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Abstract
Innate immunity refers to defense mechanisms that are always present, ready to combat microbes and other offending agents. 
Innate immunity acts as a first-line defense and activates the conventional immune responses; however, it has been specu-
lated that the importance of innate immunity in initiation and development of some disorders is more than just the “first line 
of defense”. Autoimmune diseases, caused by immune system overactivation, are among the most challenging scientific 
and clinical problems, and there is still much to be learned about their pathogenesis. We aimed to provide a comprehensive 
overview of available documents about the role of innate immunity in systemic autoimmune diseases including rheumatoid 
arthritis, systemic lupus erythematosus, Sjögren’s syndrome, polymyositis, and systemic sclerosis. This study highlights the 
innate immunity pathways or molecules that are under investigation for therapy of these diseases.
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Introduction

Immunity is a complicated concept that can be divided into 
two primary arms: the innate and adaptive systems. Innate 
immunity as the first-line defense against pathogens con-
sists of physical barriers, soluble factors, and cells. Adaptive 
immunity is made up of a vast array of special cells called B 
and T lymphocytes (Frizinsky et al. 2019; Watts et al. 2017). 

The breakdown of self-tolerance as the hallmark of autoim-
munity is based on adaptive immunity, but innate immu-
nity also has unique characteristics, which make it a central 
driver in some critical immune responses (Zouali and La 
Cava 2019). Autoimmunity is a consequence of the failure of 
self-tolerance and immune reaction against an autoantigen, 
which is classified as systemic or organ specific (Pozsgay 
et al. 2017). Systemic autoimmune diseases are a wide array 
of disorders including rheumatoid arthritis (RA), systemic 
lupus erythematosus (SLE), Sjögren’s syndrome, polymy-
ositis (PM), and systemic sclerosis (Pasoto et al. 2019). 
This heterogeneous group of disorders is characterized by 
the presence of ubiquitously expressed autoantigens and the 
involvement of multiple tissues and organs (Fridkis-Hareli 
2008). To the best of our knowledge, although the associa-
tion between adaptive immunity and autoimmune disease 
has been extensively studied, the importance of innate 
immunity in the development of autoimmune disorders is yet 
to be determined. Considering the lack of cure for this kind 
of disease, which leads to the need for long-lasting treat-
ment, studies on the basic research give us new insights to 
help identify novel therapeutic targets. This study highlights 
how innate immunity might affect systemic autoimmune 
diseases and presents therapies targeting innate immunity 
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components in systemic autoimmune diseases that are cur-
rently under investigation.

Rheumatoid arthritis

Rheumatoid arthritis is a systemic autoimmune disease that 
affects mainly joints, leading to chronic inflammation of 
joints, cartilage damage, bone erosion, and finally systemic 
complications (Croia et al. 2019). Although the etiology of 
RA has not been fully delineated, both innate and adaptive 
immune systems are indispensable in the pathogenesis of 
RA (Rana et al. 2018). In this review, we will focus on innate 
immune cells and their crucial roles in RA.

Macrophages (MQs) are significant immune cells and 
central players in the pathogenesis of RA. They are the 
main source of proinflammatory cytokines such as tumor 
necrosis factor (TNFα), interleukin-1 beta (IL-1β), and IL-6, 
which generate inflammatory responses and contribute to the 
destruction of cartilage and bone resorption in patients with 
RA (Udalova et al. 2016). Synovial MQ plays critical roles 
in the events driving inflammation, including immune cell 
recruitment, fibroblast cell expansion, and protease secre-
tion, leading to synovium destruction (Kennedy et al. 2011). 
Researchers have indicated that the imbalance between M1 
and M2 MQs has a critical role in the pathogenesis of RA 
(Wang et al. 2017). MQs in the synovial fluid of patients 
with RA produce large amounts of TNFα and IL-1β, impor-
tant proinflammatory cytokines that are characteristically 
secreted by M1 MQ (Kennedy et al. 2011).

Neutrophils are the first immune cells that arrive at the 
inflammation site. Their function includes phagocytosis, 
production of reactive oxygen species (ROS), and genera-
tion of neutrophil extracellular traps (NETs) in host defense 
(Bach et al. 2020). NETs can be the key source of citrul-
linated autoantigens, which can trigger the progress of RA 
(Chen et al. 2018). Citrullinated autoantigens in NETs can 
be taken up by fibroblast-like synoviocytes (FLS), pre-
sented to T cells, and leading to expansion of T and B cell 
response in patients with RA (Carmona-Rivera et al. 2017). 
Proinflammatory cytokines such as TNFα, IL-6, IL-8, and 
IL-17A can increase NETs in RA neutrophils. Eventually, 
NETs stimulate more cytokine production and inflammation 
via activating FLS and MQs (Chen et al. 2018; Khandpur 
et al. 2013). Neutrophils in the synovial fluid of patients 
with RA produce B  lymphocyte stimulator (BLyS) that 
contributes to the activation of autoreactive B lymphocytes 
(Assi et al. 2007); furthermore, synovial joint neutrophils 
produce receptor activator of nuclear factor kappa-B ligand 
(RANKL) that is implicated in the activation and differen-
tiation of osteoclasts and bone erosion in patients with RA 
(O’Neil and Kaplan 2019). Immune complexes are the major 

activator of neutrophils in the RA joint, by interaction with 
the FCγ receptor on the neutrophils (Wright et al. 2014).

Dendritic cells (DCs), as dedicated professional anti-
gen-presenting cells, are likely key players in the initiation 
of joint inflammation and implicated in RA development 
(Yu and Langridge 2017). There are an increased number 
of myeloid and plasmacytoid DCs (pDC) in the joints of 
patients with RA. Some studies have suggested that in the 
proinflammatory environment, such as synovial fluid of 
patients with RA, the function of DC is different. These cells 
have been proposed as an inflammatory DC subset (Lebre 
et al. 2008; Yu and Langridge 2017). Inflammatory DCs are 
the main inducer of IL-17-producing T helper (Th17) cells 
by the production of IL-23 in the RA synovium (Estrada-
Capetillo et al. 2013; Yu and Langridge 2017). Smoking has 
some effects on DCs, such as modifying the antigens that 
DCs present and regulation of DC activity (Yu and Lan-
gridge 2017).

Natural killer (NK) cells play an important role in the 
pathogenesis of RA through the production of inflammatory 
cytokines and interaction with various immune cells in syno-
vial tissue (Ahern and Brennan 2011). Some studies have 
indicated the increased NK cells in the synovium of patients 
with RA expressed elevated levels of activation markers and 
cytokines such as TNFα and interferon-γ (IFNγ) (Fogel et al. 
2013). NK cells secrets IFNγ, which may involve in inflam-
mation through induction of B cell activation, class switch-
ing, and DC maturation (Ahern and Brennan 2011).

FLS, non-immune cells in synovium, have a critical func-
tion in the pathogenesis of RA. In an inflammatory microen-
vironment, FLS produce chemokines such as CCL2, CCL5, 
CCL8, CXCL5, and CXCL10, which recruit monocytes and 
MQs, and subsequently contribute to the pathogenesis of 
RA and inflammation. Activated FLS produces high levels 
of RANKL, which is a significant factor for the differentia-
tion of osteoclasts and bone resorption. FLS functions as 
an antigen-presenting cell and interacts with  CD4+ T cells; 
furthermore, FLS has critical roles in the differentiation of 
T cells with the production of cytokines (Yoshitomi 2019). 
FLS produces large amounts of B cell-activating factor 
(BAFF) and IL-6 that contribute to the maturation and sur-
vival of B cells (Hunter and Jones 2015; Yoshitomi 2019).

The significant function of mucosal surfaces in the patho-
genesis of RA has been proved. There is some evidence that 
the first hit in breaking self-tolerance for RA may originate 
at the epithelial surfaces. Many risk factors such as smoking 
and periodontal disease, at oral and lung levels, involve auto-
immunity by driving the production of citrullinated autoanti-
gens, and consequently anti-citrullinated protein antibodies 
(ACPA) (Lucchino et al. 2019; Pentony et al. 2017). A strong 
association between ACPAs and the progress of RA has been 
confirmed in various phases of the disease in patients with 
RA (Kurowska et al. 2017). Gut dysbiosis contributes to the 
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inflammatory state through induced Th17 polarization and 
imbalance between Th17 and regulatory T cells (Lucchino 
et al. 2019).

Many studies show the pathologic role of mast cells (MC) 
in RA (Xu and Chen 2015). The number of MCs is increased 
in RA synovium. Activated MCs produce various mediators, 
cytokines, and chemokines that recruit inflammatory cells 
into synovium. The main source of IL-17A in RA synovium 
is MCs (Min et al. 2020). It is indicated that MCs enhance 
survival, activation, proliferation, and differentiation of 
naive B cells (Rivellese et al. 2018).

γδ T cells are mainly distributed in the mucosal and epi-
thelial tissues. These cells have a significant role in auto-
immune diseases such as RA. γδ T cells contribute to an 
escalated production of proinflammatory cytokines, patho-
genic autoantibody, and finally lead to the initiation of this 
autoimmune disease (Sun 2013).

Various autoantibodies present in patients with RA, 
such as anti-collagen type  II antibodies, ACPA, and 

rheumatoid factor that target antigens in cartilage and syn-
ovium, lead to the formation of immune complexes. These 
immune complexes can activate complement and conse-
quently cause the chronic destruction of the joint (Dijkstra 
et al. 2019). Many studies have shown the presence of 
activated or cleaved complement components in the joint, 
and elements such as C1q–C4 complexes in the circulation 
of patients with RA (Dijkstra et al. 2019; Wouters et al. 
2006). The level of C5a is elevated in the synovium of 
patients with RA, which is related to an increased num-
ber of infiltrating neutrophils. It seems that C3a and C5a 
are involved in the activation of the NLRP3 inflamma-
some pathway, which is important in RA inflammatory 
processes (Paoliello-Paschoalato et al. 2015) (Figs. 1, 2).

Some of the innate immunity-related targets for the 
treatment of RA are listed in Table 1 (US Food and Drug 
Administration (FDA) approved and clinical trials).

Fig. 1  Mucosal surfaces considered as potential initiating sites of 
RA. Environmental risk factors (smoking and infections) and various 
susceptibility genes lead to localized innate immune responses in epi-
thelium, especially airway epithelial cells. This localization of innate 

immune cells results in some changes in epithelium, including induc-
tion of oxidative stress and expression of protein-arginine deiminase 
(PADI), with consequent generation of citrullinated proteins and syn-
ovitis in the latter



1424 A. Hejrati et al.

1 3

Systemic lupus erythematosus

Systemic lupus erythematosus (SLE), also simply known as 
lupus, is a chronic multifaceted autoimmune disease with 
protean manifestation that affects multiple organs including 
kidneys, skin, heart, and lungs. It is characterized by the 
presence of specific autoantibodies for self-antigens, such 
as double-stranded DNA (dsDNA), ribonucleoproteins, his-
tones, and certain cytoplasmic components (Herrada et al. 
2019). Some studies have elucidated that various immune 
cells and proinflammatory cytokines play a significant role 
in SLE pathogenesis. The innate immune system, particu-
larly MQs, have been indicated as a key player in the patho-
genesis of SLE (Dema and Charles 2014). In this review, 
we focus on cellular and molecular components of innate 
immunity in SLE pathogenesis.

MQs are defective in the phagocytosis and clearance of 
apoptotic cells; thus, prolonged exposure of autoantigens 

to the adaptive immune cells provides survival signals for 
autoreactive B cells and consequently loss of tolerance to 
nuclear antigens released from apoptotic cells (Ma et al. 
2019a; b). Plasticity is a major feature of MQs, which 
depends on cytokine milieu. MQs are classified as two 
main groups: classically activated MQs (M1) and alterna-
tively activated MQs (M2). M1 MQs are induced by IFNγ 
and lipopolysaccharide (LPS) that are involved in inflam-
matory responses, whereas M2 MQs are induced by IL-4 
and IL-13 that are involved in tissue remodeling (Chalmers 
et al. 2015; Labonte et al. 2014; Mantovani et al. 2004). 
Some data has suggested that M1 and M2 MQs have dif-
ferent roles in SLE development. M1 MQs increase the 
severity of the condition, while M2 MQs reduce it (Li 
et al. 2015). Therefore, MQ polarization modulates the 
development of SLE. It is reported that M2-polarizing 
cytokines such as IL-4 may have therapeutic effects to 
reduce SLE symptoms (Li et al. 2015).

Fig. 2  Summary of innate immunity involved in the synovium. After 
the interaction between synovial  CD4+ T  cells and antigen-present-
ing cell (APC) presenting an unknown antigen, T  cells differentiate 
to Th1 and Th17 and produce IFNγ and IL-17, respectively. These 
cytokines stimulate synovial MQ to secrete proinflammatory media-

tors, among which TNFα is paramount. TNFα regulates the balance 
between bone destruction and formation under normal conditions. In 
RA disease, TNFα stimulates osteoclastogenesis and inhibits the dif-
ferentiation of activated osteoblast
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Of circulating white blood cells, neutrophils are the larg-
est in number. It is proposed that they play a pathogenic role 
in SLE. Patients with SLE have elevated numbers of apop-
totic neutrophils in circulation; this scenario is related to 
the development of autoantibodies against DNA and disease 
activity (Herrada et al. 2019; Lande et al. 2011). Clearance 
of NETs is defective in patients with SLE and leads to the 
presentation of self-antigens, including immunogenic DNA, 
histones, and neutrophil proteins to the immune system and 
contributes to the development of autoantibodies and pro-
inflammatory cytokines, driving the pathogenesis of SLE 
(Apel et al. 2018; Herrada et al. 2019). The neutrophils of 
patients with SLE have an abnormal function; their phago-
cytosis ability is decreased, while their production of ROS is 
increased (Alves et al. 2008). NETosis, a type of cell death, 
is elevated in the neutrophils of patients with SLE by the 
presence of antibody–ribonucleoprotein complexes, which 
activate various immune cells. Mouse models of SLE dem-
onstrate elevated bone marrow NETosis and autoantibod-
ies that distinguish NET components (Gupta and Kaplan 
2016). It is reported that endonuclease DNase1 is required to 
degrade NETs. Some patients with SLE have DNase1 inhibi-
tors, whereas other patients with SLE have high levels of 
antibodies that bind to NETs and protect them from DNase1 
(Apel et al. 2018). A distinct subset of neutrophil-like cells 
termed low-density granulocytes (LDGs) are distinguished 
in patients with SLE that produce excess proinflammatory 
cytokines such as IL-6, IL-8, TNFα, and IFN-I. It is pro-
posed that LDGs have an important role in SLE pathogen-
esis (Apel et al. 2018; Carmona-Rivera and Kaplan 2013).

Some studies documented dysregulated DCs play a 
critical role in the initiation and development of SLE (Mok 
2015). DCs from patients with SLE show a consider-
able reduction of PD-L1 expression during active disease, 
whereas the expression of CD80/CD86 is elevated (Mack-
ern‐Oberti et al. 2015).

Plasmacytoid DCs (pDCs) in patients with SLE produce 
high levels of IFNα that causes a positive-feedback loop in 
the activation of innate and adaptive immunity (Mok 2015). 
pDCs numbers are decreased in the blood of patients with 
SLE, but pDCs nonetheless accumulate in the damaged skin 
of patients with lupus (Herrada et al. 2019). Several reports 
have indicated that pDCs depletion reduces the activation 
and expansion of immune cells, limits autoantibody produc-
tion, and restricts kidney inflammation in patients with SLE 
(Rowland et al. 2014).

Increased IFNα levels in in patients with SLE are corre-
lated with both disease activity and severity. Sustained IFNα 
production, a signature of lupus, may lead to the develop-
ment of autoreactive T and B cells (Huang et al. 2011; Ron-
nblom and Alm 2001).

NK cells may have a crucial role in the pathogenesis of 
SLE. It has been reported that the number of NK cells in Ta
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patients with SLE is diminished and their cytotoxicity is 
impaired (Cho et al. 2011). Some studies have suggested 
a decrease in the number of natural killer T (NKT) cells in 
patients with SLE (Chen et al. 2015). IL-15 is a cytokine that 
plays a major role in NK differentiation and survival and was 
elevated in patients with SLE, a scenario which is related 
to disease activity (Lin et al. 2017). The activatory receptor 
CD69 is overexpressed in NK cells of patients with SLE with 
active disease (Lin et al. 2017). Some studies have indicated 
that NK cells produce high levels of IFNγ in patients with SLE 
with active disease and this has been associated with cytotox-
icity and contributed to the dysregulation of the link between 
innate and adaptive immunity in SLE (Hervier et al. 2011).

Basophils are involved in skin lesions in patients with 
SLE and have a role in promoting tissue damage (Pan et al. 
2017). Basophils are proposed as a biomarker of disease 
activity in SLE. These cells have an important role in inflam-
mation and anti-nuclear antibody production by B cells 
(Charles et al. 2010). Prostaglandin D2  (PGD2) is increased 
in patients with SLE and interacts with  PGD2 receptors on 
the surface of basophils, leading to migration of basophils to 
secondary lymphoid organs (Pellefigues et al. 2018).

The complement system plays controversial roles in 
the pathogenesis of SLE. This system has protective and 
pathologic functions. Complement exerts its protective 
role through clearance of immune complexes and apoptotic 
cells, as well as induction of tolerance (Pabón-Porras et al. 
2019). Complement activation leading to the inflammatory 
response and tissue damage defines the pathologic role of 
complement (Markiewski and Lambris 2007). Complement 
deficiency is correlated to the pathogenesis of SLE (Pabón-
Porras et  al. 2019). C1q deficiencies, including genetic 
defects or anti-C1q autoantibodies, can cause SLE in 90% 
of patients. It is well established that C1q is involved in the 
regulation of immune cell differentiation and MQ polariza-
tion to a tolerogenic phenotype (Son et al. 2015). The low 
levels of C1q, C4, and C2 are associated with dysfunction 
in the clearance of apoptotic and debris cells (Pabón-Porras 
et al. 2019).

Keratinocytes may be a key player in the pathogenesis 
of SLE. These cells are activated by UV light and produce 
inflammatory cytokines that result in the recruitment of 
immune cells and the initiation of inflammatory responses 
(Pentony et al. 2017) (Fig. 3).

Some of the innate immunity-related targets for the treat-
ment of SLE are listed in Table 2 (clinical trials).

Sjögren’s syndrome

Sjögren’s syndrome (SS) is a systemic autoimmune disease 
that affects the exocrine glands, mainly involving the lach-
rymal and salivary ones, leading to dryness of the eyes and 

mouth. SS is classified into two forms: primary (pSS) and 
secondary (sSS). Primary SS is often associated with dys-
function in lacrimal and salivary flow and features a wide 
range of both organ-specific and systemic manifestations, 
whereas sSS occurs in association with another autoimmune 
disease, such as SLE or RA (Kiripolsky et al. 2017; Malladi 
et al. 2012). While the pathogenesis of pSS is currently not 
well understood like other autoimmune diseases, both innate 
and adaptive immune systems play a critical role in the dis-
ease pathogenesis. Many types of innate cells are implicated 
in SS.

Some studies have also shown that MQs are critical medi-
ators of SS pathogenesis (Ma et al. 2019a; b). The pres-
ence of M1 and M2 MQs has been indicated in the salivary 
glands in the SS mouse model (Baban et al. 2013; Ma et al. 
2019a, b). Proinflammatory M1 polarization is the major 
phenotype of SS MQ and systemic and local concentrations 
of IL-6 are importantly increased in patients with SS (Tish-
ler et al. 1999). Also, patients with SS with more active 
disease display higher levels of IL-12, while patients with 
less active disease display higher levels of IL-35 (Fogel 
et al. 2018). Levels of monocyte chemoattractant protein-1 
(MCP-1/CCL2), IFNγ, and proinflammatory cytokines or 
chemokines that are secreted by monocyte and MQ, such 
as, IL-6, IL-18, IFN-I, and BAFF, are importantly elevated 
in patients with SS (Hernández-Molina et al. 2011; Willeke 
et al. 2009; Brkic et al. 2013; Yoshimoto et al. 2011). It has 
also been reported that the level of IκBα in SS monocytes is 
decreased, which leads to NFκB signaling pathway dysregu-
lation and production of proinflammatory cytokines (Lisi 
et al. 2012).

DCs play a significant role in SS, as they function as anti-
gen-presenting cells in ectopic germinal centers in the sali-
vary gland (Bombardieri and Pitzalis 2012). Some studies 
suggest that DCs are increased in salivary tissue of patients 
with pSS as compared to controls (Ozaki et al. 2010). Plas-
macytoid DCs, a specific DC subset, are activated by Toll-
like receptors (TLRs) and produce several proinflammatory 
cytokines, including IFNα (Vogelsang et al. 2006).

Primary DCs are the main source of IFN-I in response 
to foreign nucleic acids. IFN-I might be involved in the 
pathogenesis of SS (Hillen et al. 2019). Self-nucleic acids 
in the form of autoantibody complexes and apoptotic cell 
fragments are present in patients with pSS and consider-
ably activate production of IFN-I by pDCs (Ainola et al. 
2018). It is indicated that pDCs play a critical role in pSS 
pathogenesis (Hillen et al. 2019). The activated phenotype 
and enhanced production of proinflammatory cytokines by 
pSS-pDCs can affect salivary gland inflammation dramati-
cally (Hillen et al. 2019).

Some studies have shown that NK cells are involved 
in SS pathogenesis, although the precise role of these 
cells is unknown. NK cells have been related to salivary 
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gland inflammation in patients with pSS. NK cells express 
NCR3/NKp30 that regulates IFN-II secretion and corre-
lation with DCs. In patients with pSS, NKp30 expres-
sion is elevated in comparison to controls. Salivary gland 
epithelial cells express NKp30 ligand, and interaction of 
this ligand with NKp30 leads to the production of Th1 
cytokines (Rusakiewicz et al. 2013). In contrast to the sali-
vary gland, in patients with pSS, the number and activity 
of peripheral blood NK cells are significantly reduced as 
compared to healthy controls (Izumi et al. 2006). It is pos-
sible that NK cells are protective in early stages of the 
disease and later play a pathogenic role in advanced dis-
ease (Kiripolsky et al. 2017). It was proven that invariant 
natural killer T (iNKT) cells were significantly decreased 
in pSS, and a possible correlation between the low num-
ber of iNKT and autoreactive tissue injury was suggested 
(Rizzo et al. 2019).

It is known that in patients with SS, neutrophil func-
tions such as phagocytosis, chemotaxis, and chemokinesis 
were normal, while their adherence ability was impaired 
(Gudbjörnsson et al. 1991).

Some studies have reported a significant role of sali-
vary gland epithelial cells in SS pathogenesis (Kiripolsky 
et al. 2017; Manoussakis and Kapsogeorgou 2007). Fur-
thermore, it has been shown that salivary gland epithe-
lial cells express high levels of TLR2, TLR3, and TLR4; 
thus, they contribute to the induction of innate immune 
responses upon recognition of foreign pathogens (Desh-
mukh et al. 2009; Low and Witte 2011; Manoussakis and 
Kapsogeorgou 2007).

Some of the innate immunity-related targets for the 
treatment of Sjögren’s syndrome are listed in Table 3 
(clinical trials).

Fig. 3  Role of innate immunity in SLE pathogenesis. Genetic and 
environmental factors contribute to a breakdown of self-tolerance in 
SLE. Exposure to sunlight induces apoptosis of keratinocytes, leading 
to the formation of blebs which contain both nuclear and cytoplasmic 
antigens on the surface of dying cells. These antigens are captured by 
APC cells such as B cells and pDCs. Activated pDC produces abnor-

mally large amounts of IFN-γ leading to more production of autoanti-
bodies by B cells. Autoantibodies induce NETosis and the release of 
antimicrobial peptides results in nuclear antigen complex formation. 
The net result is a cycle of antigen release and immune activation that 
leads to the production of high-affinity autoantibodies
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Polymyositis

Polymyositis (PM) is an unusual chronic inflamma-
tory connective tissue disease that involves muscles that 
undergo atrophy over time, so patients with PM cannot 
climb stairs or even walk. Muscle involvement is differ-
ent in different parts of the body, and muscle weakness 
can lead to problems for patients such as dysphagia and 
breathing difficulties. PM is an autoimmune disease with 
no clear etiology. As with the other autoimmune condi-
tions, PM is more common in women (Dalakas 1991; 
Dalakas and Pongratz 2003; Hilton-Jones 2011). Genetics 
is likely to be associated with the disease, and the pres-
ence of specific human leukocyte antigen (HLA) genes 
such as DRB1*0301 alleles increases the likelihood of PM 
(Shamim et al. 2000). PM is strongly associated with other 
inflammatory, viral, and cancerous diseases (Dalakas and 
Hohlfeld 2003; Hill et al. 2001). Although muscles do 
not usually express MHC I, they express MHC I and even 
MHC II widely in PM. Cytotoxic T cells (CTLs) attack 
healthy fibers of muscles which express MHC I, which 
seems to be the main reason for tissue injury. Upregulation 
of co-stimulatory molecules helps the activation of CTLs, 
but not classic co-stimulatory molecules. Muscles have 
their own co-stimulatory molecules called BB-1 (Behrens 
et al. 1998). Muscle biopsies show CTLs migrating into 
the basal lamina where they accumulate to attack mus-
cle fibers (Arahata and Engel 1986). The mechanism by 
which fibers are destroyed is via perforin and granzyme, 
yet muscle fibers express Fas (Behrens et al. 1997). There 
is little evidence of innate immunity involvement in the 
immunopathology of PM.

Many inflammatory cytokines are increased in serum of 
patients with PM, such as IL-1, IL-2, IL-6, and IL-10 as 
well as TNFα, IFN-γ, and TGFβ (Tews and Goebel 1996). 
IL-1 and TNFα have a devastating effect on muscles; 
TNFα induces a proteolytic effect via glucocorticoids, 
whereas IL-1β exerts its effect through an independent glu-
cocorticoid pathway (Zamir et al. 1992). Overexpression 
of chemokines has also been observed, including CXCL8, 
CCL9, CCL2, CXCL9, and CXCL10. They help in direct-
ing T cells to the inflammatory sites such as endomysial in 
inflammatory cells (De Bleecker et al. 2002).

Increased TLRs were observed in biopsies from myopa-
thies, especially TLR3 and TLR7, which are activated by 
the nucleic acids. Necrotic muscle cells can activate TLR3 
which triggers the production of a large amount of IL-6 
from myoblasts, leading to the maintenance of inflamma-
tory response in the muscles (Tournadre et al. 2012).

High mobility group box  1 protein (HMGB1) is a 
nuclear protein that can be secreted by immune cells in 
inflammatory conditions (Harris et al. 2012). It is secreted 
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by MQs and DCs in connective tissue and enhances MHC I 
expression by binding to TLR4 in muscle fibers (Ulfgren 
et al. 2004).

The role of eosinophils in myopathies has also been 
established; patients who have eosinophilia in muscle 
biopsy, especially endomysium, have more necrotic fibers 
(Kumamoto et al. 1996).

DCs accumulate in muscle tissue to present antigens, 
and plasmacytoid DCs secrete IFN-I (Eloranta et al. 2007). 
IFN-I plays an essential role in PM. One of the mechanisms 
that lead to IFN secretion is via cathelicidins, which include 
LL-37, which is the only cathelicidin expressed in humans. 
Along with all its antimicrobial, anti-inflammatory, and even 
proinflammatory functions, LL-37 increases IFN-I (Hilchie 
et al. 2013). LL-37 footprints have been seen in inflamma-
tory and autoimmune diseases (Kahlenberg and Kaplan 
2013). Continuous immune system contact with IFN-I can 
cause immune tolerance failure and autoimmune diseases, 
such as myositis (Lu et al. 2017).

Systemic sclerosis

Systemic sclerosis (SSc, scleroderma) is a chronic, hetero-
geneous autoimmune disease. Thickening of the skin, fibro-
sis of connective tissue, and vessel dysfunction are results 
of excessive collagen secretion from the fibroblasts and its 

deposition which can sometimes involve internal organs 
(Dowson et al. 2017). Myofibroblasts are the active form of 
fibroblasts which secrete collagen persistently and is found 
in fibrotic lesions (Artlett et al. 2011). The main cause of 
SS is still unclear but the immune system has an important 
role and autoantibodies are found in most patients. T cells, 
especially Th2, interact with fibroblasts through profibrotic 
cytokines such as IL-4, IL-6, and IL-13, which results in 
aggravation of fibrosis (O’Reilly et al. 2012). The innate 
immune system plays a critical role in both the onset and 
progression of the disease (Pattanaik et al. 2015).

The role of many pattern recognition receptors (PRRs) 
has been proven in autoimmune diseases (Duffy and 
O’Reilly 2016), such as TLRs in SSc. TLRs identify dam-
age-associated molecular patterns (DAMPs) that have been 
released from endogenous cells, e.g., they may be secreted 
in response to stress or damage; also the response of TLRs 
to PAMPs that leads to the activation of an intracellular sign-
aling pathway, and the improper and over-response of the 
TLRs to their ligands can be involved in the onset and exac-
erbation of the disease (Ciechomska et al. 2013a, b).  CD14+ 
monocytes and DCs are activated by TLR4, resulting in a 
large amount of CCL8 and IL-10 secretion in patients with 
SSc. CCL8 and IL-10 are chemoattractants of T cells and 
fibrotic factors which increase in the serum of patients with 
scleroderma (van Lieshout et al. 2009). Serum amyloid A 
(SAA), which is a ligand for TLR2 and a type of DAMPs 

Table 3  Therapies currently under investigation that target innate immunity components in Sjögren’s syndrome

IL interleukin, ILT immunoglobulin-like transcript, Jak Janus kinase, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, PI3K 
phosphoinositide 3-kinase

Drug Target Trial ID Clinical stage Mechanism of action References

Iguratimod NF-κB NCT03023592 Phase II Preventing activation of the 
NF-κB signaling pathway

NIH (2020i), van den Hoogen et al. 
(2020)

Filgotinib JAK1 NCT03100942 Phase II Janus kinase inhibitor with selec-
tivity for subtype JAK1

Dalakas and Hohlfeld (2003)

Parsaclisib PI3Kδ NCT03627065 Phase II Potent and highly selective 
(PI3Kδ) inhibitor

Dalakas and Pongratz (2003), Gan-
dolfo and De Vita (2019)

VIB7734/MEDI7734 ILT-7 NCT03817424 Phase I mAb against ILT-7 downregulates 
IFN production by causing the 
depletion of pDC

van den Hoogen et al. (2020)

CFZ533/iscalimab CD40 NCT02291029 Phase II Blocking, non-depleting anti-
CD40 antibody

Gandolfo and De Vita (2019)

RSLV-132 Circulating 
RNA com-
plexed

NCT03247686 Phase II Mono-specific nuclease Fc fusion 
protein that consists of human 
RNase attached to the Fc portion 
of IgG. The aim is to reduce the 
levels of circulating RNA-con-
taining immune complexes

Mavragani and Moutsopoulos 
(2019)

Ustekinumab IL-12/23 NCT04093531 Phase I Monoclonal antibody directed 
against the p40 subunit, 
therefore blocking the biologic 
activity of IL-12 and IL-23 
simultaneously

Sambataro et al. (2017)
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family, can be elevated in patients with scleroderma. This 
pathway leads to the production of IL-6 through NF-кB 
(O’Reilly et al. 2014a, b), and IL-6 directly increases colla-
gen secretion from fibroblasts (O’Reilly et al. 2014a, b). Dif-
ferentiation of fibroblasts into myofibroblasts is common in 
patients with scleroderma, which results in increased TLR9 
because 60% of myofibroblasts express TLR9 (Fang et al. 
2016). When TLR9 is activated by its ligand, CpG, secretion 
of TGFβ would increase. TGFβ has a major role in the dif-
ferentiation of myofibroblasts and the production of collagen 
(Fang et al. 2016). MyD88 has a key role in TLR signaling 
and SSc pathogenesis, and researchers could decrease fibro-
genesis by inhibiting MyD88 (Singh et al. 2012).

Monocytes are important cells in SSc. These cells have an 
important role in extracellular matrix (ECM) remodeling in 
patients with SSc through TLR8 (ssRNA) and tissue inhibi-
tor of metalloproteinase-1 (TIMP-1) secretion (Duffy and 
O’Reilly 2016). Fibroblasts break down ECM by secret-
ing matrix metalloproteinase-1 (MMP-1) and maintaining 
homeostasis; TIMP-1 inhibits MMP-1 and leads to the accu-
mulation of ECM in patients with SSc (Ciechomska et al. 
2013a, b). The number of monocytes and MQs elevates in 
the peripheral blood and the inflammatory sites in patients 
with scleroderma; this makes the situation worse because 
these cells are resistant to apoptosis (López-Cacho et al. 
2014), and releasing fibrotic factors (Higashi-Kuwata et al. 

2010). It has also been reported that IL-4, IL-13, and IL-10 
are higher than normal in the serum of patients with scle-
roderma (Scala et al. 2004), and this causes the formation 
of M2 MQs, which means more TGFβ and more fibrosis 
(Higashi-Kuwata et al. 2010).

For years, researchers have been trying to find a link 
between SSc and the increase or decrease in complement 
components. It seems that the presence of autoantibodies 
helps to activate the complement and activation factors 
increase in all three pathways (Okrój et al. 2016). Vascular 
endothelium damage is a common cause of scleroderma, 
which seems to be an important item in the induction of the 
disease. Factor H is a regulator of complement and its prin-
cipal function is to protect host cells against complement. 
Host cells may be damaged by dysfunction of factor H and 
release cellular contents, react with existing autoantibodies, 
and form immune complexes (Scambi et al. 2010).

The inflammasome is a multi-factor assembly which is 
mainly activated by TLRs that lead to activated caspase-1, 
resulting in IL-1β and IL-18 activation by caspase-1. NLRP3 
is the best-known inflammasome and has the main role in 
many autoinflammatory and autoimmune diseases (Marti-
non et al. 2002). The role of the IL-1β and IL-1α has been 
confirmed in fibrosis by an autocrine effect on fibroblasts 
(Zhang et al. 2014), and serum levels of IL-1β are higher 
in patients with SSc than in healthy controls (Hussein et al. 

Table 4  Therapies currently under investigation that target innate immunity components in SSc

FGF fibroblast growth factor, IL interleukin, ILT immunoglobulin-like transcript, LPA lysophosphatidic acid, PDGF platelet-derived growth fac-
tor, TGF transforming growth factor, TKI tyrosine kinase inhibitor, VEGF vascular endothelial growth factor

Drug Target Trial ID Clinical stage Mechanism of action References

Anifrolumab (MEDI546) Directed against 
subunit 1 of IFN-I 
receptor

NCT00930683 Phase I Downregulation of activation of 
T cells

Sierra-Sepúlveda 
et al. (2019), 
NIH (2020k)

MEDI7734 ILT-7 NCT02780674 Phase I Transient degradation of pDC NIH (2020e)
Tocilizumab IL-6R NCT01532869 Phase III Regulatory function in the balance 

between Th17 and regulatory T cells
NIH (2020j)

AM095 and SAR100842 LPA1 NCT01651143 Phase II Targets unique receptors connected to 
G proteins

NIH (2020f)

Imatinib PDGF, TGFβ NCT00555581 Phase II Blockade both PDGF and TGFβ NIH (2020c)
Dasatinib c-Abl, PDGF NCT00764309 Phase II Second-generation TKIs with more 

significant Bcr-Abl affinities
NIH (2020g)

Nilotinib c-Abl, PDGF NCT01166139 Phase II Second-generation TKIs with higher 
Bcr-Abl affinity

NIH (2020d)

Metelimumab TGFβ NCT00043706 Phase II Particularly neutralizes isoform 
TGFβ1

NIH (2020h)

Fresolimumab TGFβ1, β2, β3 NCT01284322 Phase I Appears to be going for all TGFβ 
isoforms

NIH (2020b)

P144 TGFβ1 NCT00574613 Phase II Disables the interaction of the TGFβ 
and TGFβ receptor type III

NIH (2020a)

Nintedanib VEGF, PDGF, FGF NCT02597933 Phase III TKI targeting FGF, PDGF, and VEGF 
receptors, and also tyrosine kinases 
in the Src family

NIH (2020l)
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2005). Contrary to all efforts, the role of IL-18 has not yet 
been elucidated in the pathogenesis of SSc (Pan et al. 2011). 
IL-18 seems to have an antifibrotic effect unlike IL-1β (Kim 
et al. 2010) but it is increased in patients with SSc (Lin et al. 
2019).

The mast cell accumulation has been seen in the affected 
skin of patients with SSc and has an important role in dis-
eases associated with fibrosis (Hügle 2014) because mast 
cells have dense granules that contain proinflammatory 
cytokines, TGFβ, and histamine which help to form myofi-
broblasts. Mast cells and myofibroblasts interact through gap 
junctions or send vesicles and help each other to increase 
inflammation (Hugle et al. 2012).

Some of the innate immunity-related targets for the treat-
ment of SSc are listed in Table 4 (clinical trials).

Conclusion

There is a great unmet need to identify how autoimmunity 
can be initiated, progressed, and propagated. In this context, 
innate immunity acts as both a provider of inflammatory 
conditions for adaptive immunity function and as an inde-
pendent part or co-player to the adaptive immune system. 
The dysregulation of innate immunity has been shown in 
many disorders, so manipulation of related pathways has so 
far drawn attention, as far as the targeting of TNFα has revo-
lutionized management and outcomes of RA disease. Also, 
a large number of other therapies are currently being tested 
in clinical trials; however, there is still much to be learned 
about this issue and related misconceptions.
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