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Acacetin attenuates mice endotoxin-induced acute lung injury
via augmentation of heme oxygenase-1 activity
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Abstract Acacetin, a natural product, has a wide spectrum

of biological activities such as antioxidant properties. In

the present study, we examined whether Acacetin has any

beneficial role on lipopolysaccharide (LPS)-induced acute

lung injury (ALI) and, if so, whether its effect is mediated

via heme oxygenase-1 (HO-1), an antioxidant enzyme

playing an important role in ALI. Male BALB/c mice were

stimulated with LPS intratracheal instillation to induce

ALI. Acacetin was administrated 2 h after LPS challenge.

Samples were harvested 10 h after LPS administration. We

demonstrated that LPS challenge significantly induced lung

histological alterations such as inflammation and edema.

Acacetin administration notably attenuated these changes

and reduced tumor necrosis factor-a and interleukin-1b in

lung tissues. The LPS-induced reactive oxygen species

generation was markedly suppressed by Acacetin. Fur-

thermore, Acacetin treatment significantly elevated

pulmonary HO-1 and nuclear factor erythroid-2-related

factor 2 (Nrf2) activities. However, the beneficial action of

Acacetin was markedly abolished when pretreated with

zinc protoporphyrin, an inhibitor of HO-1. In in vitro

studies, Acacetin notably increased the HO-1 expression in

pulmonary microvascular endothelial cells. During

knockdown of Nrf2 by siRNA, the effect of Acacetin on

HO-1 expression was significantly reversed. Acacetin

attenuates LPS-induced ALI in mice. This protective effect

of Acacetin may be mediated, in part, through an HO-1-

dependent pathway.

Keywords Acacetin � Acute lung injury �
Heme oxygenase-1

Introduction

Acute respiratory distress syndrome (ARDS), a common

complication of sepsis, is a severe health problem with an

extremely high morbidity and mortality (Sweeney and

McAuley 2016). Similar to sepsis (Gotts and Matthay

2016; Tao et al. 2016a; van der Poll et al. 2017), although

great progress has been made in understanding the mech-

anism of ARDS, effective treatments for it are desirable

(Sweeney and McAuley 2016). Animal models of acute

lung injury (ALI) are widely used to investigate patho-

genesis and treatment of ARDS (Tao et al. 2012a, b; Wu

et al. 2015).

Anti-oxidant enzymes are critical in protecting the lung

against oxidative stress (Maines 1988; Tao et al. 2012b).

Heme oxygenase (HO) is a ubiquitous heme-degrading

enzyme which catalyzes the rate-limiting step in the

oxidative degradation of heme to biliverdin (Tenhunen

et al. 1969). HO-1, an isoform of HO, is highly inducible

(Maines 1988). Under oxidative stress, the expression of

HO-1 is upregulated (Maines 1988). HO-1 knockout mice

are associated with severe lung injury compared with wild-

type (Constantin et al. 2012). Induction of HO-1 by phar-

macology agents is protection from ALI in a number of

animal studies (Chi et al. 2016; Takashima et al. 2014).

Acacetin (5,7-dihydroxy-40-methoxyflavone), a flavo-

noid isolated from Agastache rugosa, is known to exert a

wide spectrum of biological activities such as anti-inflam-

matory and antioxidant properties (Cho et al. 2014; Ha

et al. 2012; Tanigawa et al. 2013). Acacetin suppressed
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tumor necrosis factor (TNF)-a-induced phosphorylation of

p38 mitogen-activated protein kinases and activation of

nuclear factor (NF)-jB in human umbilical vein endothe-

lial cells (Tanigawa et al. 2013). In a mouse study, D-

galactosamine/LPS-induced liver injury was reduced by

Acacetin via a mechanism involving suppression of toll-

like receptor 4 signaling (Cho et al. 2014). The anti-in-

flammatory properties of Acacetin may play a beneficial

effect on ALI. Recent study reported that Acacetin pre-

vented rat cardiomyocyte ischemia/reperfusion-induced

reduction of anti-oxidative proteins superoxide dismutas-2

and thioredoxin (Liu et al. 2016). Hypoxia/reoxygenation-

induced neonatal cardiomyocyte injury was protected by

Acacetin via reduction of lipid peroxidation and enhance-

ment of antioxidant activity (Yang et al. 2014). These

results suggest the potential antioxidant features of Aca-

cetin. However, the underlying mechanisms are yet to be

elucidated. In the current study, we hypothesized that

Acacetin dampens LPS-induced ALI via an HO-1 depen-

dent pathway.

Methods

Reagents

Acacetin (molecular weight: 284.26 g/mol, Fig. 1a), LPS

(Escherichia coli serotype O111:B4), zinc protopor-

phyrin (ZnPP), 2-hydroxypropyl-b-cyclodextrin (HBC),

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbro-

mide (MTT), and Trizol reagent were products of Sigma

(St. Louis, MO, USA). TNF-a and interleukin (IL)-1b
enzyme-linked immunosorbent assay (ELISA) kit,

dimethyl sulfoxide (DMSO), and phosphate-buffered

saline (PBS) were purchased from R&D Systems Inc

(Minneapolis, MN, USA). TransAMTM Nuclear factor

erythroid-2-related factor 2 (Nrf2) kit and Lipofectamine

2000 were purchased from Active Motif (Carlsbad, CA,

USA). Horseradish peroxidase-linked anti-rabbit IgG and

anti-b-actin were purchased from Cell Signaling Tech-

nology (Danvers, MA, USA). Anti-HO-1 and anti-Nrf2

antibody were products of Abcam (Cambridge, MA,

USA). Dulbecco’s Modified Eagle’s Medium (DMEM),

Fig. 1 Male BALB/c mice were administrated with Acacetin 2 h

after lipopolysaccharide (LPS) or equivalent sterilized phosphate-

buffered saline (PBS) challenged. Samples were collected 10 h after

LPS or PBS challenge. a Chemical structures of Acacetin. b Pul-

monary histological images: control (PBS ? vehicle-treated group)

(1); LPS ? vehicle-treated group (2); zinc protoporphyrin

(ZnPP) ? LPS ? Acacetin-treated group (3); LPS ? Acacetin-

treated group (4). Original magnification: 9400. c Lung injury

scores. d The lung wet to dry weight (W/D) ratio, and e myeloper-

oxidase (MPO) activity in lung tissues. Results are shown as the

mean ± SD (n = 6–10 per group). Scale bars, 10 lm. *P\ 0.05

when compared with control group; �P\ 0.05 when compared with

LPS ? vehicle group; #P\ 0.05 when compared with LPS ? Aca-

cetin group
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penicillin, and streptomycin (10,000 U/ml) were pur-

chased from GIBCO (Grand Island, NY, USA). Lipid

hydroperoxide assay kit was product of Cayman Chem-

ical (Ann Arbor, USA). Nuclear/Cytosol Extraction kit

was product of BioVision (Mountain View, CA, USA).

Small interfering RNA (siRNA)-Nrf2, siRNA-HO-1, and

siRNA-negative control were products of Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Anti-TATA box

binding protein (TBP) antibodies were products of

Abcam (Cambridge, UK). Fluorescent probe dihy-

droethidium (DHE) and carboxy-

dichlorodihydrofluorescein (H2DCFDA) were products

of Thermo Fisher Scientific (Waltham, MA, USA).

Animals and experimental protocol

The Institutional Animal Care and Use Committee of

General Hospital of Chinese People’s Liberation Army

approved all mouse protocols at April 20, 2016 (no.

2016-X1-56). Healthy male BALB/c mice (8–12 weeks

old) were purchased from General Hospital of Chinese

People’s Liberation Army. The animals were housed in a

temperature-controlled (23 ± 0.5 �C) room. Mice were

maintained on a 12 h light/12 h dark cycle. All animals had

access to food and water ad libitum.

The mice were randomly assigned to five groups

(n = 10): control (PBS ? vehicle-treated group), PBS ?

Acacetin-treated group, LPS ? vehicle-treated group,

LPS ? Acacetin-treated group, and ZnPP ? LPS ? Aca-

cetin-treated group. Mice were anesthetized by an

intraperitoneal injection of ketamine/xylazine mixture.

50 ll of LPS intratracheal instillation was performed to

induce ALI as described previously (Lin et al. 2011).

Before use, LPS was dissolved in PBS at 10 mg/ml. For

control and PBS ? Acacetin group, equivalent PBS was

administrated. Two hours after LPS or PBS administration,

Acacetin (50 mg/kg) intraperitoneal injection was per-

formed. The dose of Acacetin selected in the present study

was based on our preliminary study (data not shown).

Acacetin was dissolved in 5% DMSO to the concentration

of 20 mg/ml before use. Equivalent DMSO was used as

vehicle. ZnPP is an effective inhibitor of HO-1. ZnPP

(5 mg/kg) was administered intraperitoneally 30 min

before Acacetin treatment. The dose of ZnPP was deter-

mined according to a previous study (Xiong et al. 2017).

Mice were killed by cervical dislocation and exsanguinated

by cutting the vena cava inferior at 10 h after LPS or PBS

treatment.

Histological examination

For immediate fixation, formalin was instilled through the

right primary bronchi, and then the lung tissue specimen

was submerged in formalin. After being washed in fresh

PBS, the fixed tissue specimens were dehydrated in alco-

hol, cleared and embedded in paraffin and then cut into

5 lm thick sections, floated on warm water, and transferred

to glass slides and mounted. The sections were stained with

hematoxylin and eosin (H&E) after deparaffinization by

routine methods. Histological examinations were per-

formed by light microscopy and graded by two blinded

examiners based on the following histological features:

edema, neutrophil infiltration, intraalveolar hemorrhage,

and congestion, each with a score of 0–3 (0, absent; 1,

mild; 2, moderate; 3, severe). We calculated a total score

for each animal (Bachofen and Weibel 1982).

Lung wet to dry (W/D) weight ratio

The lung was harvested and weighed. Then, the lung was

placed in an oven at 80 �C for 48 to obtain the dry weight.

TheW/D ratio was measured to evaluate pulmonary edema.

Myeloperoxidase (MPO) activity

and proinflammatory cytokine measurements

MPO activity in lung tissues was measured as described

previously (Zhu et al. 2013). The concentrations of TNF-a
and IL-1b in the lung tissues and pulmonary microvascular

endothelial cells (PMVECs) were measured by ELISA

according to the manufacturer’s instructions.

Cell culture and cell viability

We isolated PMVECs using a method described previously

(Cheng et al. 2007). Briefly, the lung from male BALB/c

mice was used to isolate PMVECs. The lung was extracted,

minced, and digested. The PMVECs were harvested by

immunoselection using an anti-CD31 antibody (Boster,

Wuhan, China). PMVECs were cultured in Dulbecco’s

modified Eagle’s medium (containing 10% fetal bovine

serum, 100 U/ml penicillin, and 100 lg/ml streptomycin)

at 37 �C in a humidified incubator with 5% CO2.

Cell viability was determined using the MTT assay after

10 h of treatment with various concentrations of Acacetin.

Briefly, PMVECs were seeded at a density of 5 9 103

cells/well into 96-well plates and treated with or without

Acacetin (0–100 lM) for 10 h. Subsequently, 10 ll of

5 mg/ml MTT solution was added and further incubated

for 4 h to form formazan crystals. Then, 100 ll of DMSO

was transferred into each well to dissolve the formazan

crystals, and results were measured using a microplate

reader (Biotek, Winooski, VT, USA) at an absorbance of

570 nm. The IC50 values were obtained from the MTT

viability growth curve.
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Cell siRNA transfection

PMVECs were transfected with siRNA-Nrf2, siRNA-HO-

1, or siRNA-negative control with Lipofectamine 2000

according to the manufacturer’s instructions. The effects of

siRNA on Nrf2 expression was detected by western blot

analysis.

Cell stimulation experiments

PMVECs were stimulated with 10 lg/ml LPS or equivalent

sterilized PBS. LPS was dissolved in PBS before use.

Thirty min. after LPS or PBS stimulation, the cells were

treated with 50 lM Acacetin.

Real-time reverse transcriptase-polymerase chain

reaction (RT-PCR) analysis

The RT-PCR analysis was used to investigate the effect of

Acacetin on HO-1 expression. Briefly, total RNA was

extracted by using Trizol reagent according to the manu-

facturer’s instructions, and the RNA concentration was

detected by using a spectrophotometer (Thermo Fisher,

Boston, MA, USA). 0.5 lg sample of total RNA was

converted to cDNA and Real-time PCR was performed

with PrimeScriptTM RT reagent kit. The forward (F) and

the reverse (R) primers for HO-1 were (F) 50-AAGCC-
GAGAATGCTGAGTTCA and (R) 50-GCCGTGTAGATA
TGGTACAAGGA, respectively, and for b-actin were

(F) 50-AGCCATGTACGTAGCCATCC and (R) 50-
CTCTCAGCTGTGGTGGTGAA, respectively. b-Actin
was used as internal control to evaluate relative expressions

of HO-1.

Western blotting analysis

Western immunoblotting was used to assess protein levels

of HO-1 and Nrf2. Briefly, cytoplasmic and nuclear pro-

teins were extracted by a nuclear/cytosol extraction kit

according to the manufacturer’s instructions. The extracted

proteins (50 lg) were subjected to SDS–polyacrylamide

gels (PAGE) and transferred to polyvinylidene fluoride

membranes. The membranes were blocked by incubation in

TBST [0.1% Tween 20, 10 mM Tris–HCl (pH 7.5),

150 mM NaCl] containing 5% nonfat milk for 1 h at room

temperature. Then, blots in the membranes were incubated

with primary antibodies specific to HO-1 (diluted 1:5000)

or anti-Nrf2 antibody (diluted 1:5000) at 4 �C overnight.

An anti-b-actin antibody (diluted 1:10,000) was used as

control. The blots were washed in TBST five times for

10 min. Blots were then incubated with horseradish per-

oxidase-linked anti-rabbit IgG for 1 h at room temperature.

Bands were developed using Super Signal West Pico

Chemiluminescent Substrate (Pierce, Woburn, MA, USA)

according to the manufacturer’s instructions. Then, the

bands were analyzed using Image J software (National

Institutes of Health, Bethesda, MD, USA).

HO-1 and Nrf2 activity analysis

The HO-1 activity in lung tissues was measured as previ-

ously described (Ryter et al. 2000). The absorbance of the

sample was measured by spectrophotometer at 530 nm.

The nuclear extractions from lung tissues were used for

measuring Nrf2 binding activity to immobilized antioxi-

dant response elements (ARE) using a TransAMTM Nrf2

kit according to the manufacturer’s instructions.

Reactive oxygen species (ROS) measurement

For animal studies, the ROS was determined by measuring

lipid hydroperoxide in lung tissues using a lipid

hydroperoxide assay kit according to the manufacturers’

manual.

For cell studies, ROS was measured by using DHE and

H2DCFDA probe according to the manufacturer’s

instructions. Fluorescence intensity was analyzed by flow

cytometry (ACEA NovoCyte, Hangzhou, China).

Statistical analysis

Statistical calculations were performed by using SPSS 17.0

for Windows software (IBM, Armonk, NY, USA). All data

are expressed as mean ± SD and analyzed with one-way

analysis of variance (ANOVA) followed by Bonferroni

t test. Differences between groups in histopathological

scores were tested using the Kruskal–Wallis one-way

analysis of variance on ranks and the Student–Newman–

Keuls method. The survival rate was estimated by the

Kaplan–Meier method and compared by log-rank test.

Statistically significance was accepted at P\ 0.05.

Results

Acacetin attenuates LPS-induced lung injury

Histological assessment revealed that LPS stimulated a

marked influx of inflammatory cells to the alveolar space,

hemorrhage, and pulmonary edema (Fig. 1b). Administra-

tion of Acacetin attenuated these changes (Fig. 1b). Lung

injury score demonstrated that LPS-induced lung injury

was attenuated by Acacetin treatment (Fig. 1c). Moreover,

W/D, an indicator of lung edema, was markedly improved

by Acacetin treatment (Fig. 1d). MPO, an indicator of

neutrophil activation, was significantly inhibited by
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Acacetin treatment (Fig. 1e). However, these protective

effects of Acacetin were significantly abolished when

pretreated with ZnPP (Fig. 1). Ten hours after LPS chal-

lenge, animals in vehicle-treated group were weak, less

eating and drinking compared with Acacetin treated group.

Four mice died in vehicle-treated group, and no animal

died in Acacetin treated group (P\ 0.05). Four mice died

in ZnPP ? Acacetin-treated group. These results suggest

that Acacetin significantly reduced LPS-induced ALI and

mortality.

Acacetin inhibits LPS-induced ROS production

In animal studies, the LPS-induced ROS generation in lung

tissues was significantly attenuated by Acacetin treatment

(Fig. 2a). However, the antioxidant effect of Acacetin was

significantly abolished when pretreated with ZnPP

(Fig. 2a).

In cell studies, Acacetin markedly inhibited LPS-in-

duced ROS generation (Table 1). However, this protective

effect of Acacetin was dampened in siRNA-HO-1 trans-

fected cells (Table 1).

Acacetin attenuates inflammatory mediators

We measured inflammatory mediators to evaluate the anti-

inflammatory property of Acacetin. Ten hours after LPS

stimulation, TNF-a and IL-1b were significantly increased

(Fig. 2b, c). Acacetin treatment notably decreased the LPS-

induced TNF-a and IL-1b elevation in pulmonary tissues

(Fig. 2b, c). However, the anti-inflammatory action of

Acacetin was markedly dampened when pretreated with

ZnPP (Fig. 2b, c). In cell studies, the LPS-induced IL-1b
and TNF-a elevation were significantly reduced by Aca-

cetin (Table 1). However, the effect of Acacetin on

inhibition of IL-1b and TNF-a was significantly reversed in

siRNA-HO-1 transfected cells (Table 1).

Acacetin enhances HO-1 and Nrf2 activity

HO-1 and Nrf2 are critical in protecting the lung against

oxidative stress. Our animal studies’ results have shown

that the activity of Nrf2 and HO-1 was significantly

increased in Acacetin-treated animals compared with

vehicle-treated group (Fig. 2d, e). This result suggests the

potential antioxidant feature of Acacetin in in vivo.

Fig. 2 Male BALB/c mice were administrated with Acacetin 2 h

after lipopolysaccharide (LPS) or equivalent sterilized phosphate-

buffered saline (PBS) challenge. Samples were collected 10 h after

LPS or PBS challenge. Alterations of lipid hydroperoxide (a), tumor

necrosis factor (TNF)-a (b), interleukin-1b (c), nuclear factor

erythroid-2-related factor 2 (Nrf2) (d), and heme oxygenase (HO)-1

activity (e) in lung tissues. Results are shown as the mean ± SD

(n = 6–10 per group). ZnPP zinc protoporphyrin. *P\ 0.05 when

compared with control group; �P\ 0.05 when compared with

LPS ? vehicle group; #P\ 0.05 when compared with LPS ? Aca-

cetin group
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Acacetin enhances HO-1 expression in PMVECs

As shown in Fig. 3a, Acacetin did not show any significant

cellular toxicity up to 100 lM (25, 50, 100 lM). We used

50 lM Acacetin in our in vitro study. Acacetin signifi-

cantly induced HO-1 expression both in mRNA and protein

levels in PMVECs (Fig. 3b). This effect was markedly

enhanced when the cells were stimulated with LPS

(Fig. 3b).

Acacetin augments Nrf2-regulated HO-1 expression

Cell studies were performed to investigate whether the

Acacetin-triggered upregulation of HO-1 was through Nrf2

signaling pathway. Nrf2 was knockdown by siRNA in

PMVECs (Fig. 3c). Acacetin significantly increased Nrf2

expression in PMVECs simulated with LPS (Fig. 3d). As

shown in Fig. 3b, Acacetin treatment failed to induce an

upregulation of HO-1 in siRNA-Nrf2 transfected cells.

This result indicated the Acacetin induced HO-1 was Nrf2

dependent.

Discussion

ARDS is characterized by diffuse alveolar infiltration with

inflammatory cells, hemorrhage, pulmonary edema, and

hyaline membrane formation (Sweeney and McAuley

2016; Wheeler and Bernard 2007). These histological

changes lead to impaired gas exchange and acute respira-

tory failure (Bachofen and Weibel 1982; Sweeney and

McAuley 2016). In the current study, our results demon-

strate that Acacetin reduces LPS-induced pulmonary

inflammation and edema. Furthermore, our results also

suggest that the beneficial effect of Acacetin may, in part,

mediate via HO-1-dependent pathway.

Multiple reports confirmed that HO-1 was considered as

one of the most important regulators in oxidative stress

(Agarwal and Bolisetty 2013; Gozzelino et al. 2010). The

protective effects of HO-1 are considered correlated with

its ability to decrease harmful heme and to produce the

cytoprotective carbon monoxide (CO) and bilirubin (Bar-

anano et al. 2002; Otterbein et al. 2000). CO is a by-

product produced by HO during the procedure that cat-

alyzes the degradation of heme to biliverdin (Tenhunen

et al. 1969). CO can act as an anti-inflammatory effector in

mouse models of lung injury through the downregulation of

pro-inflammatory cytokine production (Joe et al. 2015).

Kim et al. (2017) reported that IL-10-dependent upregu-

lation of pyrin expression is involved in the anti-

inflammatory effects of CO. HO-1/CO system ameliorated

endotoxin-induced lung injury by modulating the imbal-

ance of the dynamic mitochondrial fusion/fission process

(Yu et al. 2016a). Consistent with previous studies (Yu

et al. 2016b), HO-1 was upregulated as a response to

relieve LPS stimulation in the current study. Acacetin

significantly further elevated HO-1 expression and activity

both in vivo and in vitro. And the ROS generation was

markedly reduced in Acacetin-treated group. When pre-

treated with ZnPP, a HO-1 inhibitor, the antioxidant feature

of Acacetin was markedly abolished. These results suggest

that Acacetin has antioxidant feature and its antioxidant

effect may mainly depend on a HO-1-dependent manner.

Nrf2 has been shown to regulate expression of HO-1 (Na

and Surh 2014). As a redox-sensitive transcription factor,

Nrf2 mediates basal and induced transcription of phase II

antioxidant proteins and is critical in protecting the lung

against oxidative stress (Kobayashi et al. 2004; Zhao et al.

2017). Acacetin has antioxidant feature (Yang et al. 2014).

However, its mechanism is not well defined. Our results

showed that Acacetin activated Nrf2 directly. Nrf2 could

be activated by downregulating Keap1 or phosphorylation

of Nrf2 at Ser40 (Huang et al. 2002; Zhao et al. 2017).

Confirmatory studies of potential mechanisms that

involved in Acacetin’s effects on activation of Nrf2 are

required. In the present study, we investigate whether the

Acacetin-triggered upregulation of HO-1 was Nrf2

dependent. Our in vitro study suggests Nrf2 signaling

Table 1 Alterations of reactive oxygen species (ROS), tumor necrosis factor (TNF)-a, and interleukin (IL)-1b in pulmonary microvascular

endothelial cells

Control PBS ? Acacetin LPS ? vehicle LPS ? Acacetin siRNA-HO-1 ? LPS ? Acacetin

ROS 125.47 ± 1.91 108.26 ± 3.57 413.25 ± 5.39* 212.33 ± 3.06*,� 344.52 ± 2.29*,��

TNF-a (pg/ml) 114 ± 2.11 105 ± 1.74 2317 ± 54.87* 1324 ± 15.39*,� 1981 ± 37.58*,��

IL-1b (pg/ml) 240 ± 1.38 232 ± 1.84 846 ± 18.06* 355 ± 8.25*,� 681 ± 15.08*,��

PBS phosphate-buffered saline, LPS lipopolysaccharide, (HO)-1 heme oxygenase-1, siRNA small interfering RNA

*P\ 0.05 when compared with control group (PBS ? vehicle)
�P\ 0.05 when compared with LPS ? vehicle group
��P\ 0.05 when compared with LPS ? Acacetin group
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pathway playing a key role in Acacetin induced HO-1

expression.

Acacetin shows anti-inflammatory pharmacological

values (Carballo-Villalobos et al. 2014; Cho et al. 2014; Ha

et al. 2012; Liu et al. 2016; Tanigawa et al. 2013). Huang

et al. found that Acacetin reduced IL-6 and TNF-a in

OVA-sensitized asthmatic mice (Huang and Liou 2012).

Proinflammatory mediators are known to play an important

effect in the pathogenesis of inflammatory disorders. IL-1b
has a key role in the development of ALI (Ganter et al.

2008). Qiu et al. (2013) reported that anti-TNF therapy is

associated with modest but significant decrease in mortality

in patients with sepsis, based on the results of their meta-

analysis. These results suggest that inhibition of proin-

flammatory mediators may contribute to a beneficial effect

on inflammatory disorders. In the current study, we

observed that Acacetin treatment markedly reduced LPS-

induced up-regulation of TNF-a and IL-1b both in vivo

and in vitro studies. Previous study has shown that induc-

tion of HO-1 is protective against IL-1b induced

inflammatory responses (Clerigues et al. 2012). Induction

of HO-1 decreases pro-inflammatory cytokines IL-1b and

TNF-a (Ma et al. 2007). Our in vitro studies show that the

effect of Acacetin on reduction of proinflammatory medi-

ators TNF-a and IL-1b was markedly dampened in siRNA-

HO-1 transfected PMVECs. These results suggest a

Fig. 3 a Cell viability. b Pulmonary microvascular endothelial cells

were stimulated with lipopolysaccharide (LPS) or equivalent steril-

ized phosphate-buffered saline (PBS). Thirty min after LPS or PBS

stimulation, 50 lM Acacetin was supplemented and treated for 10 h.

The mRNA expression of heme oxygenase (HO)-1 was analyzed by

real-time reverse transcriptase-polymerase chain reaction analysis.

HO-1 protein was analyzed by western blotting analysis. b-Actin was

used as internal controls. c Expression of nuclear factor erythroid-2-

related factor 2 (Nrf2) protein in cytoplasmic or nuclear in PMVECs

treated with small interfering RNA (siRNA)-Nrf2 or siRNA-negative

control. b-actin and TATA box binding protein (TBP) were used as

controls for cytoplasmic and nuclear proteins, respectively. d Effect

of Acacetin on Nrf2 expression was analyzed by western blotting

analysis. TBP was used as internal controls. Acacetin was dissolved in

dimethyl sulfoxide (DMSO) before use. Results are shown as the

mean ± SD of six independent experiments. *P\ 0.05 when com-

pared with control (PBS ? DMSO); �P\ 0.05 when compared with

LPS ? DMSO group; ��P\ 0.05 when compared with LPS ? Aca-

cetin group
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potential anti-inflammatory action of Acacetin may be

mediated through an HO-1-dependent pathway.

In the present study, although a high dosage of HO-1

inhibitor was used, the protective effect of Acacetin was

partially inhibited. This result suggests that other mecha-

nisms such as inhibition of NF-jB and toll-like receptor 4

signaling may be involved in the effect of Acacetin on

endotoxin-induced ALI (Cho et al. 2014; Tanigawa et al.

2013). Further study is still required to unveil the potential

mechanisms.

Conclusion

Acacetin attenuates LPS-induced ALI in mice. This pro-

tective effect of Acacetin may be mediated, in part, through

an HO-1-dependent pathway.
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