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Abstract Neuropathic pain is a debilitating disease which

affects central as well as peripheral nervous system.

Transient receptor potential (TRP) channels are ligand-

gated ion channels that detect physical and chemical

stimuli and promote painful sensations via nociceptor

activation. TRP channels have physiological role in the

mechanisms controlling several physiological responses

like temperature and mechanical sensations, response to

painful stimuli, taste, and pheromones. TRP channel family

involves six different TRPs (TRPV1, TRPV2, TRPV3,

TRPV4, TRPM8, and TRPA1) which are expressed in pain

sensing neurons and primary afferent nociceptors. They

function as transducers for mechanical, chemical, and

thermal stimuli into inward currents, an essential first step

for provoking pain sensations. TRP ion channels activated

by temperature (thermo TRPs) are important molecular

players in acute, inflammatory, and chronic pain states.

Different degree of heat activates four TRP channels

(TRPV1–4), while cold temperature ranging from affable

to painful activate two indistinctly related thermo TRP

channels (TRPM8 and TRPA1). Targeting primary afferent

nociceptive neurons containing TRP channels that play

pivotal role in revealing physical stimuli may be an

effective target for the development of successful phar-

macotherapeutics for clinical pain syndromes. In this

review, we highlighted the potential role of various TRP

channels in different types of neuropathic pain. We also

discussed the pharmacological activity of naturally and

synthetically originated TRP channel modulators for

pharmacotherapeutics of nociception and neuropathic pain.
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Introduction

Neuropathic pain (NP), according to the International

Association for the Study of Pain (IASP), is ‘‘pain initiated

or caused by a primary lesion or dysfunction in the nervous

system’’. Neuropathic pain is debilitating heterogeneous

consequence caused by destruction of nerves (in the central

or peripheral or somatosensory nervous system) (Treede

et al. 2008). Neuropathic pain can be inherent and usually

depicted as shooting, burning, or stabbing. Neuropathic

pain involves positive and negative sensory symptoms

concomitant in neuropathic pain (Baron 2006). Negative

symptoms comprise different somatosensory functional

deficits, such as tactile hypoesthesia or anesthesia, thermal

hypoesthesia, pinprick hypoalgesia, and loss of vibratory

sensation, are uncomfortable but not painful. Instinctive

positive symptoms are paroxysmal and ongoing superficial

pain, paresthesia, and dysesthesia, and stimulus evoked

positive symptoms include allodynia and hyperalgesia

(Baron 2006).

TRP channels are ion channel family members involved

in different physiological and pathological conditions, such

as neuropathic pain, pulmonary hypertension, asthma,

parkinsonism, and prostate cancer (Nilius et al. 2007).

These are of six different types, such as TRPV1, TRPV2,

TRPV3, TRPV4, TRPM8, and TRPA, which have been

expressed in primary afferent nociceptors and pain sensing

neurons, act as transducers for chemical, thermal, and
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mechanical stimuli (Clapham 2003; Corey 2003; Montell

et al. 2002). In this article, we discuss recent developments

associated with different types of TRP channels as poten-

tial targets for pharmatherapeutics of neuropathic pain.

TRP channels family

TRP channels were discovered in 1969 as mutant Droso-

phila photoreceptors (Cosens and Manning 1969). Process

of phototransduction in the fruit fly, Drosophila melano-

gaster, comprises membrane cation channels activation

leading to a depolarizing current. Activation of Drosophila

photoreceptors, i.e., light-sensitive G protein-coupled

receptor rhodopsin, results in the stimulation of phospho-

lipase C-b (PLC-b). The light-induced current resolving

components escorted to identification of a Drosophila

mutant exhibiting a transient LIC in response to light, in

comparison to the sustained LIC in wild-type flies, and

mutant strain was termed trp, for transient receptor

potential. Trp gene mutations headed to a disruption of a

Ca2? entry channel in the photoreceptors, representing that

TRP, the protein encoded by the trp gene, forms whole or

part of a Ca2? influx channel (Nilius et al. 2007). TRP

channels are Ca2?-permeable non-selective cation

channels.

Mammalian TRP channels are classified into different

subfamilies (as shown in Table 1): TRPC (canonical),

TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin),

TRPML (mucolipin), and TRPA (ankyrin) (Caterina 2007).

All TRP subunits have six transmembrane domains

(TMD), a pore-forming loop (between 5th and 6th trans-

membrane segments) and having widely varying

intracellularly located amino (N) and carboxyl (C) terminal

in length (Clapham 2003; Vriens et al. 2004a). Mammalian

TRP channels are with low-sequence homology, and have

different modes of activation (mechanical stimulation,

temperature, chemical compounds, osmolarity, lipids, light,

oxidative stress, acid, and pheromones), regulation (gly-

cosylation, transcription, phosphorylation, and alternative

splicing), broad tissue distribution (at least one member of

the family present virtually in all cells), ion selectivity, and

physiological functions (Levine and Alessandri-Haber

2007). After TRPV1 cloning, some other TRPs have been

depicted in dorsal root ganglia (DRG), such as TRPV2,

TRPV3, TRPV4, TRPA1, and TRPM8, which act as sen-

sory transducers and play an important role in the

generation of pain sensations evoked by thermal,

mechanical, and chemical stimuli. In Table 1, TRPV1,

TRPV2, TRPV3, and TRPM8 are thermoreceptors, and

TRPV4 and TRPA1 referred as mechanoreceptors, while

TRPV1, TRPV3, TRPM8, and TRPA1 are known as

chemoreceptors, respectively, receptive to capsaicin and

endocannabinoids, camphor, menthol, mustard, and cin-

namon oil (Bandell et al. 2004; Jordt et al. 2004).

TRPV1

TRPV1 is a polymodal receptor named as Vanilloid

receptor 1(VR1) whose invertebrate families are necessary

to sensory transduction (mechanosensation, osmosensation,

phototransduction, and thermosensation) and in mammals,

it is activated by heat and protons, and leads to the influx of

cations which depolarize the cell for action potential gen-

eration (Vriens et al. 2004a). TRPV1 was predominantly

found in a subpopulation of small-to-medium-diameter

neurons in dorsal root and trigeminal ganglia. TRPV1 plays

an amenable role in thermal and chemical hyperalgesia in a

model of diabetic neuropathy (Hong and Wiley 2005;

Kamei et al. 2001). They play role by altered cell-specific

expression like by decrease of TRPV1 protein expression

in C-fibers paralleled by an increase in A-fibers which

coupled to an increase in its function (reallocation of

channels to cell-surface plasma membrane and/or increase

of TRPV1 phosphorylation coupled to oligomerization and

impaired desensitization) (Levine and Alessandri-Haber

2007).

TRPV1 is activated by capsaicin, thermal heat

(C43 �C), low pH (\5.9) (Caterina et al. 2000; Tominaga

et al. 1998), camphor (Xu et al. 2005a), allicin

(Macpherson et al. 2005), nitric oxide (Yoshida et al.

2006), spider toxins (Siemens et al. 2006), vanilloids

(Caterina and Julius 2001), protons (Caterina and Julius

2001), and proalgesic substances (Julius and Basbaum

2001), and modulated and potentiated by extracellular

cations and ethanol, respectively. TRPV1 can be sensi-

tized and up-regulated during inflammation and injury. In

several conditions, TRPV1 activation demonstrated as

different models of pain like in inflammatory conditions

and temperature threshold of activation is reduced causing

the channel to be active at normal body temperatures.

TRPV1 sensitization depends on phosphorylation of

TRPV1 by protein kinase A (PKA) and protein kinase C

(PKC). TRPV1 activation-associated pain conditions are

inflammatory thermal hypersensitivity, acute thermal pain,

post-herpetic neuralgia, constriction-type nerve injury,

trigeminal neuralgia, diabetic peripheral neuropathy,

headache and cardiac pain, pain arising from GI diseases,

cluster, lung diseases, cancer pain, and migraine (Cor-

tright and Szallasi 2004; Premkumar 2010; Premkumar

and Sikand 2008; Szallasi 2006; Szallasi and Appendino

2004; Szallasi et al. 2007). TRPV1 channel is incrimi-

nated in a variety of human diseases, including

gastrointestinal reflex disease, osteoarthritis, inflammatory

disorders of the airways, and urinary bladder (Groneberg

et al. 2004; Matthews et al. 2004; Nilius et al. 2005).
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The contribution of TRPV1 in inflammatory, nocicep-

tive, and neuropathic pain created an interest in discovery

of specific vanilloid receptor antagonists. TRPV1 is

involved in heat evoked pain, thermal hyperalgesia, and

deep tissue pain in CNS and primary terminals of primary

afferents. TRPV1 can be activated by noxious heat and its

threshold temperature (C43 �C) lies close to sense as

painful for humans. TRPV1-null mice exhibited reduced

nocifensive responses to acute thermal stimuli arguing for

the role of TRPV1 in transducing thermal pain in vivo

(Caterina et al. 2000; Davis et al. 2000; Levine and

Alessandri-Haber 2007). TRPV1 is involved in the hyper-

algesia after the injection of inflammatory mediators, such

as bradykinin, adenosine triphosphate (ATP), nerve growth

factor (NGF), and protease (Caterina et al. 2000; Chuang

et al. 2001; Davis et al. 2000). TRPV1 acts as a crucial

molecular site of nociceptor sensitization where activity of

both a noxious stimuli (heat) and inflammatory mediators

is required for nociceptor activation. TRPV1 involves in

nociception in deep tissues, such as musculoskeletal and

visceral tissues. Deep tissues pathological conditions

mainly produce mechanical hyperalgesia rather than ther-

mal hyperalgesia, and a number of deep tissue pain models

have been shown the involvement of TRPV1 (Chung et al.

2011). TRPV1 is necessary for sensitization of afferent

fibers of mouse colon by inflammatory mediators (Jones

et al. 2005; Miranda et al. 2007; Ravnefjord et al. 2009).

TRPV1 plays a critical role in joint pain in an arthritis

model and increased number of sensory neurons expressing

TRPV1 has been found in rats after induction of arthritis

(Fernihough et al. 2005). TRPV1 is implicated in pain asso-

ciated with bone cancer and the movement-induced

nocifensive behaviour in bone cancer model is ameliorated by

specific TRPV1 antagonists (Niiyama et al. 2007). The num-

ber of TRPV1-expressing neurons in DRG was found to be

increased in experimental bone cancer. TRPV1 acts as a

transducer of thermal stimuli at the peripheral terminal of

primary afferents and also expression of TRPV1 has been

demonstrated in the spinal cord,mainly at the lamina I and II of

the superficial dorsal horn area (Guo et al. 1999; Valtschanoff

et al. 2001). TRPV1 is activated bycentral branches ofprimary

afferents to release excitatory amino-acid glutamate and pro-

duces excitatory synaptic transmission in superficial dorsal

horn (Pan and Pan 2004; Sikand and Premkumar 2007; Yang

et al. 1999, 1998). Strong correlation between therapeutic

efficacy andCNSpenetrability of TRPV1antagonists tells that

centrally located TRPV1 blockade is also involved in the anti-

nociceptive effects of TRPV1 antagonists.

TRPV2

TRPV2 was discovered as structural homologue of TRPV1

with 50 % amino-acid identity and originally named as

vanilloid receptor-like protein 1 (VR-L1) (Caterina et al.

1999). Higher temperature (*52 �C), 2-aminoethox-

yphenyl borate (2-APB) at higher dose, inflammation,

osmotic stimuli, and mechanical stretch are activators of

TRPV2, but it is insensitive to capsaicin (Caterina et al.

1999; Jordt et al. 2004; Muraki et al. 2003). The growth

factor (insulin-like growth factor-I) and PI3-kinase sig-

nalling pathways enhance TRPV2 activity. TRPV2 is

usually expressed in neuronal and non-neuronal cells, Ad
and Ab fibers of DRG, trigeminal ganglia (TG), and nodose

ganglion (NG) (Lewinter et al. 2004; Stokes et al. 2005;

Wainwright et al. 2004). The expression of TRPV2 in

neurons innervating the larynx, bladder, and intestine

suggests its role in sensory functions of internal organs

(Kashiba et al. 2004) and is activated by 2-aminoethoxy-

diphenylborate (2-APB) at higher concentration. TRPV2 is

expressed throughout the spinal cord, including laminae III

and IV, suggesting a role other than nociception (Caterina

and Julius 1999; Lewinter et al. 2004). TRPV2 has been

distributed in neurotropin-3-dependent subpopulation of

DRG neurons and its protein level release beyond the

normal level following inflammation and has ability to

hetromultimerize and ability to be activated by 2-APB

indicates its role in pain associated with inflammation and

neuropathy (Tamura et al. 2005). Fewer studies related to

pain that focuses on TRPV2 because of its very high heat

threshold as well as differential distribution.

TRPV3

TRPV3 shows 40–50 % homology with TRPV1 and is

activated by warm temperature (C34 �C). They are having

ability to show augmented responses to higher noxious

thermal stimuli and increased current following repetitive

heat stimulation (Peier et al. 2002b; Smith et al. 2002; Xu

et al. 2002). These are strongly activated and sensitized by

cloves, camphor, oregano, and irritants extracted from

thyme (Xu et al. 2006). Initially, TRPV3 exhibited to be

expressed only in keratinocytes, while some other studies

have also shown to be expressed in sensory neurons (Facer

et al. 2007). TRPV3 is found in TG, DRG, and NG neurons,

keratinocytes, and certain regions of the brain and have a

role in thermoregulation (Moqrich et al. 2005). It is sug-

gested that TRPV1 and TRPV3 receptors act as a potential

therapeutic target for the treatment of pain and

inflammation.

TRPV4

TRPV4 is mechano/osmosensitive channel expressed in

many cell types, including sensory neurons and a polymodal

receptor involved in nociception and activated by low pH,

shear stress, hypotonicity, diacylglycerol (DAG), innocuous

308 L. Marwaha et al.
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heat with threshold[27 �C, citrate, endocannabinoids, and
nitric oxide (Guler et al. 2002; Watanabe et al. 2002). These

are mainly present in cochlear hair cells, sensory ganglia

(Guler et al. 2002), as well as in cutaneous A and C-fiber

terminals and free nerve endings, and suggested a role in

mechano-transduction, beyond osmosensation. OSM-9, a

homologue of the C. elegans osmosensory channel,

expressed in cochlear hair cells, sensory neurons, vascular

smooth muscle cells, hypothalamus, trachea, kidney, ker-

atinocytes, and endothelial cells (Strotmann et al. 2000).

Mice lacking functional TRPV4 show normal response to

low-threshold mechanical stimuli and noxious heat (Vriens

et al. 2004b). Agonists of TRPV4 promote the liberation of

the neuropeptides like substance P and calcitonin gene-re-

lated peptide (CGRP) from the central projections of

primary afferents in the spinal cord. These studies suggest a

role of TRPV4 in detection of warm temperature, nocicep-

tion, and chemically induced hyperalgesia (Grant et al.

2007; Todaka et al. 2004). In TRPV4 knockout mice, the

sensitivity of tail to pressure and acidic nociception is

diminished as compared with wild-type mice (Suzuki et al.

2003). TRPV4 channels can also act as target for treatment

of nociceptive and neuropathic pain.

TRPA1

TRPVA1 is new TRP subfamily member, characterized by

the presence of a large number of ankyrin repeat motifs

located on the cytosolic amino terminal domain (TRPAn-

kyrin) (Story et al. 2003), was identified as a protein

overexpressed in liposarcoma cell lines (ANKTM1)

(Jaquemar et al. 1999). TRPA1 is expressed in the inner ear,

lung fibroblast, trigeminal and DRG neurons, motor neu-

rons, postganglionic sympathetic neurons, and neurons of

the intestinal myenteric plexus (Corey et al. 2004; Munns

et al. 2007; Poole et al. 2011; Smith et al. 2004). TRPVA1

activation by physical stimuli, such as noxious cold

(\18 �C) temperatures, mechanical force (Story et al. 2003),

by garlic, mustard oil, wintergreen oil, ginger, clove oil, and

cinnamon oil leads to induction of acute painful burning or

pricking sensation (Bandell et al. 2004; Jordt et al. 2004;

Macpherson et al. 2005). It acts as sensor for mechanical

stimuli and plays a role in mechanical nociception because

of its Drosophila homologue (Xu et al. 2005a). Its

involvement in cold allodynia and mechanical hyperalgesia

is reported in different behavioural models (Baron 2006;

Katsura et al. 2006; Obata et al. 2005) that suggest TRPVA1

as good target for neuropathic pain treatment.

TRPC3 and TRPC6

TRP channel expression in human monocytes is affected

by high glucose-induced oxidative stress. TRPC3 and

TRPC6 protein expression was enhanced by increased

1-oleoyl-2-acetyl-sn-glycerol induced Ca2? influx, which

was blocked by the TRPC channel inhibitor, i.e.,

2-aminoethoxydiphenylborane (2-APB) (Wuensch et al.

2010). These may also be act as potential targets for

treatment of diabetic neuropathy.

TRPM5, TRPM6, and TRPM7

TRPM5 are present in taste bud tissues and papillae.

TRPM6 and TRPM7 supposed to involve in type-2 dia-

betes mellitus because of their gene variation (Romero

et al. 2010). TRPM7 gene variation could play a role in the

risk of ischemic stroke.

TRPM8

TRPM8, a cold-sensitive receptor, is known as cold and

methanol-activated channel with voltage-dependent gating

properties (McKemy et al. 2002; Peier et al. 2002a). It is

thermally regulated channel activated in vitro by neurons

originating from both TG and DRG (Dhaka et al. 2008). It

may be involved in cold-evoked nocifensive responses

under temperatures ranging from innocuous cold

(26–15 �C) to noxious cold (\15 �C) (McKemy et al.

2002) and by various other chemicals, including eucalyp-

tol, menthone, spearmint, and icilin (Peier et al. 2002a;

Tominaga and Caterina 2004). TRPM8 is expressed in a

subpopulation of primary afferent sensory pathological

conditions. In a chronic constriction injury (CCI) model,

the percentage of sensory neurons expressing TRPM8-like

immunoreactivity is increased (Xing et al. 2007).TRPM8 is

a good target for treatment of cold allodynia, a common

feature of neuropathic pain.

TRP channels in neuropathic pain

TRPV1

TRPV1 channels are prominently associated with neuro-

pathic pain as shown by experimental evidences.

Desensitization or amputations of TRPV1-positive sensory

nerve endings exhibit analgesic effect and make it potential

therapeutic target in treatment of neuropathic pain (Haan-

paa and Treede 2012; Moran et al. 2011). TRPV1 exhibits

Ca2?-dependent desensitization mediated by calmodulin

(CaM) which directly binds with calmodulin-binding sites

present on several TRP channels (Lambers et al. 2004).

TRPV1 shows its expression and function in sensory gan-

glia in neuropathic pain. Spinal nerve ligation (SNL)-

induced nerve injury increases the proportion of TRPV1-

expressing IB4-positive DRG neurons and improves
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TRPV1 function, resulting in persistent thermal hyperal-

gesia (Vilceanu et al. 2010). After sciatic nerve transection

in rats, TRPV1 at the central terminals of primary afferent

neurons in the spinal cord is up-regulated, and augment

release of inflammatory neuropeptides like CGRP (calci-

tonin gene-related peptide), substance P from the

presynaptic central terminals along with enhanced gluta-

matergic neurotransmission, is involved in the neuropathic

pain (Kanai et al. 2005; Lappin et al. 2006; Lee and Kim

2007; Spicarova et al. 2011). Activity of TRPV1 enhanced

in neuropathic pain, and administration of selective TRPV1

inhibitors allays SNL-induced hyperalgesia and mechanical

allodynia (Jhaveri et al. 2005; Urano et al. 2012; Vilceanu

et al. 2010; Watabiki et al. 2011).

TRPA1 and TRPM8

TRPA1 and TRPM8 proposed to act as a cold transducer

and deliberated as a major candidate for mediating cold

allodynia, common feature of neuropathic pain (del

Camino et al. 2010; Ji et al. 2008; Knowlton et al. 2011;

Obata et al. 2005). TRPA1 function inhibition peculiarly

diminishes cold allodynia induced in chronic constriction

injury (CCI)-induced neuropathy model of neuropathic

pain Chen et al. 2011). Both TRPV1 and TRPA1 are

involved in chemotherapy-induced peripheral neuropathy

and neuropathic pain. Inhibition of TRPA1 function erad-

icates both mechanical and cold allodynia induced by

cisplatin and oxaliplatin, most commonly used

chemotherapeutic agents (Baron 2009; Brederson et al.

2013; Nassini et al. 2011; Zhao et al. 2012). Neuropathy

induced by paclitaxel chemotherapy is reported to elicit the

release of mast cell tryptase to activate protease-activated

receptor 2 (PAR2), which sensitizes TRPV1, TRPV4, and

TRPA1 through PLC, PKC, and PKA signalling to initiate

neuropathic pain behaviours (Chen et al. 2011) and also

enhances the TRPV1 mRNA transcripts and amount of

TRPV1 protein in small-to-medium diameter DRG neurons

that contribute to neuropathic pain (Hara et al. 2013).

Therefore, different TRP channels play a crucial role in the

management of neuropathic pain.

Mechanistic involvement of TRP channels
in neuropathic pain

Neuropathic pain can be evoked by raising local Ca2? ion

concentration at the site of injury or in the spinal cord

(Fernyhough and Calcutt 2010) by influx of calcium ions

through voltage-dependent Ca2? channels like high-volt-

age activated or low-voltage activated or transient (T-type)

Ca2? channels. When pain impulse transmitted from the

periphery to the central nervous system, the nociceptive

transmitters like substance P released via exocytosis from

the primary sensory terminals present in the spinal dorsal

horn, which is regulated by high-threshold voltage-depen-

dent Ca2? channels (Verkhratsky and Fernyhough 2008).

Increased responsiveness of the spinal pain transmission is

probably due to the increased awareness of the primary

afferent neurons, which can results in enhanced neuro-

transmitter exocytosis through the opening of voltage-

dependent Ca2? channels or due to the postsynaptic hyper-

excitability in dorsal horn projection neurons, which is

possibly induced by enhanced Ca2?-influx through voltage-

dependent Ca2? channels (TRP Channels). Oxidative

stress-dependent Ca2? over influxes through the TRP

channel also has important role in diabetic neuropathic pain

(Umeda et al. 2006) and other types of neuropathy (Fig. 1).

TRP channel modulators

TRP channel modulators possess strong pharmacothera-

peutic potential for management of neuropathic pain.

Natural compounds which act as agonists to modulate

TRPV1 channels are capsaicinoids, triprenyl phenols,

unsaturated dialdehydesterpenes (Thapsigargin), gingerols,

and gingenosides (Calixto et al. 2005) (Table 2).

Capsaicin

It is a TRPV1 modulator that leads to degeneration of a

large portion of C-fibers as well as a small portion of Ad-
fibers, resulting in a prolonged analgesic period (in adult

and neonatal experimental animals) (Holzer 1991). TRP

channel agonists directly gate the channel by reduction of

the heat threshold of activation. Persistent exposure of

receptor to the agonist in the presence of Ca2? induces

channel closure by desensitisation and tachyphylaxis

(Szallasi and Blumberg 1999) and also act by phosphory-

lation of a key residue at the C-terminus of the protein

(Bhave and Gereau 2004). Capsaicin is used to diminish

pain, due to its ability to desensitize TRPV1. Capsaicin (as

0.025–0.075 % cream preparations) is used for treating

pain produced by peripheral neuropathy, osteoarthritis, and

rheumatoid arthritis (Brito et al. 2014). Capsaicin desen-

sitises TRP channels and selectively depletes TRPV1-

expressing nociceptors due to Ca2? overload (Karai et al.

2004). High-affinity agonists that promote receptor tachy-

phylaxia and/or nociceptor ablation could be used as

efficacious pain relievers. Intrathecal administration of

oligodeoxynucleotide antisense for TRPA1 completely

repressed the cold hyperalgesia induced by nerve damage

in neuropathic pain (Katsura et al. 2006).
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Camphor

Camphor is a well-known TRPA1 antagonist. It activates

TRPV1, TRPV3, and TRPA1 channels at low concentra-

tion, but inhibits TRPA1 currents at high concentrations

(Xu et al. 2005a).

Mecamylamine

Mecamylamine is a TRPA1 antagonist as well as a non-

selective and non-competitive antagonist of the nicotinic

acetylcholine receptors (nAChRs) (Bacher et al. 2009) used

to treat hypertension and measures cigarette smoke extract

(CSE)-evoked vascular endothelial growth factor (VEGF)

release.

Capsazepine

It blocks painful sensation of heat caused by capsaicin.

TRPV1 expression is elevated in uninjured ganglia in nerve

injury model and capsazepine allays nerve injury induced

hyperalgesia and mechanical allodynia. It acts as TRPM8

antagonist to treat cold allodynia (Behrendt et al. 2004) and

inhibits voltage gated Ca2? channels (Docherty et al. 1997)

along with nicotinic acetylcholine receptors (Liu and

Simon 1997). TRPV1 levels are elevated in visceral sen-

sory afferents in inflammatory bowel disease in humans

(Holzer 2004). Analgesic effect of TRPV1 antagonists due

to dual (both peripheral and central) action is vital for full

analgesic action (Cui et al. 2006). Inflammatory mediators,

such as glutamate (acting on metabotropic receptors 5),

bradykinin (acting on B2 receptors), prostaglandins E2

(acting on EP receptors), or NGF (acting on trkA recep-

tors), extracellular ATP (acting on P2Y2 receptors),

indirectly trigger and stimulate TRPV1 (Chuang et al.

2001; Ferreira et al. 2004; Hu et al. 2002; Moriyama et al.

2003; Premkumar 2010; Shin et al. 2002; Tominaga et al.

2001).

Thapsigargin

Thapsigargin is a sesquiterpine containing tricyclic diter-

pene ring, isolated from Thapsia garganica (Apiaceae). It

acts as selective inhibitor of Ca2?-ATPases (SERCAs)

(Luo et al. 2000) in the endoplasmic and sarcoplasmic

reticulum of animal cells. It is used traditionally in

Fig. 1 Schematic representation of Mechanistic pathway involved in

neuropathic pain. a Role of TRPV1 ant TRPA1: different TRPV1

agonist like capsaicin, camphor, high temperature, low pH, etc.,

activates the transient type Ca2?-channel to increase the intracellular

Ca2? influx in cytosol. This intracellular Ca2? activates TRPA1

channels as well as increase Ca2? concentration in EPR which leads

to neurotransmitter release like substance P, activation of PKA/PKC

and cGMP/NO pathway which results in progression of neuropathic

pain. b Role of Arachidonic acid (AA) metabolites: AA metabolites

like 5-HETPE also activates TRPV1. Leukotrienes produced by LOX

pathway and PGs from COX pathway also involved in neuropathic

pain. (Ca??/Ca2? calcium ion, LTs leukotrienes, AA arachidonic

acid, COX cyclooxygenase, LOX lypooxygenase, PGs prostaglandins,

PLA2 phospholipase A2, 5-HPETE 5-hydroperoxyeicosatetraenoic

acid, EPR endoplasmic reticulum)
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Table 2 Structures and functions of TRP channel modulators

STRUCTURE Agonist/Antagonist Reference
TRPV1 Agonist 109

TRPA1 and TRPV3 Agonist 
at low concentra�on

TRPA1 Antagonist at high 
concentra�on

127

TRPV1 Antagonist 109

TRPV1 Antagonist 128

TRPV1,TRPV2,TRPV3 
Agonist at high 
concentra�on

Non-selec�ve TRP channel 
antagonist at low 
concentra�on

129

TRPV1 Agonist 130

TRPA1 Antagonist 131

TRPV1 Agonist 132
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treatment of rheumatic pain in European and Arabian

medicine system and seems to be a prototype for TRPV1

inhibitor.

Yohimbine

An indole alkaloid, isolated from the root of Rauwolfia

serpentine (Aponcynaceae) and bark of the tree Pausinys-

talia yohimbe (Rubiaceae), blocks Na? channels and

TRPV1 receptors which revealed to hinder the firing

activities of DRG neurons of rat (Dessaint et al. 2004).

Resiniferatoxin (RTX)

RTX is a naturally occurring ultrapotent analog of cap-

saicin found in resin spurge Euphorbia resinifera and

Euphorbia poissonii having important anti-nociceptive

properties (Walpole et al. 1996) mainly related to the

dysfunction of various specific classes of pain receptors,

but due to the stinging, burning pain and erythema pri-

marily produced by these agonists make them difficult to

use clinically.

2-aminoethoxydiphenylborate (2-APB)

2-APB is a synthetic diphenylborinic acid derivative that

inhibits IP3 receptors (Diver et al. 2001) and TRP

channels. It activates TRPV1, TRPV2, and TRPV3 at

higher concentrations (Bootman et al. 2002; Xu et al.

2005b). It manipulates intracellular Ca2? release that

modify TRP channel activity. Patients with pathological

condition accompanied with persistent or recurrent severe

pain, such as neuropathic, herpes zoster, arthritis, cancer,

and postoperative pain, are treated with innervations that

are inadequate and encompassing devastating side

effects. Experimental evidences showed that the TRPV1

is involved in these different pathologies. TRPV1 ligands

and modulators are emerging as a new pharmacothera-

peutic approach for various painful conditions.

Non-pungent agonists of TRPV1 receptors may be an

interesting alternative and are devoid of undesirable effect.

Specific antagonists of TRP channels could be used clinically

and expected to have more prompt effects, different from the

affected sensory fiber destruction caused by agonists.

TRPM8 channels are involved in oxaliplatin, and

chronic constriction nerve injury (CCI)-induced neuro-

pathic pain and its antagonist have ability to treat cold-

induced allodynia (Descoeur et al. 2011; Su et al. 2011;

Xing et al. 2007). TRPM8 plays a role in core body tem-

perature regulation and detection of TRPM8 antagonist

(PF-05105679) shows its competence in treatment of pain

in humans (Andrews et al. 2015).

Conclusions

TRPs are transmembrane ligand-gated Ca2? channels that

play pivotal role in cellular functioning. TRP channels

mainly include TRPV1, TRPA1, and TRPM8 gates for

Ca2? ion exclusively and tend to increase the intracellular

Ca2? concentration. Increased Ca2? may lead to numerous

cellular consequences like muscular contraction, neuro-

transmitter release, release of Substance P, and action

potential generation. Increasing intracellular Ca2? activates

other TRP channels and modulates cellular signalling that

leads to generation and propagation of neuropathic pain.

5-HPETE, the metabolite of LOX pathway, and other

arachidonic acid metabolites, and also activates the TRVP1

channels and precipitates neuropathic pain. Furthermore,

modulation of TRP channels either by synthetic/natural

agents or by inhibition of COX/LOX pathway relieves

neuropathic pain.

TRP channels can be explored as potential therapeutic

target for treatment of neuropathic pain. TRP channel

modulators can be picked up Pharmaceutical Industries and

developed as a new class of highly efficacious pharma-

cotherapeutic agents for the clinical management of

neuropathic pain.
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