2O( ),–

Es Me+( ) Ed MeMg'( ) 1
2
---Ed Mgi

..
( )+=

+ El MgO( ) 1
2
---El Me2O( ),–

 

(a)

(b)

 

a

b

c

 

M1

M1

M1

M2

M2

M3

M3

M3

M4

M4

S1

S2

S1

S2

S3

S3

S3

S3

 

Fig. 4.

 

 Forsterite structure: (a) occupied (M1, M2) and vacant (M3, M4) octahedral sites, (b) occupied (S1) and vacant (S2, S3)
tetrahedral sites.
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(12)

(13)

(14)

 

As is well known, charged defects may form defect
complexes, e.g.,

 

(15)

(16)

 

In calculating the solution energy of impurities, one
must then use the energies of defect complexes instead
of the energies of noninteracting defects.

COMPUTER SIMULATION OF DEFECTS
IN FORSTERITE CRYSTALS

The energies of defects in forsterite can be assessed
using computer simulation, which allows one to calcu-
late the energy of an optimized structural model. The
energy of a point defect depends on its interaction with
the surrounding host material and can be found by min-
imizing the static energy of the crystal while varying
the positions of the atoms and dipole moments around
the defect. It is equal to the difference between the
energy of the crystal distorted by the defect and the
energy of a defect-free crystal.

In the Mott–Littleton model, the crystal is divided
into two regions: region I comprises the defect and its
immediate neighborhood, and region II is the rest of the
crystal. The displacements and dipole moments in the
inner region are evaluated by considering interionic

Es Me3+( ) Ed MeMg

.
( ) 1

2
---Ed VMg''( )+=

+
3
2
---El MgO( ) 1

2
---El Me2O3( ),–

Es Me3+ Me+,( ) Ed MeMg

.
( ) Ed MeMg'( )+=

+ 2El MgO( ) 1
2
---El Me2O3( )–

1
2
---El Me2O( ),–

Es Me3+ Me3+,( ) Ed MeMg

.
( ) Ed MeSi'( )+=

+ 2El MgO( ) 2El SiO2( )+

–
1
2
---El Me2O3( ) 1

2
---El Me2O3( ).–

2MeMg

.
VMg''          Me Mg V Mg Me Mg ( ) 

× ,+

MeMg

.
MeMg'          Me Mg Me Mg ( ) 

× .+  

interactions, while the outer region is treated as a con-
tinuous dielectric medium. Calculations are performed
in a static approximation for infinite dilution. Region I
in our simulations was 10 Å in size (638 ions).

The simulations were carried out in an ionic approx-
imation, using the General Utility Lattice Program
(GULP) [27]. The pair potential for ions 

 

i

 

 and 

 

j

 

 with
charges 

 

q

 

i

 

 and 

 

q

 

j

 

 had the form

 

(17)

 

The first term in (17) represents the energy of Cou-
lombic interaction, the second term represents repul-
sion due to the overlap of the electron shells of neigh-
boring atoms, and the third term takes into account van
der Waals interaction. 

 

R

 

ij

 

 is the interatomic distance,
and 

 

B

 

ij

 

, 

 

λ

 

ij

 

,

 

 and 

 

c

 

ij

 

 are the parameters of the short-range
potentials. The parameters of the potentials for Me–O
interactions were taken from [28–30]. The parameters
for pure forsterite are listed in Table 2.

It is well known that the chemical bonding in
Mg 2 SiO 4  cannot be adequately described in a purely
ionic approximation. One effective way to take into
account covalent bonding is to allow for the polarizabil-
ity of individual atoms, most frequently anions.

The polarizability of the oxygen ion is usually
described in the so-called “shell model.” In this
approach, the ion is thought of as a core in which the
entire mass is concentrated. The core is surrounded by
a charged shell which represents valence electrons.
The core and shell are linked by a harmonic elastic con-
stant 

 

χ

 

i

 

,

 

(18)

 

where 

 

l

 

i

 

 is the distance between the core and the center
of the displaced shell.

Three-particle interaction was taken into account by
introducing the bond angle potential of the directional,
partially covalent bond O–Si–O (ions 

 

i

 

, 

 

j

 

, and 

 

k

 

),

 

(19)

 

where 

 

α

 

ijk

 

 is a constant, 

 

θ

 

ijk

 

 is the equilibrium bond
angle, and 

 

θ

 

0

 

 = 

 

109.47°

 

 is the ideal tetrahedral bond
angle. The values of 

 

χ

 

 and 

 

α

 

 were taken from Sanders

 

et al.

 

 [30] (Table 2).
The simulation results for the forsterite structure are

summarized in Tables 3 and 4. The computed atomic
positional parameters, lattice parameters, and unit-cell
volume were compared with experimental data [31].
The discrepancy between the computed and measured
lattice parameters was less than 1%, and that between
the computed and measured unit-cell volumes was
1.5%. The largest difference in positional parameters
was 5%.

Uij Rij( ) qiq je
2/Rij Bij Rij/λij–( )exp cij/Rij

6 .–+=

Ui
s 1

2
---χili

2,=

Uijk
1
2
---αijk θijk θ0–( )2,=

 

Table 2.  

 

Parameters of interatomic potentials for forsterite

Interaction

 

B

 

, eV

 

λ

 

, Å

 

c

 

, eV Å

 

6

 

Si–O 1283.9073 0.3205 10.6616

Mg–O 1428.5 0.2945 0

O–O 22764.3 0.149 27.88

O–Si–O

 

α 

 

= 2.097 eV/rad

 

2

 

O

 

c

 

–O

 

s

 

χ

 

 = 74.9204 eV/Å

 

2

 

Note: O

 

c

 

 is the core of an oxygen ion, and O

 

s

 

 is its valence shell.
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The computed energies of native defects in forsterite
are listed in Table 5. The lowest defect energies are
indicated in bold type. Clearly, the corresponding
defect species are the most energetically favorable and
must be present in the highest concentrations.

The M1 site is more favorable for Mg vacancies than
is M2. Oxygen vacancies are formed more readily in
the O3 site. The O1 site is the least favorable because of
the short Si–O1 bond. The energies of magnesium and
oxygen vacancies (  and ) differ little, while that

of Si vacancies ( ) is higher by a factor of 4. Oxy-
gen interstitials and Si vacancies are unlikely in forster-
ite [32].

In the case of Mg ions, the formation energy of
Frenkel defects, 

 

0  

 

 + , per particle can be
estimated using the relation

 

(20)

 In this way, we obtain  E  
F

  = 3.7 eV (Table 5).
The formation energy of Schottky defects per

Mg

 

2

 

SiO

 

4

 

 formula unit can be found as

 

(21)

 

We obtain 

 

E

 

Sch

 

 = 5.9 eV. Comparison with 

 

E

 

F

 

 indicates
that the formation of Frenkel defects is energetically far
more favorable in comparison with Schottky defects.

The energies of native defects listed in Table 5 agree
well with experimental data and other calculations [33,
34]. The formation energy of Mg interstitials  in
the M3 site is calculated in this work for the first time.

Table 6 lists the parameters of Me–O interatomic
potentials used for impurity centers and the calculated
defect energies 

 

E

 

d and solution energies Es of impuri-
ties in forsterite. Also given in Table 6 are the lattice
energies El of MeiOy oxides. The El of MgO is –41.3 eV,
and that of SiO2 is –128.7 eV. The lattice energies of
pure oxides were calculated using the same repulsion
parameters as in the case of the energies of the corre-
sponding defects in forsterite, which was expected to
cancel the errors due to the ionic approximation.

The data in Table 6 agree with the simulation results
reported by Purton et al. [35, 36] to within tenths of an
electronvolt except for Ca, Sr, and Ba impurities, for
which the difference in Ed is 1.0, 2.8, and 5.8 eV,
respectively. The likely reason for these discrepancies
is that different parameters of the repulsion potential
were used. Therefore, the choice of these parameters is
still open to question. At the same time, owing to the
above-mentioned compensation of errors, the differ-

VMg'' VO

..

VSi

....

VMg'' Mgi

..

EF
1
2
--- Ed VMg''( ) Ed Mgi

..
( )+[ ].=

ESch
1
7
--- 2Ed VMg''( ) Ed VSi

....
( )+([=

+ 4Ed VO

..
( ) El Mg2SiO4( )– ].

Mgi

..

ences in Es are as small as a fraction of an electronvolt,
which indicates that matched repulsion parameters
must be used in simulation.

It follows from the simulation results that the M1
site is energetically more favorable for monovalent

Table 4.  Calculated and measured atomic positional param-
eters in the structure of forsterite

Atom
x y z x y z

calculation experiment [31]

Mg(M1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mg(M2) 0.2830 0.2500 0.9978 0.2772 0.2500 0.9914

Si 0.0979 0.2500 0.4452 0.0939 0.2500 0.4261

O(1) 0.0924 0.2500 0.7841 0.0919 0.2500 0.7661

O(2) 0.4529 0.2500 0.2100 0.4469 0.2500 0.2202

O(3) 0.1646 0.0344 0.2934 0.1628 0.0333 0.2777

Table 5.  Native defects in forsterite crystals

Defect Position Ed, eV

M1 24.5

M2 26.4

M3 –11.5

M4 –17.1

S1 103.2

S2 –77.6

S3 –79.0

O1 28.0

O2 25.2

O3 24.4

Mg-related Frenkel defect EF = 3.7 eV

Schottky defect ESch = 5.9 eV

VMg
''

Mgi
..

VSi
''''

Sii
....

VO
..

Table 3.  Calculated and measured lattice parameters of for-
sterite (sp. gr. Pnma, Z = 4)

Parameter Calculation Experiment [31]

a, Å 10.24 10.18

b, Å 5.985 5.976

c, Å 4.781 4.746

V, Å3 293.11 288.60
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impurities than is the M2 site, except for the large-sized
ion Rb+. In the case of divalent nickel, cobalt, and iron,
the difference in solution energy between the octahe-
dral sites is not very large. The solution energy of Ni is
lower in the M1 site, and those of Co and Fe are lower

in the M2 site. According to the experimental data
reported by Rajamani et al. [37], these impurities may
substitute for Mg on both the M1 and M2 sites but pre-
fer M1, particularly Ni. For the other divalent impuri-
ties studied, the solution energy in the M2 site is lower

Table 6.  Parameters of interatomic potentials and calculated defect energies Ed and solution energies Es of impurities in forsterite

Me ∆r, Å B, eV λ, Å
Ed, eV El, eV Es, eV

M1 M2 MeiOy M1 M2

Monovalent impurities

Li 0.04 292.3 0.3472 16.80 17.40 –29.10 2.16 2.76

Na 0.3 611.1 0.3535 19.70 20.00 –24.90 2.96 3.26

K 0.66 902.8 0.3698 23.30 23.40 –22.20 5.21 5.31

Rb 0.8 1010.8 0.3793 25.20 25.19 –21.20 6.61 6.60

Divalent impurities

Ni – 0.03 1582.5 0.2882 –0.34 –0.31 –41.58 –0.05 –0.02

Co 0.025 14991.7 0.2951 0.36 0.32 –40.83 –0.10 –0.14

Fe 0.06 1207.6 0.3084 1.05 0.94 –40.12 –0.12 –0.23

Mn 0.11 1007.4 0.3262 2.50 2.26 –38.73 –0.06 –0.30

Ca 0.28 1090.4 0.3437 5.91 5.35 –35.95 0.57 0.01

Sr 0.46 959.1 0.3721 9.57 8.74 –33.42 1.70 0.87

Ba 0.63 905.7 0.3976 13.53 12.47 –30.67 2.91 1.85

Trivalent impurities

Sc 0.025 1299.4 0.3312 –19.82 –20.74 –144.5 2.65 1.73

Cr –0.105 1255.2 0.349 –15.43 –16.67 –136.8 3.21 1.97

Nd 0.263 1379.9 0.3601 –10.97 –12.50 –129.2 3.88 2.35

Yb 0.148 1309.6 0.3462 –15.57 –16.80 –136.8 3.04 1.82

Gd 0.218 1336.8 0.3551 –12.82 –14.24 –132.2 3.50 2.08

Eu 0.227 1358 0.3556 –12.45 –13.89 –131.6 3.57 2.13

Ti – 0.05 1715.7 0.3069 –22.88 –23.60 –150.4 2.54 1.82

Y 0.18 1345.1 0.3491 –14.38 –15.69 –134.7 3.22 1.92

Pu 0.28 1376.2 0.3593 –11.23 –12.75 –129.6 3.82 2.30

Tetravalent impurities

Ce 0.52 1986.8 0.3511 30.90 –104.3 6.46

Ge 0.13 1035.5 0.3464 9.19 –119.1 –0.44

Ti 0.16 754.2 0.3879 17.26 –112.5 1.01

V 0.2 706.882 0.3865 13.88 –114.6 –0.26

Th 0.6 2201.1 0.357 35.55 –100.4 7.23

U 0.55 2246.8 0.3554 35.42 –100.6 7.31

Zr 0.33 1608.1 0.3509 25.55 –108.3 5.10

Hf 0.32 1454.6 0.35 22.33 –109.4 3.01

Note: The ionic radii of Ce4+, V4+, Th4+, and U4+ were obtained by extrapolating r as a function of the coordination number.
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than that in M1, in accordance with experimental evi-
dence that Ca and Mn ions substitute for Mg primarily
on the M2 site [37, 38].

According to our calculations, trivalent impurities
must preferentially occupy the M2 site. This conclusion
agrees with the EPR data reported by Gaite [39], which
indicate that Gd3+ occupies the M2 site in forsterite. At
the same time, there is ample EPR evidence that Cr3+

preferentially occupies the M1 site [40–43]. The Cr3+

ions in forsterite substitute for Mg on the M1 and M2
sites in the ratio from 3 : 2 [41] to 9 : 2 [40]. Under oxi-
dizing conditions, this ratio is typically even larger.

Thus, the solution energies of impurities calculated
under the assumptions indicated above make it possi-
ble, in some cases, to predict the distribution of impuri-
ties over lattice sites. Such predictions are, however, not
always correct because the cation distribution is gov-
erned by a rather complex system of factors. Site pref-
erence depends not only on the cation size, charge, and
electronegativity, the crystal field, and the nature of the
lattice site but also on the growth temperature, the cool-
ing rate of the crystal, and oxygen fugacity. To accu-
rately assess site occupancies, one must take into
account the effect of lattice sites on the chemical bond-
ing of a given element and the effect of site symmetry
on the energy of crystal-field stabilization of transition-
metal atoms [11]. These factors are difficult to take into
account in computer simulation.

EFFECT OF IMPURITY CATION SIZE
AND CHARGE ON THE DEFECT ENERGY
AND SOLUTION ENERGY OF IMPURITIES

Figure 5 shows the defect energy and the solution
energy of impurities as functions of the difference in
ionic radius between the host atoms and the substituent.
The ionic radii were taken from [20]. The defect energy
and the solution energy of impurities are rated by their
minimal values (indicated in bold type in Table 5). The
defect energies are best represented by a linear function
of ∆r, and the solution energies, by a quadratic function.

The best fit equations for the defect energies have
the form

Ed = 10.83∆r + 16.38 for Me+,

Ed = 19.51∆r – 0.02 for Me2+,

Ed = 21.05∆r –19.09 for Me3+,

Ed = 51.83∆r + 5.56 for Me4+.

In the case of isovalent substitutions (  and

), the plots of Ed versus ∆r pass close to the origin.
Thus, replacement of a host ion by an ion of the same
charge and close in size has little effect on the total
energy of the crystal. In the case of heterovalent substi-
tutions (  and ), the y intercept of the plot of
the defect energy versus ∆r is about 20 eV in magni-

MeMg
×

MeSi
×

MeMg' MeMg

.

tude, which implies that charged impurity defects give
rise to significant changes in crystal energy even at
small ∆r. These changes are comparable to those pro-
duced by Mg- and O-related charged native defects in
forsterite (Table 5).

The slope of the plot of Ed versus ∆r increases in the
order Me+ < Me2+ < Me3+ < Me4+, which indicates that,
with increasing impurity cation charge, the defect
energy becomes more sensitive to the size mismatch.
The plot for monovalent impurities, which typically
occupy the M1 site, has the most gradual slope. In the
case of divalent and trivalent impurities, which occupy,
for the most part, the M2 site, the slope is steeper by
about a factor of 2. Finally, the slope for tetravalent
impurities is 5 times steeper in comparison with
monovalent impurities. These findings may be inter-
preted as evidence that the tetrahedral site is more rigid
than the octahedral sites and that the more heavily dis-
torted octahedral site M2 is more rigid than M1.

Figure 5b shows the solution energy of impurities in
forsterite as a function of (∆r)2. The best fit equations
for these data have the form

Es = 6.84(∆r)2 + 2.23 for Me+,

Es = 5.17(∆r)2 – 0.23 for Me2+,

Es = 7.16(∆r)2 + 1.76 for Me3+,

Es = 22.28(∆r)2 + 0.26 for Me4+.
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Fig. 5. (a) Energy of impurity defects as a function of ∆r;
(b) solution energy of impurities in forsterite as a function
of (∆r)2 .
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The plots of Es versus (∆r)2 for isovalent substitu-
tions pass close to the origin. For heterovalent substitu-

tions (  and ), the y intercept is about 2 eV,
which is comparable to the formation energy of charge
compensators. As estimated above, the formation
energy of Frenkel defects in forsterite is 3.7 eV.

MeMg' MeMg

.

According to Eqs. (6) and (7), compensation of an
excess charge on impurity cations requires half as many
doubly charged native defects. As shown in an earlier
study [44], the y intercept of the plot of Es versus (∆r)2

for divalent impurities in alkali halides is 1 eV, which is
comparable to the formation energy of the most ener-
getically favorable defects (Schottky defects), which
act as charge compensators.

At constant ∆r, Ed is a linear function of the cation
charge, while Es varies quadratically (Fig. 6). Increas-
ing ∆r increases both Ed and Es .

Table 7 lists the estimated defect energies and solu-
tion energies of trivalent impurities complexed with
vacancies. The energy sum in Eq. (12) was replaced by
the energy of the defect complex. As follows from the
data in Table 7, this ensures an appreciable energy gain,
which implies that native defects must attract impuri-
ties. Also given in Table 7 are the solution energies of
trivalent impurities in the case of compensation doping
[Eqs. (8) and (9)]. The solution energy of Me3+

decreases upon the introduction of charge compensa-
tors in the order  >  > . The last two
dopants ensure more favorable dissolution conditions
compared to compensating vacancies. The most ener-
getically favorable process is the dissolution of trivalent
impurities with compensation doping by Li ions, which
reduce the solution energy of chromium in forsterite to
1.5 eV. The concurrent formation of (MeMg LiMg)×

defect complexes may ensure a further energy gain on
the order of several tenths of an electronvolt.

THERMODYNAMIC ANALYSIS 
OF IMPURITY PARTITION COEFFICIENTS

A comparison of the lnK versus (∆r)2 and Es versus
(∆r)2 data in Figs. 2 and 5b indicates that K decreases
with increasing Es , as would be expected. Heterovalent
impurities have low K and high Es even at small ∆r. The
plot of lnK versus (∆r)2 passes rather far from the ori-
gin, which may be interpreted in terms of the energy
needed for the formation of a charge compensator. Ear-
lier experimental work [45] has shown that concurrent
dissolution of chromium and lithium increases the for-
sterite–melt partition coefficient of Cr by a factor of 1.5
and that of Li by a factor of 2, which correlates with the
predicted reduction in the solution energy by 1.5 eV for
chromium and by 1.7 eV for lithium. These results pro-
vide additional evidence that the partition coefficient is
strongly correlated with the solution energy of impuri-
ties.

The best fit equations for the lnK versus Es data
(Fig. 7) have the form

–kTlnK = 0.63Es + 0.33 for Me2+,

–kTlnK = 1.37Es –2.27 for Me3+,

–kTlnK = 0.14Es + 0.50 for Me4+.
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Fig. 6. (a) Defect energy and (b) solution energy of impuri-
ties in forsterite as a function of the charge on the impurity
cation in the Mg site at different ∆r values.

Table 7.  Calculated solution energies of trivalent impurities
in forsterite in the cases of impurity–vacancy complex for-
mation and compensation doping

Me
Ed, eV Es, eV Es, eV

complexes

Sc –19.70 0.45 0.27 1.07 3.31

Cr –11.60 0.67 0.51 1.31 3.55

Nd –3.30 1.03 0.88 1.68 3.92

Yb –11.90 0.49 0.35 1.15 3.39

Gd –6.80 0.74 0.61 1.41 3.65

Eu –6.10 0.80 0.66 1.46 3.70

Ti –25.50 0.50 0.35 1.15 3.39

Y –9.70 0.59 0.45 1.25 3.49

Pu –3.81 0.97 0.83 1.64 3.88

LiMg
' NaMg

' AlSi
'
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The slope of the lines increases in the order Me4+ <
Me2+ < Me3+. The y intercept is no greater than 0.5 eV
for isovalent substitutions and is much larger in magni-
tude (–2.3 eV) for trivalent impurities. It is reasonable
to assume that the calculated static solution energy of
impurities is close to their solution enthalpies in dilute
solutions at the crystallization temperature [3]. The y
intercept then represents the entropy contribution to the
free energy of solution of the impurity. In the case of
heterovalent substitutions, the entropy contribution is
substantially larger in comparison with isovalent sub-
stitutions, which seems to be associated with the forma-
tion of extra defects maintaining electroneutrality.

CONCLUSIONS

The forsterite–melt partition coefficients were
determined experimentally and systematized for a large
number of mono-, di-, tri-, and tetravalent impurities.

The formation of native defects and dissolution of
impurities in forsterite were studied using computer
simulation.

The partition coefficient and solution energy of
impurities in forsterite were shown to correlate with the
difference in ionic radius between the host and substit-
uent atoms. In addition, a strong correlation between K
and Es was found.

The partition coefficients of impurities depend pri-
marily on their solution energy, which, in turn, is a
function of the differences in ionic radius and valence
between the host and impurity atoms. This determines
the general trends in the dependences of the principal
characteristics of impurities (partition coefficient, solu-
tion energy, charge-compensation behavior) on the fun-
damental crystal-chemical parameters of the host and
guest cations.
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