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Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease, which is characterized by a chronic fluctuating course and 
immune dysfunction, resulting in affecting the health and life quality of RA patients. Methotrexate (MTX), as the standard 
gold treatment of RA, has received more and more clinical applications and basic pharmacological research. In several 
observational studies, MTXR, and treatment responses in RA patients show that the ratio of MTXR and non- response is 
about 30%–50%, namely MTX resistance (MTXR). Extensive efforts have been made into the investigation of the mecha-
nism and effective biomarkers in MTXR of RA. In this paper, we discuss the recent findings regarding the critical signaling 
pathways of MTXR in RA. Provide research targets and directions for a drug therapy that develop preventive strategies and 
effective treatments of MTXR.
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Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease, which is characterized by a chronic fluctuating course 
and immune dysfunction, resulting in progressive joint ero-
sion, deformity, and disability. The prominent clinical mani-
festation of RA is multiple joints arthritis. The joints such 
as the hands, wrists, and feet are most commonly affected. 
Redness, swelling, heat, pain, and dysfunction appear early, 
and erosive deformities can perform at a later stage. It is a 
disease with a high disability rate (Ostrowska et al. 2018). 
The current clinical drugs used to treat RA include non-
steroidal anti-inflammatory drugs (NSAIDs), steroidal anti-
inflammatory drugs (SAIDs), and disease-modifying anti-
rheumatic drugs (DMARDs). Still, the long-term application 
will cause various and even severe adverse reactions (Felson 
2016).

Methotrexate (MTX) is folic acid (folate) inhibitor that 
was first synthesized in the 1940s to treat childhood leuke-
mia. It is extensively used in acute leukemia, breast cancer, 
and lung cancer. Research in the 1980s found that low-dose 
MTX can treat RA and has good therapeutic effects, and has 
gradually become a standard gold treatment for RA (Boer-
booms et al. 1995). The American College of Rheumatol-
ogy (ACR) in 2015, European League Against Rheumatism 
(EULAR) in 2019, and the Chinese Rheumatology Asso-
ciation in 2018 suggested that the patient is diagnosed with 
RA, MTX monotherapy is recommended. For patients with 
middle or high degree disease activity, MTX combination 
therapy should be considered (Association 2018; Singh et al. 
2016; Smolen et al. 2020). In long-term applications, MTX 
also can cause serious side effects, such as liver damage, 
gastrointestinal reactions, and bone marrow suppression 
(Lampropoulos et al. 2015).

Although MTX has a well therapeutic effect on the treat-
ment of RA, about 30%–50% of patients will have non-
response after taking MTX, or the efficacy was reduced 
after re-treatment after relapse, that is, MTX resistance 
(MTXR) (Inoue and Yuasa 2014). MTXR has been exten-
sively researched in the field of anti-tumor therapy and is 
closely related to multidrug resistance (MDR) (Volk et al. 
2000). Compare with the area of anti-tumor, and it is little 
reported on RA. Although several inflammatory cytokines, 
drug transporters, and other factors have been researched, 
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the mechanisms and processes are still being investigated. In 
this paper, we review the recent findings regarding the sign-
aling pathways of MTXR in RA. Provide research targets 
and directions for a drug therapy that alleviates the mecha-
nism of MTXR.

Signaling pathways of MTXR in RA

Methotrexate mechanism

Folates are an essential substance in the synthesis of purines, 
pyrimidines, and amino acids, and play a crucial role in the 
biosynthesis of DNA. As an antifolate, MTX mainly inhib-
its dihydrofolate reductase (DHFR), thymidylate synthetase 
(TYMS), aminoimidazole carboxamide ribonucleotide trans-
formylase (ATIC), resulting in the inhibition of DNA bio-
synthesis and elevation of extracellular adenosine (Inoue and 
Yuasa 2014). Previous evidence showed that MTX enters the 
cell through reduced folate carrier (RCF), and is transformed 
into MTX polyglutamates (MTX-PGs) under the action of 
PGs enzyme, thereby generating the effect of inhibiting the 
enzymes of DHFR, TYMS and ATIC (Leclerc et al. 2010; 
Wojtuszkiewicz et  al. 2015). Besides, MTX-PG inhib-
its ATIC enzyme activity more than MTX, deducing that 
MTX-PGs is the active form of MTX (Dervieux et al. 2004). 
It should be noted that the conversion of MTX to MTX-PGs 
is reversible, in which this reaction requires the participa-
tion of a gamma-glutamyl hydrolase (GGH) enzyme (Jekic 
et al. 2013).

DHFR is a mediated enzyme for nucleic acid biosynthe-
sis, which catalyzes the transform of dihydrofolate (DHF) 
to tetrahydrofolate (THF) (Fig. 1) (Banerjee et al. 2002). In 

this process, the two molecules of  H+ from DHF through the 
transmit way of NADPH to  NADP+, and then enter the  C6 
atom of the DHF pteridine ring (Li et al. 2018). Then, the 
THF is converted to methyltetrahydrofolate (MTHF), which 
is a substrate of TYMS for thymidine biosynthesis (Baner-
jee et al. 2002). TYMS catalyst is the first phase of DNA 
synthesis. The DNA synthesis precursor deoxythymidine 
monophosphate (dTMP) is transformed from deoxyuridine 
monophosphate (dUMP) (Rose et al. 2002). In this step, 
MTHF is oxidized to DHF. ATIC is an essential enzyme 
in the IMP synthesis step. The inhibition of ATIC leads to 
an increase in aminoimidazole carboxamide ribonucleotide 
(ATICR), and the inosine monophosphate (IMP) synthesis 
is inhibited. Inhibition of IMP leads to the further produc-
tion of adenosine monophosphate (AMP) and guanosine 
monophosphate (GMP) that eventually reduce the DNA 
biosynthesis and increase the adenosine (Dervieux et al. 
2009; Rayl et al. 1996). Adenosine is involved in many 
inflammatory cytokine responses and signaling pathways. 
In general, MTX inhibits folate-dependent enzymes, result-
ing in blocked DNA synthesis and increased extracellular 
adenosine levels (Fig. 2). 

ATP binding cassette (ABC) transporters

ABC superfamily is a general term with a variety of trans-
membrane transporters. Its mechanism is the combination 
of exogenous substances and specific binding sites on the 
substrate of transporters. The derived material is pumped out 
of the cell to maintain the intracellular drug concentration at 
a certain level. The energy of transport is from the hydrolysis 
of adenosine triphosphate (ATP) to adenosine diphosphate 
(ADP) (Priess et al. 2018). ABC transporters that take part 

Fig. 1  The structure of folate, MTX, DHF, THF, and MTHF. MTX methotrexate, DHF dihydrofolate, THF tetrahydrofolate, MTHF methyltet-
rahydrofolate
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in drug resistance include ABCB1, ABCC1-7, ABCC10/11, 
ABCG2.

P-glycoprotein (P-gp) (also name ABCB1/multidrug 
resistance 1 (MDR1)) is a widely researched and essential 
transporter in the ABC family. It is extensive distribution 
in the body tissues, mainly in the synovium, spleen, liver, 
proximal tubules, and mesangial cells of the kidney, apical 
shallow columnar epithelial cells of the small intestine, etc. 
(Yu et al. 2016). Research finds P-gp linked to MTXR in 
RA. The expression levels of P-gp in fibroblast-like syn-
oviocytes (FLS) of RA patients are increasing. Besides, the 
level of P-gp in peripheral blood mononuclear cells (PBMC) 
and peripheral lymphocytes is significantly higher than the 
healthy people. The expression level of P-gp in patients 
with refractory RA is significantly higher than that in non-
refractory patients (Liu et al. 2016; Tsujimura and Tanaka 
2015). In FLS of RA patients, the high expression of MDR 
gene MDR-1 is through the up-regulation of P-gp to promote 
FLS efflux ability to MTX, resulting in MTXR (Wang et al. 
2019). In PBMC of MTXR patients, MDR1 mRNA expres-
sion also increased, and P-gp efflux function was enhanced, 
suggesting that the high expression of MDR1/P-gp in RA 
patients is closely related to MTXR (Yao et al. 2017). Recent 
studies have found that the increased expression of P-gp in 
the serum of RA patients is associated with the failure rate 
of RA treatment (Perez-Guerrero et al. 2018). The high 
expression of MDR1/P-gp in RA patients may be a potential 
mechanism for MTXR and the treatment of RA.

The human breast cancer resistance protein (BCRP) is the 
second member of the ABC efflux transporter superfamily 

and also named as ABCG2 (Ikemura et al. 2019). Like the 
function of P-gp, BCRP can make intracellular MTX out 
of the cell, which is the crucial factor that constitutes the 
accumulation of MTX in the cell. BCRP expression has been 
found in the intimal lining layer and on macrophages and 
endothelial cells in the synovial sublining in RA patients 
(van der Heijden et al. 2009). Further study found that BCRP 
expression was significantly increased (three-fold) to non-
responders with MTX treatment. This means that BCRP 
may contribute to the reduced therapeutic efficacy of MTX 
treatment. Also, Stamp et al. (2013) found that BCRP genes 
expression involved in the drug transport, and mechanism 
of MTX are expressed in RA patients’ joint synovium. This 
may influence MTX to play its therapeutic role in the pri-
mary site of the RA inflammation process.

The multidrug resistance-associated protein (MRAP) was 
also one of the important ABC superfamilies and called as 
ABCC. MRAP contains multiple subtypes involved in MDR, 
such as MRAP1-MRAP9 (Wu et al. 2018). In the detection 
of tissue samples of RA patients, it was found that MRAP-1 
was lowly expressed on synovial macrophages and moder-
ately expressed in T cells (van der Heijden et al. 2009). MTX 
is the substrate of MRAP and BCRP, and it is easily affected 
by transport proteins when entering the body (Micsik et al. 
2015). Wolf et al. (2005) reported  that the lack of both 
MRAP and RFC led to a significantly better MTX therapeu-
tic outcome. These together demonstrate the importance of 
MRAP in MTXR appears.

Conclusively, the ABC superfamily transporters play an 
essential role in MTXR occurrence (Fig. 3). Determina-
tion of these transporters’ proteins may predict treatment 
to MTX, providing further insights into the mechanisms 
responsible for MTR in RA.

Transforming growth factor‑β (TGF‑β)/Smad 
pathway

TGF-β belongs to the TGF superfamily that regulates cell 
growth and differentiation. In addition to TGF-βs, this fam-
ily also includes agonists, inhibitors, critical inhibitor sub-
stances, and bone morphogenetic proteins (Sun et al. 2019). 
Smads are downstream proteins involved in TGF-β-mediated 
intracellular signaling. At present, nine kinds of Smad pro-
teins can be isolated from the human body, which can be 
divided into three subtypes according to their functions: 
Receptor activated Smad (R-Smad), coopartility Smad and 
inhibitory Smad. Smad2, Smad3, Smad4 and Smad7 are the 
main participants in the signal transduction pathway medi-
ated by TGF-β from the cell membrane to the nucleus (Mas-
sague and Wotton 2000).

In the above parts of this review, clusters of differentia-
tion 39 (CD39) mediate AMP hydrolysis to adenosine, and 
subsequently, adenosine binds to its receptor and activates 

Fig. 2  Methotrexate mechanism. MTX bmethotrexate, RCF reduced 
folate carrier, GGH gamma-glutamyl hydrolase, MTX-PGs metho-
trexate polyglutamates, DHFR dihydrofolate reductase, TYMS thymi-
dylate synthetase, ATIC aminoimidazole carboxamide ribonucleotide 
transformylase, ATICR aminoimidazole carboxamide ribonucleotide, 
DHF dihydrofolate, THF tetrahydrofolate, MTHF methyltetrahy-
drofolate, dTMP deoxythymidine monophosphate, dUMP deoxyur-
idine monophosphate, IMP inosine monophosphate, AMP adenosine 
monophosphate, GMP guanosine monophosphate
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downstream signaling pathways (Peres et al. 2015). Reg-
ulatory T cells (Tregs) are a subset of T cells critical for 
immune homeostasis, preventing the onset of autoimmun-
ity disease. The anti-inflammatory effect of MTX is closely 
related to the expression function of Tregs and the level of 
extracellular adenosine. TGF-β is a key inducer of Tregs 
(Shevach et al. 2008). In RA, various factors can activate 
and phosphorylate TGF-β, and then combine with the TGF-β 
type II receptor (TGFRII) to form a heterotetrameric com-
plex. The complex binds to and activates the TGF-β type 
I receptor (TGFRI), and then activated TGFRI links to 
Smad2, Smad3, and phosphorylates Smad 2, Smad3 to form 
an oligomer complex, which is finally translocated into the 
nucleus (Dong et al. 2019; Gao et al. 2020) (Fig. 4). Peres 
et al. (2015) found that MTXR is associated with low CD39 
expression on Tregs and decreased adenosine levels in RA. 
Further research found that TGF-β induces CD39 expression 

by increasing ectonucleoside triphosphate diphosphohydro-
lase-1 (ENTPD1) gene transcription, activation of TGFRII/
TGFRI, Smad2 and the transcription factor cAMP response 
element-binding protein (CREB) (Peres et al. 2018). It is 
worth noting that this phenomenon shows the specific of 
Treg, other effector T cells have no such effect. This unique-
ness may be related to TGF-induced high expression of 
Tregs.

Consequently, the CD39 expression could be a biomarker 
and potential targets for therapeutic intervention for MTXR.

IL‑13+CD4+ T cell pathway

T-lymphocytes (also known as T-cells) are derived from 
bone marrow-derived lymphatic stem cells. To perform its 
immune functions, T-cells distribute from lymphatic and 
blood circulation into immune organs and tissues (Ma et al. 

Fig. 3  The ABC transporters and AR signaling pathways of MTXR 
in RA. ABC ATP-binding cassette, AR adenosine receptor, MTX 
methotrexate, RCF reduced folate carrier, MTXR methotrexate resist-
ance, RCF reduced folate carrier, DHFR dihydrofolate reductase, 
TYMS thymidylate synthetase, ATIC aminoimidazole carboxamide 
ribonucleotide transformylase, ATICR aminoimidazole carboxam-
ide ribonucleotide, IMP inosine monophosphate, AMP adenosine 

monophosphate, ATP adenosine triphosphate, ADP adenosine diphos-
phate, GPCRs G protein-coupled receptors, TGF-β transforming 
growth factor-β, AC-cAMP-PKA adenylate cyclase- cyclic adenosine 
monophosphate-protein kinase A, MAPK mitogen-activated protein 
kinases, NF-κB nuclear factor kappa B, DCs dendritic cells, TNF-α 
tumor necrosis factor α, IL interleukin
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2019). T-cells are divided into several subgroups, includ-
ing natural, effector, suppressor, memory, cytotoxic (Tc), 
regulatory (Tregs) and helper T cells (Th) (Lubberts 2015). 
Among these, because it expresses on the surface, Th cells 
are also called  CD4+ cells. In the same way, Tc cells are 
also called  CD8+ cells, and so on. T-cells have multiple bio-
logical functions. On the one hand, T-cells activate synovial 
cells through intercellular interaction, which include FLS, 
macrophages, B-cells, and osteoclasts. On the other hand, 
T-cells produce immune response and cytokines, including 
interferon-γ, tumor necrosis factor, interleukin (IL) -6, and 
IL-17 (Herrath et al. 2011; van Hamburg et al. 2011; Weh-
rens et al. 2011).

A recent study by Slauenwhite et al. (2020) reported 
novel biomarker features for MTXR patients. They found 
that the phenomenon of higher IL-13+CD4+ T effector 
memory  (TEM) frequency, lower CD4: CD8 ratio, higher 
IL-13+ T cell level in the blood, and higher T cell costim-
ulator-positive  (ICOS+) Treg frequency highlight the 
distinct immunologic phenotypes associated with MTX 

non-response in RA patients. Baseline CD4: CD8 ratio 
and IL-13+CD4+TEM cell frequency each were associated 
with the change in disease activity resulting from MTX 
therapy. That means  CD4+ and  CD8+ T cells may be play-
ing an essential role in circulating IL-13 in MTXR patients 
(Dulic et al. 2017). This may be related to different phe-
notypic expression positions and physiological function. 
Research shows that CD4 is mainly on the synovium, 
while CD8 is primarily on the synovial fluid (Verburg 
et al. 2005). Furthermore, the frequency of  ICOS+ Tregs 
was higher in MTXR patients, and  ICOS+  Tregs expressed 
more IL-17 anti-inflammatory cytokines, which may have 
a vital role in RA patients with MTX therapy outcome 
(Wang et al. 2018).

In general, targeting the IL-13+CD4+T cell pathway 
could be a new therapeutic strategy in MTXR RA patients. 
Furthermore, combine this pathway with PBMC and paired 
synovial fluid data, which may provide a novel research 
direction for resolving immune-mediated mechanisms of 
MTXR (Slauenwhite et al. 2020).

Fig. 4  The TGF-β/Smad pathway of MTXR in RA. TGF-β transform-
ing growth factor-β, MTXR methotrexate resistance, RI TGF-β type I 
receptor, RII TGF-β type II receptor, AMP adenosine monophosphate, 

CD39 clusters of differentiation 39, P phosphorylation, R adenosine 
receptor, ENTPD1 ectonucleoside triphosphate diphosphohydro-
lase-1, CREB cAMP response element-binding protein
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DNA methylation

As mentioned in the MTX mechanism, MTX mainly inhibits 
DHFR, TYMS, ATIC, resulting in the inhibition of folates, 
purine, and pyrimidine synthesis, with subsequent block-
ing of DNA biosynthesis. Likewise, Similarly, MTX may 
affect other folate-dependent metabolic pathways, such as 
the methionine regeneration pathway (Stempak et al. 2005). 
Methionine is essential for the synthesis of S-adenosylme-
thionine (SAM) and methionine S-adenosyltransferase 
(MAT), which both are vital in immune-mediated cellular 
reactions and mainly donor of methyl groups in vivo. There 
have been studies on the effect of MTX in SAM and MAT in 
the past. Nesher and Moore (1990) found that MTX inhib-
its the methionine regeneration, thereby inhibiting SAM 
and polyamine synthesis. The possible mechanism may be 
related to the decreased intracellular MTHF of MTX, as 
a result of DHFR and methylene THFR inhibition (Bunni 
et al. 1988). In another study, MTX significantly decreased 
S-adenosylmethionine production by inhibition of MAT 
independent of folate depletion (Wang and Chiang 2012).

SAM and MAT provide methyl groups for global DNA 
methylation (Kim et al. 1996). Assuming that the MTX 
effect on the level of global DNA methylation by inhibiting 
SAM and MAT. To confirm this hypothesis, the association 
between the level of global DNA methylation in leukocyte 
of RA, before-, at 3 months, and over 3 months of MTX 
therapy with changes in disease activity was raised by Gos-
selt et al. (2019). They are found a higher baseline global 
DNA methylation is associated with clinical non-response, 
determined at 3 months of MTX treatment. This means that 
global DNA methylation is independently associated with 
disease activity over the first 3 months of MTX therapy, 
which could be a prediction marker for MTXR.

There are other few studies on the relationship between 
global DNA methylation with MTX response. For instance, 

a study found that the global DNA methylation in peripheral 
blood cell subpopulations (e.g., T cell, B cell, natural killer 
(NK) cells, monocytes, and polymorphonuclear leukocytes) 
was increased by MTX treatment in RA patients. In addi-
tion, expression levels of methylation-specific enzymes were 
also increased in monocytes and T cells (de Andres et al. 
2015). In another study, Cribbs et al. (2015) showed Treg 
function research, which found that the inhibitory function 
of Treg is defective in untreated RA patients’ group. MTX 
restores defective Treg function through demethylation of 
the forkhead box P3 (Foxp3) locus that leads to a subsequent 
increase in Treg gene expression of Foxp3 and cytotoxic T 
lymphocyte antigen-4 (CTLA-4).

As already mentioned in the research finding, the mean-
ing of global DNA methylation in RA may also act as a 
biomarker of MTX treatment response (Fig. 5).

Adenosine recepoter (AR)

As shown in Figs. 1, 2, MTX has an anti-inflammatory 
effect on RA patients by increasing the level of extracel-
lular adenosine. Adenosine acts on inflammatory cells 
through AR. AR contains a group of G protein-coupled 
receptors (GPCRs) that mediate the physiological role 
of adenosine. So far, four AR subtypes have been cloned 
and identified in different tissues. These receptors were 
included ARA1, ARA2A, ARA2B, and ARA3, which 
have different localizations, signal transduction pathways, 
and regulatory mechanism (Hasko et al. 2008). One of 
the most important differences for MTX treatment is that 
A2A and A2A are associated with Gs protein to induce 
the production of cyclic AMP (cAMP). However, A1 and 
A3 are related to Gi protein to inhibit the cAMP (Cron-
stein and Sitkovsky 2017). Furthermore, compared with 
the healthy group, ARA2A and ARA3 were up-regulated 
in lymphocytes of RA patients. A2A and A3AR activation 

Fig. 5  The DNA methylation 
pathway of MTXR in RA. 
MTXR methotrexate resistance, 
ATP adenosine triphosphate, 
SAM S-adenosylmethionine, 
MAT methionine S-adenosyl-
transferase, THF tetrahydro-
folate, PPi pyrophosphoric acid; 
Pi phosphoric acid
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can reduce inflammatory cytokine levels such as TNF-α, 
IL-1β and IL-6  Varani et al. 2011). Conclusively, AR is 
a crucial medium of MTX to produce anti-inflammatory 
effects in RA.

Earlier studies have a focus on the relationship between 
inflammation and adenosine and MTX treatment. Infu-
sion of ARA2 receptor agonists can significantly enhance 
bradykinin-induced plasma extravasation (PE) of acute 
inflammation in the rat knee joint. ARA2 receptor agonists 
can also reduce arthritis-related joint damage (Green et al. 
1991). In vivo of murine air pouch model, after intraperi-
toneal injection of MTX in model mice for 3-4 weeks. 
It significantly inhibited the accumulation of leukocyte. 
The MTX-mediated reduction in leukocyte accumulation 
was entirely reversed by the ARA2 antagonist, but not 
affected by ARAl antagonist (Cronstein et al. 1993). This 
also means that the specificity of the MTX’s anti-inflam-
matory action is receptor-specific.

In addition, Nesher et al. (2003) confirmed that the daily 
substance of AR antagonists, caffeine, affects the treatment 
response of MTX in RA patients. Lastly, Montesinos et al. 
(2006) examined the therapeutic effect of MTX on AR 
gene knockout mice of the peritoneal inflammation model. 
They found that MTX treatment increased the concentra-
tion of adenosine in the peritoneal exudates of all mice 
and reduced the accumulation of leukocytes in wild-type 
mice and ARA3 knockout mice. Additionally, IL-10 lev-
els increased in wild-type mice and ARA3 knockout mice 
after MTX treatment but decreased in ARA2A knockout 
mice. These research results also provide strong evidence 
that different receptors mediate the anti-inflammatory 
effects of MTX and adenosine in various inflammatory 
sites. This observation may explain why some inflamma-
tory diseases respond differently to MTX treatment. With 
continuing this research, Montesinos et al. (2007) found 
that MTX treatment reduced the levels of leukocytes and 
tumor necrosis factor-α (TNF-α), increased the concentra-
tion of adenosine in wild-type mice. But these phenom-
ena were not found in the experiment of CD73 knockout 
mice. A similar event was found by Varani et al. (2009). 
They found that the level of TNF-α in early RA patients 
is affected by MTX treatment, which is mediated by the 
nuclear factor kappa B (NFκB) signal pathway. A report of 
genetic polymorphisms in the adenosine pathway revealed 
that ATIC C347G polymorphism is inconsistently associ-
ated with MTX treatment response. This is due to clinical 
interventions related to the improvement of ATIC 347CC 
and GG genotypes (Grabar et al. 2010). The inflammation 
and clinical response of RA are regulated by AR (Fig. 3). 
In addition to continuing to study the mechanism of action 
of MTX on AR, it also supports the use of AR agonists as 
a new and effective drug for RA patients.

Other factors

In addition to the above mentioned, other factors affect the 
occurrence of MTXR. These factors include but not limited 
to disease period, molecular factors, and patients’ factors. 
Molecular factors, Ally et al. (2015) investigated the cor-
relation between the changes in circulating anti-citrullinated 
peptide antibodies (ACPA) and inflammatory cytokines 
(e.g., IL-4, IL-7, IL-8, etc.) levels before and after treatment 
with MTX response in 140 early RA patients. They found 
that the level of ACPA and pro-inflammatory cytokines 
were significantly decreased by treating MTX for 6 months. 
However, the predictive value of continuous measurement 
of these biomarkers for MTX treatment response, espe-
cially related to imaging progress and functional disability, 
remains to be determined in the future. In another study, 
low- and medium-concentration pretreatment ACPA corre-
lates with MTX treatment response in ACPA-positive RA 
patients, which means that quantitative assessment of ACPA 
levels may be used to determine which patients will benefit 
most from MTX treatment (Visser et al. 2008).

The same research method can be used for the study of 
rheumatoid factor (RF), TNF-α, and T-cells subset in MTX 
treatment response (Bobbio-Pallavicini et al. 2007; Ponchel 
et al. 2014). TNF-α is a pro-inflammatory cytokine mainly 
produced by activated macrophages, NK cells, and T-cells. 
Also, its concentration increases in RA patients (Choy and 
Panayi 2001). Considering the role of TNF-α in the patho-
genesis of RA, the benefit obtained by using MTX is that it 
may provide sufficient information for predicting anti-MTX 
response in RA patients. The study found that the TNF-α 
308 A/A or A/G genotype of RA patients with the higher 
biological activity of circulating TNF-α are more sensitive 
to specific inhibitors (Marotte et al. 2005, 2008; Pachot 
et al. 2007). Such after systemic treatment with TNF-α spe-
cific inhibitor rituximab, TNF-α response production IL-6 
was more significant in patients with an excellent clini-
cal response than in the poor responders. Another factor  
(Ponchel et al. 2014) explored the relationship between dis-
turbance of T-cell subsets and treatment response in patients 
with early RA treated with MTX or combined anti-TNF 
therapy. They found that reducing the T-cell baseline is posi-
tively correlated with MTX response in early RA patients. 
This means baseline T-cell subset analysis has a value in 
predicting early RA patients with first therapy with MTX.

To add more, myeloid-related protein (MRP) belongs to 
human pro-inflammatory calcium-binding proteins, which 
are specifically expressed in granulocytes and monocytes 
(Foell and Roth 2004). The study found that MRP8/14 levels 
showed a local increase in the inflammation sites and serum 
of RA patients (Odink et al. 1987; Youssef et al. 1999). A 
recent study in 87 active RA patients uncovered that after 
4 months of MTX treatment, the median interquartile range 
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baseline level of MRP8/14 was higher of MTX responders 
compared with MTX non-responders. The Serum MRP level 
is positively correlated with CRP (Patro et al. 2016).

Patients’ factors, many studies have found that the 
patient’s factors will affect the response of MTX treatment. 
For example, gender, age, psychological factors, disease 
duration, mood, and lifestyle. Saevarsdottir et al. (2011) use 
EULAR response criteria to investigate 405 RA patients 
who took MTX for 3–4 months with symptom duration 
of less than 1 year, and found that woman MTX treatment 
response is increased. Furthermore, smoking and the elderly 
are strongly correlated with MTX response. A survey study 
of 844 early RA patients within 1 year of onset and 2 years 
of follow-up, reported that the women showed higher disease 
activity and joint damage than that in man. However, older 
women had higher disease severity than those under 50 years 
of age women (Tengstrand et al. 2004). This sex difference 
may be related to the effect of estrogen on the immune sys-
tem. In a study about the association between folate syn-
thase gene polymorphism and MTX response in 281 RA 
patients, age shows significant differences in good/poor 
MTX responders groups (Sharma et al. 2009). The results 
revealed that the average age is 41 years old in MTX poor 
responders. The good responder’s group is 45 years old. This 
means a specific correlation between MTX’s response and 
age. In another study, Vilca et al. (2010) found that longer 
disease duration, anti-nuclear antibody negativity, higher 
disability and presence of wrist activity were significantly 
associated with a weaker response to MTX treatment with 
6 months in 563 RA patients. Mood also affects the MTX 
treatment response. A recent study of 1326 RA patients with 
MTX treatment reported that depression and anxiety might 
affect the likelihood of joint symptoms relief in RA patients 
(Michelsen et al. 2017). This is a reminder that the patient’s 
emotional state may have specific effects on MTXR, which 
requires further research. Similarly, a study was to use 
demographic, clinical and psychosocial variables to predict 
MTX response in 1050 RA patients, which 43% of them are 
MTXR patients (Sergeant et al. 2018). They revealed that 
patient anxiety is a predictor of MTXR and can be noted at 
the beginning of the patient’s treatment.

Conclusion and perspectives

In summary, this review has discussed the currently recog-
nized mechanism of MTR, and the factors that cause non-
responses of MTX treatment in RA. Inflammatory cytokines 
and drug resistance-related proteins, such as folates syn-
thesis related enzymes, ABC transporters, T-cells, IL-13, 
IL-4, IL-7, IL-8, TNF-α, SAM, MAT, DNA methylation, 
AR, ACPA, and MRP, are involved in the occurrence and 
development of MTXR. Besides, many signaling pathways 

affect MTXR through molecular signal regulation in RA. 
These signaling pathways were included TGF-β/Smad path-
way, NF-κB pathway, IL-13+CD4+ T cell pathway, GPCR 
pathway, and folate-dependent metabolic pathways. It worth 
noting that RA patients’ lifestyle also affects MTXR and 
treatment response assessment, such as gender, age, psycho-
logical factors, disease duration, emotions, lifestyle, and etc.

Different signaling pathways, proteins, cytokines, and 
patient factors promote MTXR production and develop-
ment through different mechanisms of action. However, 
these factors never exist alone, but affect the progress of 
MTXR through multiple contact and influence. Further 
research should focus on the inter-relationships and cross-
expression of MTXR-related signaling pathways, proteins, 
factors, and patients’ state, which is of great significance for 
revealing the pathogenesis of RA. It is believed that with the 
deepening of research, a variety of signal pathways, genes, 
and proteins that have been elucidated will have a positive 
effect on therapeutic strategies and may relieve the progress 
of MTXR.

RA is a systemic immune disease, and 20%–30% of 
untreated RA patients within 3 years will cause permanent 
loss of function (Ercan et al. 2010; Wei 2016). Erosive mal-
formations can occur in the late stage of RA, a disease with 
a high disability rate, which seriously affects the health and 
quality of life of RA patients (Brown et al. 2017). MTX, 
as the gold standard treatment of RA, has received more 
and more clinical applications and basic pharmacological 
research. In many observational studies, MTXR and therapy 
responses in RA patients in the current era were investigated. 
The results show that the ratio of MTXR and non- response 
is about 30% –50% (Vilca et al. 2010; Braun et al. 2008; 
Mori et al. 2010; van Vollenhoven et al. 2009). Research to 
find appropriate RA treatment drugs combined with MTX 
is the current research focus. Despite the individual varia-
tion, the mechanism of MTXR and the degree of treatment 
response needs further and thorough study. Extensive efforts 
have been made into the investigation of useful biomarkers 
to assist the clinical judgment of the efficacy of drugs in the 
early RA diagnosis or drug treatment (Halilova et al. 2012; 
Yu et al. 2018). However, at present, this field is still a great 
challenge because there are no reliable, authoritative stud-
ies that can be used to predict MTX response clinically. In 
future investigations and research, the representative sam-
ple size, high-throughput technologies (such as proteomics, 
transcriptomics, and systematic genome sequencing), epige-
netic factors, and comprehensive multidisciplinary research 
should be considered (Selga et al. 2009; Wong et al. 2017).
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