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Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease that results in progressive dementia, and exhibits 
high disability and fatality rates. Recent evidence has demonstrated that neuroinflammation is critical in the pathophysiologi-
cal processes of AD, which is characterized by the activation of microglia and astrocytes. Under different stimuli, microglia 
are usually activated into two polarized states, termed the classical ‘M1’ phenotype and the alternative ‘M2’ phenotype. M1 
microglia are considered to promote inflammatory injury in AD; in contrast, M2 microglia exert neuroprotective effects. 
Imbalanced microglial polarization, in the form of excessive activation of M1 microglia and dysfunction of M2 microglia, 
markedly promotes the development of AD. Furthermore, an increasing number of studies have shown that the transition 
of microglia from the M1 to M2 phenotype could potently alleviate pathological damage in AD. Hence, this article reviews 
the current knowledge regarding the role of microglial M1/M2 polarization in the pathophysiology of AD. In addition, we 
summarize several approaches that protect against AD by altering the polarization states of microglia. This review aims to 
contribute to a better understanding of the pathogenesis of AD and, moreover, to explore the potential of novel drugs for the 
treatment of AD in the future.
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Introduction

Alzheimer’s disease (AD) is a multifactorial neurodegenera-
tive disease that is caused by genetic and non-inheritable 
components. Most cases are sporadic, as only 5–20% of 
AD cases have familial history. Intracellular neurofibrillary 
tangles (NFTs) composed of hyperphosphorylated tau and 
extracellular deposits of amyloid β (Aβ) are considered to be 
the two key hallmarks of AD. Importantly, more and more 
evidence has demonstrated that neuroinflammation is also a 
crucial player in the onset and development of AD, which is 
characterized by astrocytic and microglial activation. Exces-
sive neuroinflammation promotes the generation of inflam-
matory mediators such as cytokines and chemokines, which 
results in neuronal injury and neurodegeneration. A notice-
able neuroinflammatory response has been detected in both 

sporadic and familial AD, as well as in transgenic models 
of the disease (Akiyama et al. 2000). In vivo studies have 
shown that Aβ treatment activates microglia and aggravates 
inflammatory responses by binding to innate immune recep-
tors on microglia (Stewart et al. 2010; Liu et al. 2012a, b; 
Wirz 2013). Taken together, these observations have formed 
the inflammatory cascade hypothesis of Alzheimer’s disease.

In addition to being crucial cellular mediators of neu-
roinflammatory processes, microglia play a vital role in 
overall brain maintenance, and participate in inflammatory 
and immune responses in the central nervous system (CNS) 
(Lawson et al. 1992; Gehrmann et al. 1995). Microglia dis-
play neurotoxic or neuroprotective functions in the CNS 
depending upon the phenotypic polarization, thereby acting 
as a ‘double-edged sword’. Microglia are usually activated 
into two polarized states, termed the classical ‘M1’ phe-
notype and the alternative ‘M2’ phenotype. M1 microglia 
are considered to enhance pro-inflammatory responses by 
secreting large numbers of inflammatory cytokines that 
lead to tissue damage (Orihuela et al. 2016). In contrast, 
M2 microglia exert neuroprotective effects by inhibiting 
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neuroinflammation, thereby promoting tissue repair (Man-
tovani et al. 2004; Edwards et al. 2006).

In the early stage of AD, even before the formation of 
senile plaques, activated microglia exert protective effects 
by reducing Aβ deposition (Solito and Sastre 2012), alle-
viating tau hyperphosphorylation (Jiang et al. 2016) and 
secreting neurotrophic factors (Fillit et al. 1991). However, 
during the development of AD, the excessive activation of 
microglia promotes inflammatory injury and aggravates 
AD-related pathological damage (Mcdonald et al. 1997; Lue 
et al. 2010). Recent studies have revealed that microglial 
polarization may be a promising therapeutic target in AD. 
In both in vivo study and in vitro studies, experimentally 
inducing microglial polarization towards the neuroprotec-
tive M2 phenotype, has been shown to significantly alleviate 
neuroinflammatory responses and ameliorate pathological 
damage in AD models (Jiang et al. 2016; Oh et al. 2017; Yu 
et al. 2017; Zhang et al. 2017). Nevertheless, the regulatory 
mechanisms involved in microglial polarization are not well 
known. Hence, the current article aims to review the role of 
microglial polarization in AD, and to summarize potential 
microglial-based therapeutic targets for treating AD.

Microglia in the CNS

The micro-environment of the CNS is mainly composed of 
neurons and glial cells, the latter of which includes micro-
glial cells, astrocytes and oligodendrocytes. Derived from 
embryonic mesodermal-marrow precursor cells, microglia 
provide potent neurotrophic and neuroprotective effects 
in the CNS (Hume et al. 2002). Additionally, as the major 
immunological effector cells in the CNS, microglia exhibit 
scavenger-like immune activity in terms of inflammatory 
and immune responses. Under physiologically healthy con-
ditions, microglia have small cell bodies, slender branching, 
and do not engage in phagocytosis (Nimmerjahn et al. 2005). 
Under several pathological conditions, activated microglia 
are rapidly converted into an amoeba-like large morphol-
ogy, engage in synaptic pruning and migrate to the lesion 
region to provide strong phagocytic activities (Nakamura 
et  al. 1999). Consequently, abundant pro-inflammatory 
cytokines such as tumour necrosis factor-α (TNF-α), inter-
feron γ (IFN-γ) and interleukin-1 (IL-1) are generated, and 
lead to neuroinflammatory responses.

Microglia act like a ‘double-edged’ sword to provide 
beneficial or harmful effects in the CNS, depending on the 
phenotypic polarization. Microglia are usually activated into 
two polarized states, termed the classical ‘M1’ phenotype 
and the alternative ‘M2’ phenotype. The M1 phenotype is 
induced by immune stimulation such as from lipopolysac-
charides (LPSs) and INF-γ, which induces microglia to 
secrete large amounts of pro-inflammatory factors includ-
ing nitric oxide (NO), TNF-α, IL-6 and IL-lβ (Ponomarev 

et al. 2007; Orihuela et al. 2016). Hence, the classic activa-
tion state of the M1 phenotype promotes neuroinflammatory 
responses. In contrast, in response to inflammatory stimuli 
such as IL-4 and IL-13, microglia are converted into the M2 
phenotype (Tang and Le, 2016). M2 microglia display ben-
eficial effects by releasing neuroprotective cytokines such 
as IL-10, transforming growth factor-β (TGF-β) and insulin-
like growth factor 1 (IGF-1). Additionally, the alternative 
activation state of the M2 phenotype inhibits excessive neu-
roinflammation induced by M1 microglia, which leads to 
tissue repair and reestablishment (Mosser 2003; Mantovani 
et al. 2004; Edwards et al. 2006; Mosser and Edwards 2008). 
During the clearance of apoptotic cells or myelin fragments 
by M2 microglia, M2 markers such as arginase-1 (Arg1) 
and mannose receptor (CD206) are generated to aid in tis-
sue reconstruction and synaptic remodelling (Boche et al. 
2006; Suh et al. 2013). M2 activation is divided into addi-
tional sub-categories. Accompanied by different markers, 
the expressions of mannose receptor (MRC1) and Arg1 are 
considered to be indicative of M2a activation. In contrast, 
elevated expressions of CD86 and the major histocompati-
bility complex II (MHCII) receptor are consistently observed 
during  M2b activation. Finally, the M2c phenotype is char-
acterized by amplified expressions of transforming growth 
factor β1 (TGFβ1) and sphingosine kinase 1 (SPHK1) 
(Mosser 2003; Mosser and Edwards 2008). Despite these 
established subclassifications, the functions of M2 microglia 
sub-phenotypes are not well understood and require future 
investigations for their further elucidation.

Microglia in AD

Depending on the polarized state, microglia manifest dual 
toxic and protective roles in the process of AD. Previous 
studies have shown that moderate microglial activation alle-
viates AD pathological damage and reduces Aβ levels via 
phagocytosis and induction of tissue repair. However, exces-
sive neuroinflammation releases toxins such as nitric oxide 
(NO) and pro-inflammatory cytokines/chemokines, which 
exacerbates neuronal injury and, consequently, accelerates 
AD progression (Michaud et al. 2013).

Toxic function of microglia in AD

It has been reported that excessive activation of M1 micro-
glia aggravates the pathological damage in AD via multiple 
mechanisms. First, M1 microglia promote the production of 
large amounts of pro-inflammatory cytokines such as TNF-
α, IL-1 and macrophage inflammatory protein-1 (MIP-1) 
that consequently exacerbate neuronal damage, Aβ deposi-
tion (Mcdonald et al. 1997; Lue et al. 2010; Krabbe et al. 
2013) and cholinergic neuronal injury (Raleigh 2006; Wyss-
Coray 2006). Second, aggregation of activated microglia has 
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been shown to surround NFTs at both early and late stages 
of AD (Sheng et al. 1997; Sheffield et al. 2000). The inflam-
matory cytokines secreted by M1 microglia such as IL-1, 
IL-6 and fractalkine (CX3CL1) modulate the structure and 
function of tau, moreover, promote tau hyperphosphoryla-
tion and formation of NFTs (Bhaskar et al. 2010). In addi-
tion, during the progression of AD, the persistent activa-
tion of M1 microglia releases many neurotoxic substances, 
such as pyridinedicarboxylic acid and amines, that result in 
neuronal excitotoxicity (Giulian et al. 1995; Leipnitz et al. 
2007). Furthermore, more and more evidence has suggested 
that microglial phagocytosis of Aβ is significantly inhibited 
during AD because of diminished expression of specific pro-
teins in microglia/macrophages, including scavenger recep-
tor (SR-A), receptor for advanced end glycation products 
(RAGE) and insulin degrading enzyme (IDE) (Koenigskne-
chttalboo and Landreth 2005). Other M1 microglia-mediated 
pro-inflammatory cytokines, such as IFN-γ and TNFα, not 
only inhibit uptake of Aβ, but also block internalized Aβ 
degradation (Yamamoto et  al. 2008; Michelucci 2009). 
Interestingly, recent studies have found that excessive M1 
microglial activation facilitates the spread of Aβ and tau. 
Venegas et al. (2017) found that apoptosis-associated speck-
like protein containing a caspase recruitment domain (ASC) 
specks is released by microglia. ASC specks promote the 
production of Aβ oligomers and Aβ aggregation, and injec-
tion of ASC specks into hippocampus aggravates the spread 
of Aβ in different brain regions in APPSwePSEN1dE9 mice, 
which is considered to be a key hallmark of AD progression. 
Another study used an adeno-associated virus-based model 
that exhibited rapid tau propagation from the entorhinal cor-
tex to the dentate gyrus within 4 weeks. The results of this 
study showed that depleting microglia markedly prevented 
the propagation of tau and reduced tau spreading from the 
entorhinal cortex to the hippocampal region, indicated that 
microglia exacerbated tau spreading via exosome secretion 
(Asai et al. 2015).

Neuroprotective function of microglia in AD

The alleviated scavenging activity of Aβ has been reported 
to be the main reason for the progression of pathology in the 
majority of sporadic AD cases (Sollvander et al. 2016). In 
the early stage of AD, even before the formation of senile 
plaques, activated microglia exert protective effects in Aβ 
deposition by phagocytosis and releasing Aβ-degrading 
enzymes (Solito and Sastre 2012). Pro-inflammatory M1 
microglia appear to be impaired in their ability to clear Aβ; 
in contrast, M2 microglia have been shown to be efficient 
phagocytes. Many studies have shown that Aβ activates 
microglia and neuroinflammation in the CNS (D’Andrea 
et al. 2004; Liu et al. 2018), and that misfolding and aggre-
gated Aβ protein can be phagocytosed and cleared by 

activated microglia. Scavenger receptors are a group of 
evolutionally conserved proteins that are expressed on the 
surface of microglia and act as receptors for Aβ. SCARA-1 
(scavenger receptor A-1), CD36 and RAGE are some exam-
ples of scavenger receptors (Wilkinson and El 2012). Simu-
lating M2 activation with cytokine IL-4 and IL-10 effec-
tively blocks lipopolysaccharide-induced inhibition of Aβ 
phagocytosis (Koenigsknechttalboo and Landreth 2005; 
Michelucci, 2009; Kawahara et al. 2012). Treatment with 
IL-4, a strong inducer of M2 polarization, facilitates the deg-
radation of internalized Aβ by phagosomes and lysosomes 
(Majumdar et al. 2007; Balce et al. 2011). Different sub-
types of M2 microglia have been shown to exhibit unique 
functions. IL-4-induced M2a microglia have significant 
Aβ scavenging activity, while M2c microglia—induced by 
IL-10, TGFβ1 and glucocorticoids—may play a crucial role 
in tissue repair (Mecha et al. 2015). Additionally, a previous 
study demonstrated that M2 microglial products prevented 
inter-neuronal transfer of Aβ and reduced the spread of Aβ 
in the AD brain (Sackmann et al. 2017). Furthermore, M2 
microglia markedly alleviate neuroinflammatory responses 
and prevent tau hyperphosphorylation, which ameliorates 
pathological damage in AD (Jiang et al. 2016). Additionally, 
M2 microglia provide neuroprotective effects by releasing 
anti-inflammatory cytokines such as IL-10 and TGF-β (Col-
ton 2009), and secreting neurotrophic factors such as nerve 
growth factor (NGF). M2 microglia also potently suppress 
the generation of neuronal toxins (e.g., glutamic acid), which 
promotes tissue repair and synaptic regeneration (Fillit et al. 
1991; Lambeth 2004; Gandy and Heppner 2013).

Microglia‑based therapy in AD

It has been reported that inhibitors of excessive neuroin-
flammatory responses alleviate pathological damage in AD. 
In vitro studies have shown that non-selective inhibitors of 
cyclooxygenase (COX) can preferentially decrease the lev-
els of the highly amyloidogenic Aβ1–42 peptide. In murine 
models of AD, similarly, non-selective NSAIDs reduce Aβ 
plaque deposition in the brains of rodents (Pasinetti 2002). 
A prospective study demonstrated that the long-term use of 
NSAIDs might protect against AD, but not against vascu-
lar dementia (In et al. 2001). Other inflammatory regula-
tors have also been shown to provide neuroprotective func-
tions in AD, such as phosphodiesterases (PDEs) (Zhang 
et al. 2013; Guo et al. 2017a, b), histone deacetylase (Ke 
et al. 2011) and NADPH oxidase (NOX) (Laibaik et al. 
2008). These controversial results were provided by the 
Alzheimer’s Disease Anti-inflammatory Prevention Trial 
(ADAPT). The authors found that anti-inflammatory drugs 
(i.e., naproxen and celecoxib) delayed cognitive decline in 
slow decliners while accelerating decline in fast decliners (Ji 
et al. 2018). Besides, more and more evidence has revealed 
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that modulators of microglial phenotypes may be a promis-
ing therapeutic approach for the treatment of AD.

AMPK‑signalling agonists

AMP-activated protein kinase (AMPK) plays a crucial role 
in mitochondrial biogenesis, lipid metabolism and inflam-
mation (Giri et al. 2004). AMPK signalling is activated in 
response to stresses that deplete cellular ATP supplies, such 
as low glucose, hypoxia and ischemia. Moreover, AMPK 
signalling can be activated by upstream AMPK kinases, 
such as LKB1 and calmodulin-dependent protein kinase 
β (CaMKKβ). Recent evidence has demonstrated that 
AMPK signalling is involved in microglial polarization. 
For instance, peroxisome proliferator-activated receptor γ 
(PPARγ), a ligand‐activated transcription factor, regulates 
microglial polarization and inflammatory responses, as 
well as glucose and lipid metabolism (Zhao et al. 2016; Ji 
et al. 2018). Many studies have revealed that treatment with 
PPARγ agonists reduces CNS Aβ levels and alleviates AD 
pathology (Escribano et al. 2010; Mandrekarcolucci et al. 
2012; Yamanaka et al. 2012). Additionally, PPARγ agonists 
have been considered to efficiently provide neuroprotective 
properties via increasing mRNA levels of the M2 marker, 
YM1 (Mandrekarcolucci et al. 2012), as well as the scaven-
ger receptor, CD36 (Yamanaka et al. 2012). The modulatory 
effect of PPARγ in microglial polarization might be due to 
the activation of the LKB1–AMPK signalling pathway (Ji 
et al. 2018). Furthermore, the LKB1 inhibitor, radicicol, or 
knockdown of LKB1 prevented AMPK-signalling activation 
and the T0070907-induced M1-to-M2 phenotypic shift in 
LPS-treated BV2 microglial cells (Ji et al. 2018). Another 
study explored the effects of the CaMKKβ inhibitor, STO-
609, and CaMKKβ siRNA. The results demonstrated that 
CaMKKβ promoted downstream betulinic acid (BA)-medi-
ated AMPK activation and microglial M2 polarization. Pre-
administration of the AMPK inhibitor blocked M2 micro-
glial polarization in the cerebral cortex of LPS-injected mice 
brains (Li et al. 2018). In addition, telmisartan, an angioten-
sin II type 1 receptor blocker, promoted cerebral AMPK acti-
vation and M2 microglial gene expression in a mouse model 
of LPS-induced neuroinflammation (Xu et al. 2015). Taken 
together, AMPK-signalling agonists have potential positive 
effects in the regulation of microglial polarization and neu-
roinflammatory responses, which may represent promising 
therapeutic approach in AD.

mTOR‑signalling inhibitors

As a self‐digestion process, cell autophagy degrades 
useless  prote ins  and organel les  through the 
autophagy–lysosome pathway. Numerous studies have 
revealed that moderate autophagy exerts protective effects 

in several neurodegenerative diseases, including AD. How-
ever, excessive and uncontrolled autophagy leads to cellular 
injury and promotes the development of disease (Zare-Sha-
habadi et al. 2015). As a vital regulatory signalling pathway 
in cellular autophagy, the mechanistic target of rapamycin 
(mTOR) pathway inhibits autophagy when activated by 
upstream kinases such as AKT and MAPK. Recent stud-
ies have indicated that mTOR pathway inhibitors promote 
M2 macrophage polarization (Saxton and Sabatini 2017). 
Zhu et al. (2014) found that tuberous sclerosis complex 
1 (TSC1) facilitated M2 properties by mTOR-dependent 
CCAAT/enhancer-binding protein-β pathways, and also 
showed that mTOR inhibition promoted M1 to M2 mac-
rophage polarization. In a model of spinal cord injury (SCI) 
and in an LPS-treated BV-2 cell model, salidroside (Sal) 
pre-treatment significantly induced M2 microglia activation 
and M1 polarization inactivation via enhanced AMPK phos-
phorylation and reduced mTOR phosphorylation; this effect 
was reversed by CQ, a specific lysosome inhibitor, that is 
commonly used to block autophagic flux (Wang et al. 2017). 
In a model of vascular dementia, paeoniflorin (PF), a can-
nabinoid receptor 2 (CB2R) agonist, facilitated an M1 to M2 
phenotypic transition in microglia/macrophages in the hip-
pocampus of rats; this manipulation consequently improved 
animal learning and memory. Moreover, PF treatment sig-
nificantly inhibited the mTOR/NF-κB pro-inflammatory 
pathway and enhanced the PI3K/Akt anti-inflammatory 
pathway (Luo et al. 2018). Similarly, the mTOR inhibitor, 
everolimus (RAD001), inhibited mTORC1 activity and ame-
liorated VaD by promoting the M1 to M2 microglial shift 
(Huang et al. 2017). In a mouse model of traumatic brain 
injury (TBI), Huang et al. (2017) found that miR-124-3p 
promoted the generation of anti-inflammatory M2 microglia 
and blocked neuronal inflammation by inhibiting mTOR sig-
nalling. Additionally, by crossing Raptor loxed  (Raptorflox/

flox) mice with  CX3CR1CreER mice, blocking the mTORC 
pathway significantly reduced the post-stroke lesion size by 
decreasing CNS neuroinflammatory responses via a shift 
in microglial phenotype from M1 to M2 (Li et al. 2016). 
In spite of the lack of AD-related studies, the data above 
are suggestive of a promising neuroprotective property of 
mTOR-signalling inhibitors in AD, via regulation of micro-
glial polarization.

Rho/Rho kinase (ROCK)‑pathway inhibitors

Belonging to the Ras superfamily of small GTP binding 
proteins, Rho provides an important regulatory function in 
cellular migration and proliferation. Rho-associated pro-
tein kinase (ROCK), a member of the AGC (PKA/PKG/
PKC) family of serine–threonine kinases, is a downstream 
effector protein of the small GTPase Rho (Knaus 2000). 
Being widely distributed in immune-related cells such as 
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T cells, B cells and NK cells, the ROCK-signalling path-
way potently promotes infectious and immune inflammation 
(Wei and Jun-Qi 2017). Furthermore, more and more studies 
have shown that ROCK inhibitors exert positive regulatory 
effects on microglial polarization in neurodegenerative dis-
eases. Roser et al. (2017) found that Rho/ROCK-pathway 
inhibitors could induce the shift from M1 to M2 microglial 
phenotype, which has become a promising treatment option 
for Parkinson’s disease (PD) and amyotrophic lateral scle-
rosis (ALS). Zhao et al. (2015) also reported that fasudil, 
a selective ROCK inhibitor, could prevent MPTP-induced 
degeneration of dopaminergic neurons. Additionally, fasudil 
has been shown to convert inflammatory M1 microglia to 
anti-inflammatory M2 microglia in an MPTP-mouse model 
of PD. Similarly, in mouse BV-2 microglia, treatment with 
fasudil regulated microglia polarization towards the benefi-
cial M2 phenotype. In experimental autoimmune encephalo-
myelitis (EAE) mice, both CD11b(+)ins(+) and CD11b(+)
TNF-α(+) M1 microglia were significantly decreased, 
whereas CD11b(+)IL-10(+) M2 microglia were increased 
by fasudil administration, which resulted in the amelioration 
of demyelination and neuroinflammation (Chen et al. 2014). 
Additionally, the novel ROCK inhibitor, WAR-5 (which is 
a Y-27632 derivative), protected against myelin impairment 
and neuroinflammatory injury in EAE C57BL/6 mice, via 
promoting the M1-to-M2 microglial transition (Li et al. 
2015). In a model of traumatic SCI, blocking the Rho/ROCK 
pathway promoted a shift from M1 microglia/macrophages 
towards the M2 phenotype, and alleviated CNS inflamma-
tory damage (Dyck et al. 2018). Additionally, inhibition of 
the Rho/Rho kinase by the prostaglandin E2 receptor EP3 
reduced thrombin-induced brain injury, neurologic deficits 
and numbers of CD68(+) microglia, whereas it increased 
the number of Ym-1(+) M2 microglia (Han et al. 2015). 
Another study investigated the link between ROCK signal-
ling and microglial polarization in an AD transgenic model. 
Yu et al. (2017) found that fasudil improved spatial cognitive 
impairment in APP/PS1 mice by facilitating the M1-to-M2 
microglial transformation. Taken together, ROCK-pathway 
inhibitors may mitigate AD pathology by modulating micro-
glial phenotypes.

NF‑κB pathway inhibitors

Nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) is a protein complex that is implicated in 
cytokine production, cellular survival and synaptic plasticity 
in response to external stimuli such as infection, stress and 
free radicals. Besides, NF-κB is a major transcription factor 
that modulates genes responsible for both the innate and 
adaptive immune responses (Smith et al. 2006). Many stud-
ies have revealed that NF-κB signalling is involved in AD-
associated neuroinflammation. Moreover, NF-κB pathway 

blockage alleviates inflammatory responses and pathological 
damage in AD models (Kim et al. 2017; Spagnuolo et al. 
2018; Zhao et al. 2018). The NF-κB pathway also plays a 
crucial role in microglial polarization in AD. In vitro, tian-
eptine treatment has been shown to attenuate neuroinflam-
mation and promote the transition of M1 towards the M2 
microglial phenotype in lipopolysaccharide-stimulated cul-
tures via suppression of both the NLRP3 inflammasome and 
TLR4/NF-κB signalling (Ślusarczyk et al. 2018). Another 
study found that silencing TRAM1 effectively inhibited 
LPS/IFN-γ-induced neuroinflammation by M1 microglia in 
BV2 cells. Moreover, TRAM1 is also essential for phospho-
rylation of IκB and P65-NF-kB translocation to the nucleus 
(Wang et al. 2016). In vivo studies have also confirmed the 
relationship between NF-κB signalling and microglial polar-
ization. In a rat model of neuropathy via chronic-constriction 
injury to the sciatic nerve (CCI), M1-mediated cytokines 
(IL-1β, IL-18, and iNOS) were reduced by parthenolide 
(PTL) treatment, and M2 (IL-10, TIMP1) factors were 
enhanced. In addition, PTL downregulated the phosphoryl-
ated form of NF-κB, p38MAPK, and ERK1/2 protein levels 
(Popiolekbarczyk et al. 2015). Zhang et al. found that acute 
hypoxia upregulated M1 microglial markers (e.g., differen-
tiation 86 [CD86]) and downregulated M2 markers (e.g., 
Arg-1, CD206, IL-4 and IL-10) in both APPswe/PS1dE9 
transgenic (Tg) and wild type (Wt) mice. The effects were 
associated with NF-κB induction through the toll-like 
receptor 4 (TLR4) (Zhang et al. 2017). Our previous study 
demonstrated that M1/M2 microglial phenotypes could be 
modulated by aging via TLR2/NF-κB signalling in MPTP-
PD mice (Yao and Zhao 2018). Wang et al. (2015b) also 
found that tanshinone I administration markedly increased 
anti-inflammatory M2 gene expression and reduced pro-
inflammatory M1 gene expression in LPS-induced BV-2 
microglial cells and MPTP-PD mice via inhibiting NF-κB 
activation. In a murine model of experimental autoimmune 
uveitis, silencing aryl hydrocarbon receptor (AhR) led to 
significantly increased macrophage/microglia cells and tran-
sition from the M2 to the M1 phenotype as compared to that 
of AhR+/+EAU mice. Moreover, this result was associated 
with the activation of NF-κB and signalling transducers and 
activators of transcriptional (STAT) pathways. Furthermore, 
AhR-agonist treatment could prevent macrophage/microglia 
activation, and shifted their polarization from M1 to M2 
(Huang et al. 2018). The precise modulation of microglial 
polarization by the NF-κB pathway requires further investi-
gation in AD models.

NOTCH‑signalling inhibitors

As a highly conserved signalling system in most multi-
cellular organisms (Artavanistsakonas et  al. 1999), the 
Notch-signalling pathway is involved in multiple cellular 
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differentiation processes during embryonic and adult life, 
such as neuronal development (Bolós et  al. 2007) and 
angiogenesis (Liu et al. 2003). Notch signalling has also 
been reported to participate in inflammatory and immune 
processes (Dimitris and Nussenzweig 2007). Recent stud-
ies have demonstrated that Notch signalling could modu-
late polarization of macrophages/microglia in the CNS. Wu 
et al. (2017) found that the simvastatin and Notch-signalling 
inhibitor DAPT could enhance M2 microglia polarization 
and reduce M1-marker expression in LPS-treated BV-2 
cells. A study using morphometric and phenotypic analy-
ses of microglial cells found that arginase-1(+) cells were 
markedly increased in mice induced by pituitary-adenylate 
cyclase-activating polypeptide (PACAP)-expressing cells. 
Additionally, some key transcriptional factors (e.g., Notch/
RBP-J) are potential targets of PACAP (Brifault et al. 2015). 
Liu et al. (2012a, b) found that Notch signalling was related 
to microglial polarization. Also, Notch-signalling blockage 
resulted in suppressed M1 polarization and increased M2 
polarization. Another study showed that primary microglial 
cells treated with ol-Aβ and f-Aβ expressed high levels of 
M1 markers (e.g., IL-1β, IL-6, TNF-α, NOS-II, COX-2), 
whereas the M2 microglial marker, arginase1, was downreg-
ulated. Hes-1, a target molecule of the Notch pathway, was 
also decreased (Michelucci 2009). The data above indicate 
that Notch signalling is importantly involved in Aβ-induced 
microglial polarization and neuroinflammatory responses. 
Hence, Notch-pathway inhibitors deserve more attention in 
AD-related investigations.

GSK3‑signalling inhibitors

GSK-3β, a serine/threonine kinase, is considered to affect 
cellular proliferation and inflammation. GSK-3β also aggra-
vates tau phosphorylation, Aβ deposition and promotes 
progression of AD (Maqbool and Hoda 2017). A selective 
GSK-3 peptide-derivative inhibitor exhibited neuroprotec-
tive properties via alleviating Aβ levels and inflammatory 
injury in a transgenic AD mouse model (Licht-Murava 
et al. 2016). Previous studies have reported that the GSK-3β 
signalling pathway is closely related to CNS microglial 
polarization. Jiang et al. (2018) found that overexpression 
of TREM2 could prevent pro-inflammatory cytokines, such 
as IL-1β, via inhibiting the activity of GSK-3β. Increased 
Arg1 expression and improved behaviour were also observed 
in the transgenic mice following TREM2 overexpression. 
Another study used a lentiviral-mediated strategy to selec-
tively overexpress TREM2 in microglia in the brains of 
P301S tau-transgenic mice. The study showed that TREM2 
overexpression significantly suppressed neuroinflammation 
by promoting M2 microglia generation, which consequently 
ameliorated neuronal/synaptic loss, tau hyperphosphoryla-
tion and cognitive deficits. The protective effect was due Ta
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e 
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to the inhibition of GSK3β and cyclin-dependent kinase 5 
(CDK5) (Jiang et al. 2016). In a model of traumatic brain 
injury (TBI), the class I/II histone deacetylase (HDAC) 
inhibitor, scriptaid, could shift microglia/macrophage 
polarization from the M1-to-M2 phenotype and mitigate 
inflammatory responses via GSK3β/PTEN/Akt signalling. 
Moreover, scriptaid significantly increased myelin-basic pro-
tein expression and improved neuronal function (Wang et al. 
2015a). Zhou et al. (2016) found that regulatory T lympho-
cytes (Tregs) alleviated intracerebral haemorrhage (ICH)-
induced inflammatory injury by modulating microglia/
macrophage polarization toward the M2 phenotype through 
the IL-10/GSK3β/PTEN axis. The data above suggest that 
GSK3 blockage may inhibit neuroinflammatory damage by 
regulating microglial polarization in several disease models, 
which deserves further investigation in AD-related models 
(Tables 1, 2).

Other signalling pathways

Some other signalling pathways also play an important role 
in the regulation of microglial polarization. A recent study 
investigated the effects of the brain renin–angiotensin sys-
tem (RAS) on microglial polarization. Angiotensin II (Ang 
II) exerts pro-oxidative and pro-inflammatory effects via its 
type-1 receptor (AT1). However, Ang II/AT2 receptor sig-
nalling and Angiotensin 1-7/Mas receptor (MasR) signal-
ling provide anti-inflammatory functions and promote M2 
polarization, which has the prospect of becoming a novel 
therapeutic approach in AD (Labandeiragarcia et al. 2017). 
Oh et al. injected sRAGE-secreting mesenchymal stem cells 
(sRAGE-MSCs), along with Aβ1-42, into the entorhinal 
cortices of male Sprague–Dawley rats. The results showed 
that sRAGE-MSCs significantly downregulated RAGE and 
RAGE- ligand expressions; simultaneously, the number of 
M2 microglia increased and the number of M1 microglia 
decreased. Consequently, sRAGE-MSC transplantation pro-
vided a neuroprotective effect in Aβ1-42-treated rat brains. 
These observations suggest that RAGE signalling is involved 
in microglial polarization in AD (Oh et al. 2017). Glati-
ramer acetate (GA) is commonly used in the treatment of 
multiple sclerosis, and has been reported to alter the inflam-
matory environment by upregulating IL-4 and recruiting 
Th2 T cells to the CNS. GA administration accelerates Aβ 
clearance and switches microglial phenotypes, similar to 
those of treatments with IL-4, by activating IGF-1 signal-
ling (Butovsky et al. 2006; 2007). This study indicated the 
potential regulatory effect of IGF-1 signalling in microglial 
polarization in AD. Cytokines also exert crucial effects in 
microglial-phenotypic modulation. Interleukin-4, the pro-
totypic M2-inducing cytokine, reduces Aβ production and 
improves cognitive ability in an AD model (Kiyota et al. 
2010). Furthermore, as a potent anti-inflammatory cytokine, Ta

bl
e 

2 
 (c

on
tin

ue
d)

D
ru

g/
ag

en
t

C
on

ce
nt

ra
tio

n
M

ec
ha

ni
sm

Re
fe

re
nc

es
Eff

ec
ts

D
ef

er
ox

am
in

e
10

 m
g/

m
l, 

i.p
, t

w
ic

e 
a 

da
y,

 fo
r 7

 d
 a

ys
A

nt
ia

po
pt

ot
ic

 a
ge

nt
Zh

an
g 

et
 a

l. 
(2

01
7)

A
m

el
io

ra
te

d 
co

gn
iti

ve
 fu

nc
tio

n 
an

d 
de

po
si

tio
n 

of
 A

p,
 in

du
ce

d 
M

2 
ac

tiv
at

io
n 

of
 m

ic
ro

gl
ia

 a
nd

 in
hi

bi
te

d 
M

l a
ct

iv
at

io
n 

of
 m

ic
ro

gl
ia

 in
 th

e 
hi

p-
po

ca
m

pu
s o

f A
PP

/P
S1

 m
ic

e

sR
AG

E 
a 

so
lu

bl
e 

fo
rm

 o
f r

ec
ep

to
r f

or
 a

dv
an

ce
d 

gl
yc

at
io

n 
en

d-
pr

od
uc

ts
 se

cr
et

in
g 

m
es

en
ch

ym
al

 st
em

 c
el

ls
, L

AR
 le

uk
oc

yt
e 

co
m

m
on

 a
nt

ig
en

-r
el

at
ed

, P
TP

σ 
pr

ot
ei

n 
ty

ro
si

ne
 p

ho
sp

ha
ta

se
-s

ig
m

a



106 K. Yao, H. Zu 

1 3

TGF-β polarizes microglia to the M2c phenotype, which 
consequently enhances microglial uptake of Aβ (Tichauer 
and von Bernhardi 2012) and alleviates AD-related pathol-
ogy (Wyss-Coray et al. 2001; Tesseur et al. 2006). Inter-
estingly, another in vivo study reported that deferoxamine 
enhanced alternative M2 microglial activation and inhibited 
Aβ deposits in 12-month-old APP/PS1 mice. This result 
indicated the potential interaction between iron metabolism 
and microglial polarization in AD (Zhang and He 2017). 
Among the MAPKs, JNK is one of the most important 
microglial inflammatory modulators (Waetzig et al. 2005). 
In vivo treatment of the JNK inhibitor, SP600125, mark-
edly reduced Aβ production, neuroinflammatory responses, 
synaptic loss and cognitive impairment in a transgenic AD 
mouse model (Zhou et al. 2015). In rats with CCH, Jiang 
et al. (2017) found that physical exercise improved cognitive 
function, alleviated myelin injury, shifted microglia polari-
zation to M2 and reduced ERK and JNK phosphorylation. 
In cultured primary microglial cells, treatment with exena-
tide, a GLP-1 receptor agonist, stimulated the expression 
of M2 markers (e.g., Arg 1, CD206 and IL-4). The effect 
was blocked by the p38 MAPK inhibitor, SB203580, and 
the gene silencer, siRNA/p38β, indicating that p38/MAPK 
signalling is strongly associated with exenatide-induced 
microglial polarization (Wu et al. 2018) (Fig. 1).

Conclusions

Microglia-mediated neuroinflammation plays a crucial 
role in the onset and development of AD. During the pro-
cession of AD, the dysfunction of M2 microglia and the 
excessive activation of M1 microglia promote inflamma-
tory injury and pathological damage. Furthermore, many 
studies have demonstrated that modulation of microglial 
polarization from the M1 to the M2 phenotype amelio-
rates neuroinflammatory responses, Aβ deposits and tau 
hyperphosphorylation in AD. Hence, modulation of micro-
glial phenotypes may represent a promising therapeutic 
approach for the treatment of AD. Importantly, several 
signalling pathways—such as AMPK, mTOR, ROCK, 
NF-κB, NOTCH and GSK3—may be critically involved 
in microglial polarization in AD. However, the underlying 
mechanisms of microglial polarization in AD are still not 
well understood, and future experiments are required for 
their further elucidations.
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