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Abstract

We investigated the role that innate immunological signaling pathways, principally nod-like receptors (NLRs) and inflam-
masomes, in the manifestation of the contradictory outcomes associated with opioids, namely hyperalgesia, and tolerance.
The utilization of opioids for pain management is prevalent; nonetheless, it frequently leads to an increased sensitivity to
pain (hyperalgesia) and reduced efficacy of the medication (tolerance) over an extended period. This, therefore, represents a
major challenge in the area of chronic pain treatment. Recent studies indicate that the aforementioned negative consequences
are partially influenced by the stimulation of NLRs, specifically the NLRP3 inflammasome, and the subsequent assembly
of the inflammasome. This process ultimately results in the generation of inflammatory cytokines and the occurrence of
neuroinflammation and the pathogenesis of hyperalgesia. We also explored the putative downstream signaling cascades
activated by NOD-like receptors (NLRs) and inflammasomes in response to opioid stimuli. Furthermore, we probed potential
therapeutic targets for modifying opioid-induced hyperalgesia, with explicit emphasis on the activation of the NLRP3 inflam-
masome. Ultimately, our findings underscore the significance of conducting additional research in this area that includes an
examination of the involvement of various NLRs, immune cells, and genetic variables in the development of opioid-induced
hyperalgesia and tolerance. The present review provides substantial insight into the possible pathways contributing to the
occurrence of hyperalgesia and tolerance in individuals taking opioids.
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Introduction

Opioids are pharmacological agents frequently used in
anesthesia and acute pain treatment due to their dual prop-
erties. Opioid-induced hyperalgesia (OIH) and tolerance
are two negative consequences that can arise from long-
term opioid use (Roeckel et al. 2016). OIH is a paradoxi-
cal increase in pain sensitivity that can occur when pain is
treated with opioids. More amounts of opioids are required
to treat pain because tolerance reduces the response to their
pain-relieving properties (Williams et al. 2013). The mech-
anisms underlying the development of tolerance and OIH
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are intricate and poorly understood. Recent studies suggest
that these processes are driven to a significant extent by neu-
roinflammation and activation of innate immune pathways
(Grace et al. 2014).

A class of intracellular pattern-recognizing receptors
(PRRs) known as nod-like receptors (NLRs) is critical for
both innate immunity responses and the activation of inflam-
matory pathways (Ting et al. 2008). When the NLR family
recognizes pathogen-associated molecular patterns (PAMPSs)
or damage-associated molecular patterns (DAMPs), they can
be assembled to multiprotein complexes called inflammas-
omes. These complexes drive caspase-1 to become activated,
which causes the production and release of pro-inflamma-
tory cytokines, including IL-1 and IL-18 (Swanson et al.
2019). A growing body of research suggests that NLRs and
inflammasome activation have a role in many types of pain,
such as neuropathy or inflammation-related pain (Ji et al.
2014). However, the specific functions of diverse NOD-like
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receptors (NLRs) and inflammasomes in these biological
processes remain unclear.

Our aim was to provide a proper review of the exist-
ing knowledge regarding the roles of NOD-like receptors
(NLRs) and inflammasomes in opioid tolerance and opioid-
induced hyperalgesia (OIH). This study delved into the intri-
cate molecular mechanisms by which opioids modulate the
activation of nuclear receptors and the assembly of inflam-
masomes. Furthermore, we highlighted potential therapeutic
strategies targeting these pathways to ameliorate or prevent
the adverse effects associated with opioid medications.

Opioids family and opioids receptors

Pain, reward, addiction, stress, inflammation, and many
other physiological processes are regulated by opioid recep-
tors i.e., GPCRs that bind to opioids. While opioids are ben-
eficial in the treatment of severe acute and chronic pain,
they also have side effects such as constipation, respiratory
depression, tolerance, addiction, and dependence (Zollner
and Stein 2007), (Kiyatkin 2019).

Distinct categories of opioids are distinguished based on
their chemical composition, place of origin and pharmaco-
logical characteristics. These families comprise opiates, i.e.,
natural alkaloids derived from the opium poppy plant (Papa-
ver somniferum), including morphine, codeine and thebaine;
semi-synthetic opioids, i.e., modified forms of opiates like
heroin, oxycodone, hydrocodone and buprenorphine; Syn-
thetic opioids: these are opioids that are produced entirely in
a laboratory, including fentanyl, methadone, tramadol, and
tapentadol; endogenous opioids are peptides that the body
produces naturally. Endorphins, enkephalins, dynorphins,
and endomorphins are some of the examples (Zollner and
Stein 2007), (Corder et al. 2018), (Shang and Filizola 2015).
In addition, opioids are categorized as agonists (such as
morphine and fentanyl), partial agonists (such as buprenor-
phine), antagonists (such as naloxone), and mixed agonist-
antagonists (such as nalbuphine) on the basis of their recep-
tor affinity and effect. Opioids differ in their onset of action,
duration of action, potency, efficacy, and safety due to dif-
ferences in their pharmacokinetic and pharmacodynamic
properties (Wardhan and Chelly 2017).

Opioid receptors, which exhibit diverse pharmacological
properties, distinct anatomical distributions, specific func-
tional roles, and unique molecular structures, are systemati-
cally categorized into four major subtypes. Mu (p)-opioid
receptors are the most widespread and abundant opioid
receptors in the central nervous system (CNS) and peripheral
nervous system (PNS). The predominant impacts of opioids
on pleasure, sedation, pain relief, respiratory depression,
and addiction are facilitated by these agents. Opioid recep-
tors influence immunological and inflammatory responses.
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Among these receptors, there are three subtypes of p-opioid
receptors: pl, p2, and p3. In addition, delta (8)-opioid recep-
tors are predominantly localized in the central nervous sys-
tem (CNS), particularly in regions such as the limbic sys-
tem and the spinal cord. They affect learning and memory
processes and moderate some of the effects of opioids for
pain relief, antidepressants, anxiolytics, and anticonvulsants.
Delta opioid receptors have two distinct subtypes: d1 and 52.
Kappa (k) opioid receptors, which are predominantly local-
ized in the central nervous system (CNS), demonstrate their
highest concentration in regions such as the hypothalamus,
brainstem, and spinal cord. Some of the effects of opioids
in pain treatment, anticonvulsants, diuretics, and neuropro-
tection are mediated through them. They also cause stress
reactions, sedation, hallucinations, and dysphoria. There
are three subtypes of kappa opioid receptors: k1, k2, and
k3. Nociceptin/orphanin FQ peptide receptors (NOPs) are
mainly located in the CNS, mainly in the cortex, hippocam-
pus, amygdala, and cerebellum. They act as a moderator for
some of the analgesic, anti-inflammatory, anxiolytic, and
antidepressant effects of opioids. They also affect cognition,
exercise and dietary habits. There are no recognized sub-
types of NOPs (Waldhoer et al. 2004), (Stein 2016), (Pas-
ternak and Pan 2013).

Different kinds of ligands, including endogenous opioids
(like endorphins), exogenous opioids (like morphine), and
synthetic opioid ligands (like naloxone), can activate opi-
oid receptors. Other substances, including allosteric ligands
(like sodium ions), receptor heteromers (like MOR-DOR
dimers), and receptor transport (like internalization), can
further influence opioid receptors. Various G proteins are
combined with opioid receptors to initiate distinct signal-
ing pathways, including inhibition of cAMP, inhibition of
Ca+ + channels, and activation of K + channels (Williams
et al. 2013), (Corder et al. 2018).

Pains and opioids in pain management

There are three types of pain: nociplastic, neuropathic, and
nociceptive. This type of pain is known as nociceptors; cuts,
burns and sprains are examples of nociceptive pain. Nocic-
eptive pain is physiological and results from tissue injury or
inflammation. Injury or dysfunction of the somatosensory
nervous system leads to abnormal sensory information pro-
cessing and perception, which causes neurological symp-
toms. Symptoms of pathologic neuropathic pain include
phantom limb pain and diabetic neuropathy. Nociceptive
dysregulation, a pathogenic condition that can be caused by
various diseases such as fibromyalgia and irritable bowel
syndrome, also occurs without prominent nerve or tissue
damage. Peripatetic and central neuropathic pain are two
categories within neuropathic pain. Peripheral neuropathic
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pain is caused by peripheral nerve injury or disease. Central
neuropathic pain, which is characterized by a range of sensa-
tions such as burning and tingling, can be triggered by con-
ditions such as trauma, infection and diabetes. In contrast,
central neuropathic pain is caused by conditions that affect
the central nervous system. Characteristic features include
electrical shocks and burning sensations. Stroke and Parkin-
son’s disease in particular are among the diseases associated
with the occurrence of pain. Acute pain is a form of nocicep-
tive pain that typically occurs shortly after a sudden accident
or illness. Neuropathic pain and nociplastive pain are two
types of chronic pain that have a longer natural healing time.
Pain, inflammation, and extreme tenderness all have a help-
ful purpose in protecting tissues from additional damages.
While the triggering of inflammation is well understood,
the mechanisms that control its resolution are not as well
understood (Ji et al. 2014), (Kuner and Kuner 2021), (Glare
et al. 2019), (van der Vlist et al. 2022), (Mitsikostas et al.
2022), (Scholz et al. 2019).

Opioids have been a mainstay in pain therapy for a long
time because of their analgesic properties (Jage 2013). They
produce analgesia, sedation, euphoria, and other effects by
interacting with opioid receptors in the central and periph-
eral nervous system, primarily mu-receptors (Wardhan and
Chelly 2017). Opioids are commonly used in pain manage-
ment for both acute and chronic ailments, including pallia-
tive care, neuropathic pain, cancer pain, and post-operative
pain. Opioids derived from or mimicking natural substances
from the opium poppy plant can be customized to meet indi-
vidual patient requirements by choosing various formula-
tions, dosages, routes of administration and dosage forms.
To increase efficacy and mitigate potential side effects,
opioids can be combined with other analgesics and non-
pharmacological therapeutic approaches (Roth et al. 2020).
However, opioids have serious side effects, which include
decreased breathing, constipation, nausea, vomiting, itching,
tolerance, dependence, and addiction (Antony et al. 2020),
(Arango et al. 2006). In addition, opioids can inhibit the
immune system and influence the course and recurrence of
various malignancies. Consequently, the administration of
opioids in pain therapy requires thorough consideration of
the pros and cons, tailored dosing and titration, multimodal
analgesia, monitoring and post-treatment care (Wardhan and
Chelly 2017), (Beecham et al. 2006).

Opioid maintenance therapy (OMT) has been shown
to have a positive impact on patient outcomes, including
increased longevity, reduced risk of infections, and improved
quality of life. However, it is important to note that OMT
can also pose challenges for pain management due to dif-
ferential patient responses to non-opioids and opioids. In
the context of OMT, effective pain management requires
a comprehensive approach that takes into account factors
such as pain type, severity, duration, and etiology, as well

as the patient’s health status, psychosocial aspects, and the
potential for substance abuse or cognitive distraction.
Adjusting OMT dosages is a crucial aspect of pain man-
agement. Other strategies for managing pain include collab-
orating with OMT doctors and pain experts, utilizing non-
opioid or short-acting opioid analgesics, and exploring other
pharmaceutical options. In the context of OMT, effective
pain management requires a comprehensive approach that
includes systematic patient education, vigilant monitoring,
and comprehensive evaluation. Multimodal treatment of pain
and opioid risk assessment are two recent examples of tac-
tics being investigated to help ensure safer and more efficient
opioid use (Sierzantowicz et al. 2020). Given the potential
advantages and hazards of opioid therapy, it is essential to
exercise sensible use and cautious patient selection.
(Fischer et al. 2014).

Opioid-induced tolerance

Long-term use of opioids for pain management is associated
with negative consequences, including tolerance, addiction,
and dependence. Opioid-induced tolerance is a condition
that occurs when long-term exposure to opioids causes a
decreased reaction to their analgesic effects, necessitating
greater doses to produce the same amount of pain relief.
This phenomenon reduces the effectiveness of opioids for
treating pain and raises the possibility of overdosing and
death (Mercadante et al. 2019). Changes in the brain, cells,
and molecules at various stages of the pain pathway are just
a few of the complex and multifaceted processes that lead
to opioid-induced tolerance. Since opioid receptors are the
principal targets of opioids, deactivation of these receptors is
one of the fundamental processes behind opioid-induced tol-
erance. By preventing neurotransmitter release and adjusting
ion channel activity, opioid receptors mediate the analgesic
effects of opioids. When opioids activate opioid receptors
over and over again, they become less available and respon-
sive on the cell surface. This is because opioids phosphoryl-
ate, internalize and recycle them (Zhou et al. 2021).

Acute opioid tolerance (AOT) may be caused via seroton-
ergic pathways, although the exact mechanism is unknown.
For example, the 5-HT3 receptor is linked to tolerance and
dependence on opioids. It has shown that this receptor
affects the transcription of genes that regulate opioid toler-
ance. Furthermore, the 5-HT3 antagonist ondansetron can
both prevent and reverse opioid-induced hyperalgesia (OIH)
and tolerance in animal models (Colvin and Fallon 2010).
Compared to longer-acting opioids, short-acting opioids
like remifentanil appear to provoke OIH and acute toler-
ance more rapidly and frequently. This phenomenon may
be associated with the relatively high dosage of remifenta-
nil required for achieving analgesic effects. Consequently,
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anesthesiologists need to be aware of the possible side
effects of remifentanil infusion following surgery, includ-
ing heightened pain thresholds and increased opioid usage
(Kim et al. 2018).

The activation of the innate immune system and the con-
sequent synthesis of pro-inflammatory mediators is another
way opioids induce tolerance. Long-term opioid exposure
can cause inflammatory reactions in several cell types,
including monocytes and microglia, by connecting to their
receptors, or Toll-like receptor 4 (TLR4), which is expressed
in different immune and brain cells. This process leads to
the activation of the innate immune system and the synthe-
sis of pro-inflammatory mediators, which have the potential
to increase nociceptive transmission and activate periph-
eral and central pain pathways. These effects may result in
decreased analgesia and elevated hyperalgesia (Carranza-
Aguilar et al. 2022), (Zare et al. 2022).

The role of NLRs and inflammasome
in opioid-induced hyperalgesia
and tolerance

The activation of NLRs and the inflammasome serves a criti-
cal role in the pathophysiological mechanisms of OIH and
tolerance. Opioid substances have the potential to elicit the
secretion of crucial pro-inflammatory cytokines, including
interleukin-1 beta (IL-1), interleukin-18 (IL-18), and tumor
necrosis factor-alpha (TNF-a). The production of these
cytokines is initiated by immune cells, such as microglia
and astrocytes, as a reaction to cellular stress and damage
induced by opioids. Numerous studies have provided evi-
dence indicating that opioid substances can stimulate the
NLRP3 inflammasome, hence initiating the synthesis and
subsequent release of IL-1f and IL-18. The involvement of
the NLRP3 inflammasome in the pathogenesis of OIH and
tolerance is demonstrated through its facilitation of neuro-
inflammation and oxidative stress. Furthermore, opioids can
regulate the activity and expression of other NLRs, includ-
ing NLRP1 and NLRC4, which have been related to the
modulation of pain and inflammation (Zhang et al. 2015),
(Hutchinson et al. 2008), (Liu et al. 2017).

The modulation of opioid analgesia is influenced by the
central immune signaling pathway. Opioids interact with
several receptors, including opioid receptors, Toll-like
receptor 4 (TLR4), and purinergic receptors, which are pre-
sent in immune cells such as microglia and astrocytes. This
results in the release of cytokines and chemokines, includ-
ing C—X-C motif chemokine ligand 1 (CXCL1) and IL-1p,
as well as the disturbance of glutamate homeostasis within
the central nervous system (Grace et al. 2016), (Dinarello
2011), (Hutchinson et al. 2010), (Hutchinson et al. 2007).
Grace et al. reported that a concise regimen of morphine
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intervention, delivered upon the manifestation of neuro-
pathic pain, induces enduring sensitization that persists for
several weeks after termination of morphine treatment. The
ipsilateral spinal lumbar dorsal inflammasome is expressed
more frequently in response to this chronic sensitization,
which is limited to microglia and does not depend on the
activation of opioid receptors. The spinal NLRP3 inflamma-
some, a protein structure that had not previously been found
in the spinal cord or associated with pain, is responsible for
the onset of morphine-induced persistent sensitization. Spi-
nal inflammasome activation is also crucial for perpetuating
chronic sensitization (Grace et al. 2016).

Chang et al. observed that lipopolysaccharide (LPS)
induces cerebral inflammation in rats by inhibiting the
NLRP12 inflammasome, which possesses anti-inflammatory
properties. As well, downstream elements such as Birc3 are
activated, leading to increased production of chemokines
(CCL2, CCL7, CXCL1, and CXCL3) and cytokines (IL-1f
and IL-6), all associated with inflammation. Intriguingly, in
the context of morphine tolerance, the expression of genes
linked to the inflammasome diminishes upon exposure to
LPS, implying a reduction in inflammation. Notably, LINCS
analysis has corroborated that morphine tolerance modu-
lates the LPS response, with VPS28 emerging as one of the
genes influencing these alterations (Chang et al. 2017). Mao
et al. uncovered that inhibition of the NLRP3 inflammasome
attenuated the advancement of morphine tolerance and LPS-
induced inflammation. These observations underscore the
involvement of the NLRP3 inflammasome in regulating the
inflammatory reaction and the development of opioid toler-
ance (Mao et al. 2013).

Qu et al. revealed that prolonged use of morphine led to
the release of heat-shock protein 70 (HSP70) from neurons,
which activates microglia and initiates the TLR4/MAPK/
NF-kB/NLRP3 pathway. This results in an increase in the
production of pro-inflammatory cytokines, leading to a
reduction in the analgesic effects of morphine. Furthermore,
the modulation of HSP70 secretion is directed by the mu-
opioid receptor (MOR)/AKT/KATP/ERK signaling cascade
(Qu et al. 2017). Similar signaling pathways are found in
both chronic pain and morphine tolerance. This suggests that
microRNAs (miRNAs) may affect how morphine-induced
analgesic tolerance develops (McAdams et al. 2015). The
occurrence of morphine tolerance is attributed to alterations
in the transcription levels of certain messengers and neu-
rotransmitters as a result of extended drug usage (Enquist
etal. 2011). The study by Xie et al. looked into how micro-
RNA-223 (miR-223) affected the development of morphine
tolerance and the activation of the NLRP3 inflammasome
in a rat model of neuropathic pain. They observed that
prolonged administration of morphine resulted in a reduc-
tion in the expression of miR-223 and an increase in the
expression of the NLRP3 inflammasome and its downstream
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components, including caspase-1 and IL-1f, in the spinal
cord of rats subjected to chronic constriction injury (CCI).
Therefore, miR-223 may exert an influence on the devel-
opment of morphine analgesic tolerance in the context of
neuropathic pain through its targeting of the NLRP3 inflam-
masome (Xie et al. 2017).

Previous studies have demonstrated that opioids can
activate of the NLRP3 inflammasome by stimulating TLR4
and P2X7R. Babelova et al. investigated the functional sig-
nificance of biglycan as a danger signal in the activation of
the NLRP3 inflammasome via toll-like and P2X receptors.
The soluble form of biglycan can stimulate the synthesis
and secretion of IL-1f by activating the NLRP3 inflamma-
some in macrophages. The biglycan interacts with TLR2/4
and purinergic P2X4/7 receptors on the outside of cells.
These interactions result in cooperative receptor activity,
the generation of reactive oxygen species, and the induction
of NLRP3 expression and pro-IL-1f stimulation through
TLR2/4 signaling, as reported in references (Yang et al.
2020), (Pelegrin 2021), (Babelova et al. 2009).

Grace et al. revealed that the injection of morphine after
CCI can intensify cellular stress by stimulating NLRP3
inflammasomes, triggering a higher level of damage-
associated molecular patterns (DAMPs). Elevated levels
of DAMPs have the potential to initiate the activation of
the NLRP3 inflammasome through TLR4 and P2X7 recep-
tor (P2X7R) signaling pathways. This activation process
establishes a self-reinforcing cycle that sustains the pres-
ence of persistent allodynia. This statement underscores the
significance of comprehending the underlying mechanisms
that contribute to the intensification of cellular stress and
prolonged pain resulting from morphine administration.
Such understanding may pave the way for identifying novel
therapeutic targets to manage neuropathic pain (Grace et al.
2018).

Neuroinflammation within the spinal cord has been impli-
cated in the pathogenesis of opioid-induced hyperalgesia
(OIH), as well as the diminution of morphine’s analgesic
efficacy over time (Roeckel et al. 2016), (Grace, Maier
and Watkins, no date). Notably, morphine’s impact on the
IL-1p signaling pathway may contribute to the attenuation
of its pain-relieving effects, potentially precipitating OIH,
tolerance, and withdrawal in the spinal cord. Conversely,
suppression of IL-1B may prolong the beneficial outcomes
associated with morphine administration (Hutchinson et al.
2011), (Shavit et al. 2005). During neuroinflammation, there
is a disruption in the balance between anti-inflammatory
adenosine signaling at AIAR/A3AR and pro-inflammatory
purinergic signaling at the purinergic G protein-coupled
receptor (P2XR). This disruption is caused by an increase
in ADK expression and activity within the cells, as well
as the release of ATP (Aronica et al. 2013), (Fiebich et al.
2014), (Rodrigues et al. 2015). The activation of P2X7R

by ATP initiates the assembly of NLRP3 and the activation
of caspase 1 (Tsuchiya and Hara 2014); the activation of
P2XA4R regulates the function of microglia, while the acti-
vation of purinergic G protein-coupled receptor 1 enhances
glutamatergic signaling in neurons and leads to increased
reactivity of astrocytes and calcium flux between cells
(Rodrigues et al. 2015). Consequently, neuroinflammatory
cytokines, such as IL-1p, elicit an upregulation of adenosine
kinase (ADK) expression to maintain this state of imbalance
(Aronica et al. 2011). The relationship between oxidative
stress-induced hippocampal damage (OIH) and tolerance is
linked to heightened excitatory glutamate neurotransmis-
sion (Garzoén et al. 2012). Additionally, IL-1p enhances
glutamatergic signaling at the synaptic level by augment-
ing presynaptic glutamate release (Yan and Weng 2013) and
reducing glial glutamate uptake (Sama et al. 2008).

Wang et al. demonstrated that long-term morphine ther-
apy leads to leads to an upregulation of NLRP3 expression
and its subsequent downstream products, including IL-1p
and caspase-1, in the spinal cord of mice. They found that
when NLRP3 was deleted, tolerance to morphine decreased
and microglia stopped activating when morphine was pre-
sent. The increase in spinal NLRP3 brought on by long-
term morphine therapy was stopped by TLR4 knockdown
or selective antagonist suppression of the P2X7 receptor.
The activation of the NLRP3 inflammasome in microglia,
mediated by the spinal cord TLR4/P2X7 receptor pathway,
has been found to play a significant role in the development
of morphine tolerance (Wang et al. 2020).

Doyle et al. demonstrated that prolonged morphine
administration increased the expression of ADK and
decreased the amount of naturally occurring adenosine avail-
able at the A3AR receptor site in the spinal cord. They also
revealed that blocking ADK activity or activating A3AR
with specific agonists stopped rats and mice from developing
tolerance and hyperalgesia to morphine. The stimulation of
the NLRP3 inflammasome and the ensuing inflammatory
response induced by chronic morphine therapy were attenu-
ated by adenosine A3 receptor (A3AR) signaling. Conse-
quently, A3AR signaling becomes dysregulated during pro-
longed morphine treatment, contributing to the perturbation
of NLRP3 inflammasome activity within the spinal cord,
thereby manifesting as morphine-induced adverse effects
(Doyle et al. 2020).

The intrathecal morphine administration can stimulate
astrocytes and microglia within the spinal cord, resulting
in enhanced release of inflammatory cytokines, including
TNF-o and IL-1f. This mechanism has been associated with
the development of morphine tolerance (Avci and Tagkiran
2020). Chen et al. found that prolonged administration of
morphine leads to an elevation in TCF7L2 expression in the
spinal cord and microglial cells. As part of the TLR4/NF-xB/
NLRP3 pathway, the TCF7L2 gene controls how it works.
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This pathway has been linked to both inflammatory and neu-
ropathic pain. It has also been seen that TCF7L2 plays a part
in the transcriptional activation of TLR4, which is an essen-
tial receptor involved in the neuroinflammation that morphine
causes. To stop or reverse morphine tolerance, TCF7L2 may
be a good target because it can change TLR4/NF-kB/NLRP3
to cause antinociception and hyperalgesia in microglia cells
(Chen et al. 2021).

Liu et al. showed that prolonged administration of mor-
phine increased the expression of caveolin-1 and acti-
vated the NLRP3 inflammasome. Blocking caveolin-1
with a specific inhibitor or siRNA improved the analgesic
effect of morphine and prevented the activation of the
NLRP3 inflammasome and the production of cytokines
that cause inflammation. Additionally, the inhibition of
caveolin-1 resulted in the suppression of the ERK/c-JUN
pathway, which is known to be involved in the control
of the NLRP3 inflammasome. This suppression was
observed through the reduction of ERK and c-JUN phos-
phorylation. Hence, caveolin-1 may serve as a promising
candidate for mitigating the morphine-induced inflam-
mation and analgesic tolerance through the regulation of
the NLRP3 inflammasome and ERK/c-JUN pathway (Liu
et al. 2022).

Yuan et al. investigated the effect of activating NLRP3
inflammasomes in the spinal cord on the progression of
remifentanil-induced postoperative hyperalgesia (RIH).
NLRP3 inflammasome activation influences the activity
of spinal cord glutamate transporters and N-methyl-D-
aspartate (NMDA) receptors. An infusion of remifentanil
also caused RIH in rats, increased IL-1f and phosphoryl-
ated NR1 (a subunit of the NMDA receptor), decreased
the expression of GLT-1, and increased the activation of
the NLRP3 inflammasome in the spinal cord. Further-
more, the prevention or reversal of radiation-induced
headache and its accompanying molecular alterations
can be achieved with the intrathecal infusion of IL-1f or
NLRP3 inflammasome inhibitors (Yuan et al. 2022) (as
shown in Fig. 1).

Ruyak et al. conducted a study to investigate the effects
of prenatal exposure to opioids and alcohol on immu-
nological and serotonin components in the human pla-
centa. Both opioids and alcohol have an impact on the
expression of cytokines, specifically IL-1p and TNF-a,
within the human placenta. It appears that alcohol and
opioids may disrupt the dynamic, bidirectional relation-
ship between the placental immune system and the sero-
tonin system, leading to elevated levels of 5-HT in the
fetal circulation, which are linked to neurodevelopmental
effects (Ruyak et al. 2022). The characteristics of selected
studies have been shown in Table 1.
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The potential therapeutic implications
of targeting NLRs and inflammasome
in opioid-induced hyperalgesia

and tolerance

Activation of NLRs and inflammation is thought to be one
of the fundamental mechanisms responsible for opioid-
induced hyperalgesia and tolerance. The NLRP3 inflam-
masome has been shown to play a role in the processing
and secretion of pro-inflammatory cytokines that influence
pain sensitivity and responsiveness to opioids (Chen et al.
2021) (see Fig. 1).

Kido et al. indicated that a low-dose ketamine infusion
in patients undergoing orthognathic surgery who received
a remifentanil infusion resulted in a reduction in post-
operative morphine and an improvement in pain scores.
They also showed that in patients undergoing orthognathic
surgery and receiving a remifentanil infusion, a low-dose
ketamine infusion reduced the neutrophil-to-lymphocyte
ratio (NLR). In patients undergoing orthognathic surgery,
a low-dose ketamine infusion has been suggested to atten-
uate the inflammatory response and avoid remifentanil-
induced acute opioid tolerance (Kido et al. 2019).

Moreover, Novac et al. observed a significant increase
in the level of NLRP3 inflammasomes in both patient
groups (midazolam + fentanyl and propofol 4 fentanyl)
after the completion of minimally invasive surgery (MIS)
compared to preoperative values. The observed increase
in NLRP3 inflammasome levels in both cohorts of admin-
istered anesthetics indicates a pronounced inflammatory
response during minimally invasive surgery (MIS). Total
intravenous anesthesia (TIVA) with propofol and remifen-
tanil has been shown to improve immunologic function
and decrease inflammatory responses in patients under-
going minimally invasive gynecologic surgery. TIVA not
only improves patient recovery, but can also reduce the
incidence of post-operative problems, including infections
(Novac et al. 2021).

A lipid mediator called aspirin-triggered lipoxin (ATL)
is produced from aspirin and omega-3 fatty acids. It can
prevent the development of morphine antinociception tol-
erance (MAT). Tian et al. demonstrated that ATL prevents
the activation of the NALP1 inflammasome in the spi-
nal cord. The administration of morphine to rats caused
the induction of morphine-associated tolerance (MAT),
an elevation in Akt phosphorylation, a protein kinase
implicated in cellular survival and proliferation, an aug-
mentation in caspase-1 activation, and an upregulation
in the expression of NALPI inflammasome constituents.
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Fig. 1 The figure illustrates the role of NLRs (nucleotide-binding oli-
gomerization domain-like receptors) and inflammasome signaling in
developing opioid-induced hyperalgesia and tolerance. Opioids have
an affinity for opioid receptors (ORs) located on neurons and immune
cells, as well as Toll-like receptors (TLRs) and purinergic signaling at
purinergic G protein-coupled receptor (P2XR). This binding interac-
tion initiates many pathways that regulate the experience of pain and
the inflammatory response. Certain signaling pathways are responsi-
ble for the activation of the NLRP3 inflammasome, which is a com-
plex that facilitates the cleavage of pro-inflammatory cytokines IL-1f
and IL-18, resulting in the production of their active versions. Hyper-

Administration of ATL via intrathecal injection prior to
morphine administration effectively prevented the onset
of morphine-induced antinociceptive tolerance (MAT) and
associated molecular changes by suppressing phosphoryla-
tion of Akt. The study suggests that ATL may serve as a
therapeutic agent to prevent MAT by explicitly targeting
the p-receptor/PI3k-Akt signaling/NALP1 inflammasome
pathway (Tian et al. 2015).

Cai et al. reported that the concurrent administration of
procyanidins and morphine resulted in an enhanced antino-
ciceptive effect of morphine while also mitigating the occur-
rence of acute and chronic morphine tolerance. Procyanidins
were found to impede the augmentation of IL-1f and the
activation of NLRP3 inflammasome generated by morphine.
Furthermore, procyanidins repressed the amount of reactive

algesia can result from these cytokines' propensity to boost neuronal
excitability and sensitize nociceptors. Moreover, they may lessen the
analgesic impact of opioids, which could result in tolerance and less
pain relief. Additional NOD-like receptors (NLRs) can modulate the
signaling of NF-kB and the production of major histocompatibility
complex II (MHC II), both of which play crucial roles in the regu-
lation of inflammatory processes and immunological responses. The
diagram depicts the possible areas of focus for therapeutic interven-
tion to mitigate or reverse the effects of opioid-induced hyperalgesia
and tolerance through the modulation of NLRs and inflammasome
signaling

oxygen species in microglia and downregulated the phos-
phorylation of p38 MAPK and NF-«xB translocation (Cai
et al. 2016).

Previous studies have provided evidence that NF-kB
plays a crucial role in the regulation of NLRP3 transcrip-
tion. In response to endotoxin stimulation, NF-kB can bind
to the NLRP3 promoter and trigger NLRP3 transcription
(Bauernfeind et al. 2009). Lin et al. presented empirical
results demonstrating the inhibitory effect of naloxone
on the activation of the NLRP3 inflammasome in already
active THP-1 cells. Inhibition of NF-kB expression by
naloxone is likely the mechanism by which this effect is
mediated. This blockade slows the production of pro-IL-1
and NLRP3 transcription, both of which are increased
by endotoxins. The results shed light on the potential

@ Springer
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therapeutic benefits of naloxone in regulating NLRP3
inflammasome activation and subsequent inflammatory
responses (Lin et al. 2017).

Green-Fulgham et al. investigated the impact of mor-
phine in conjunction with TLR4 and P2X7 antagonists on
voluntary cycling behavior in male rats subjected to unilat-
eral chronic constriction injury (CCI) of the sciatic nerve.
Over seven weeks after CCI, the rats' running distance and
speed were measured during the active phase of the cir-
cadian cycle. Administration of CCI led to a reduction in
locomotor activity, indicating neuropathic pain and impaired
motor function. Interestingly, the short-term administration
of morphine did not affect the CCI rats, but increased the
running activity of the sham rats, indicating the induction
of hyperactivity by morphine. Nevertheless, the rats’ CCI
running behavior normalized more than five weeks after the
last dose of morphine when combined with either a TLR4
antagonist ((+)-naloxone) or a P2X7 antagonist (A438079),
suggesting that the painkillers and anti-inflammatory drugs
acted over a longer period of time (Green-Fulgham et al.
2022). Consequently, the TLR4 and P2X7 receptors may
be viable targets for reducing morphine tolerance and neu-
ropathic pain as a result of their cross-talk with the NLRP3/
inflammasome (Pelegrin 2021), (Yang et al. 2020).

Ruiz-Miyazawa et al. studied the effects of the flavonoid
molecule quercetin on gout arthritis induced by monosodium
urate (MSU) crystals in a mouse model. They investigated
what happened when mice were administered quercetin and/
or naloxone and how this affected mechanical hyperalgesia,
paw edema, cytokine levels and activation of the NLRP3
inflammasome. They showed that quercetin could dose-
dependently reduce the pain, inflammation and IL-1f pro-
duction induced by MSU injection. They also indicated that
quercetin exerts its effect by interacting with opioid recep-
tors. It was found that quercetin could stop the expression
and activation of NLRP3/inflammasome and its downstream
parts, such as caspase-1 and ASC, in the paw tissue and
peritoneal macrophages of mice injected with MSU. The
results suggest that quercetin, through its modulation of the
NLRP3 inflammasome and opioid system, has the potential
of a natural therapeutic agent for the treatment of gout arthri-
tis (Ruiz-Miyazawa et al. 2017).

Qu et al. showed that blocking the KATP channel with
glibenclamide stopped the release of HSP70 and turned on
the TLR4-NLRP3 inflammasome. This intervention also
attenuated morphine tolerance and hyperalgesia. They sug-
gested that the KATP channel and the HSP70-TLR4-NLRP3
axis could be potential targets for mitigating morphine toler-
ance and neuroinflammation (Qu et al. 2017).

Morphine and fentanyl can affect the activation of the
NLRP3 inflammasome in glial and neuronal cells in the dor-
sal raphe nucleus (DRN), a region involved in pain modula-
tion. Morphine and fentanyl both work by activating TLR4

@ Springer

receptors in astrocytes and opioid receptors in neurons.
These receptors then activate the NLRP3 inflammasome and
trigger pyroptosis in the DRN in different ways. This sug-
gests that neuroinflammation plays a role in opioid-induced
analgesia and fentanyl-induced hyperalgesia after repeated
administration. Furthermore, blocking the NLRP3 inflam-
masome with MCC950 or the anti-inflammatory drug mino-
cycline slowed down the development of pain tolerance and
stopped the occurrence of fentanyl-induced hyperalgesia.
Therefore, it is plausible that the NLRP3 inflammasome and
pyroptosis mechanisms are involved in the neuroinflamma-
tory response and pain modulation related to opioid effects
(Carranza-Aguilar et al. 2022).

Reactive oxygen species (ROS) facilitate the stimulation
of the inflammasome. The inflammasome is triggered by
reactive oxygen species (ROS) through the MAPK (mitogen-
activated protein kinase) and ERK1/2 pathways (Harijith
et al. 2014). Moreover, oxidative stress has been shown to
stimulate NLRP3 by upregulating the activity of cathepsin B
(Bai et al. 2018). Liu et al. have indicated that melatonin has
the potential to alleviate the development of analgesic toler-
ance and hyperalgesia due to prolonged morphine therapy.
This activation could be stopped by melatonin because it
lowers the levels of ROS and cathepsin B. Morphine also
increased the activation of the NLRP3 inflammasome in the
brain and blood of mice. In addition, Liu et al. found that,
in comparison to healthy people, heroin addicts had lower
blood levels of melatonin and higher serum levels of IL-1p.
A possible treatment approach for managing chronic pain
without causing tolerance or hyperalgesia is to co-administer
melatonin with low-dose morphine (Liu et al. 2020).

Cui et al. studied the neuroprotective effects of herkinorin,
a natural substance derived from salvinorin A and a mu-opi-
oid agonist. They reported that herkinorin demonstrated the
capacity to protect neurons from harm due to oxygen—glu-
cose deprivation/reperfusion (OGD/R). This protective effect
was attributed to the inhibition of NLRP3 inflammasome
activation and the subsequent reduction in the production
of pro-inflammatory cytokines. The herkinorin compound
stopped the NF-xB pathway from working, which is a signal-
ing pathway that helps control the NLRP3 inflammasome.
The reduction of phosphorylation and ubiquitination events
targeting [kBa, a well-known NF-B inhibitor, was responsi-
ble for this inhibition. Cui et al. also found that the effects of
herkinorin on the IkBa and NF-kB pathway were mediated
via B-arrestin2. Therefore, herkinorin could have potential as
a pharmacological intervention for treating ischemic stroke
through its modulation of the mu-opioid receptor (MOR)
and NF-xB pathway (Cui et al. 2021).
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Conclusion and future directions

There is convincing evidence for the possible involvement of
NLRs and the inflammasome in the pathogenesis of opioid-
induced hyperalgesia (OIH) and tolerance. The present work
emphasizes the essential involvement of the innate immune
system in these pathophysiological circumstances, which
pose significant challenges to the adequate control of chronic
pain by opioids. Numerous studies have elucidated the func-
tional significance of NLRs (nucleotide-binding domain
and leucine-rich repeat-containing receptors) and inflam-
masomes, revealing their involvement not only in immune
responses but also in the regulation of neuronal activity. Our
research provides valuable insights into the neuro-immune
connections underlying opioid-induced hyperalgesia and
tolerance. Consistent with previous research, our findings
suggest that activation of NLRs and inflammasomes plays
a critical role in the neuroinflammatory response associated
with prolonged opioid exposure. This activation leads to sen-
sitization of nociceptive neurons and a reduction in opioid
efficacy. Therefore, inhibition of the NLR inflammasome
signaling pathway could potentially serve as a therapeutic
approach to prevent or reverse opioid-induced hyperalge-
sia (OIH) and opioid tolerance. Nevertheless, it is essen-
tial to further validate these findings in additional experi-
mental models and clinical contexts. The unique molecular
pathways by which the NLR inflammasome pathway con-
tributes to OIH and opioid tolerance also require further
investigation.

Although activation of the NLRP3 inflammasome is the
main cause of OIH and tolerance, the exact mechanisms
by which this occurs are still unclear. Therefore, the use of
sophisticated methods such as single-cell RNA sequencing
or proteomics may help to elucidate these processes. While
the NLRP3 inflammasome has received much attention,
other NLRs such as NLRC4 and NLRP1 have also been
linked to the development of chronic pain. More research
needs to be done to fully understand how these NLRs influ-
ence how opioids cause tolerance and increased pain.

Since the immune system plays an important role in the
development of hyperalgesia and tolerance after opioid
administration, future studies could focus on finding out the
exact types of immune cells and cytokines involved in this
process and how they interact with NLRs and inflammas-
omes. In addition, investigating how genetic and environ-
mental factors influence the manifestation and activation of
NLRs and inflammasomes could help us understand why
different people develop different levels of tolerance and
hyperalgesia when exposed to opioids. It is also essential
to identify effective treatment targets to mitigate or reduce
the incidence of opioid tolerance and hypersensitivity. Most
discoveries in this field have come from animal models.

Although these models provide valuable insights into basic
systems, it is imperative to initiate the crucial next phase of
adapting these discoveries to the human context. The use of
clinical trials in humans receiving opioids for the treatment
of chronic pain has the potential to provide important and
insightful findings. By looking more closely at these areas,
future research can build on the results of this study and
help us learn more about how opioids cause tolerance and
increased pain. This, in turn, may facilitate the development
of more effective pain management strategies.
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