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Abstract Lipopolysaccharide (LPS) administration has

been repeatedly shown to elicit central inflammation,

regardless of the route of administration. In a recent study,

Tiwari et al. (Inflammopharmacology 10.1007/s10787-

016-0274-3, 2016) dispute the potential of peripheral

administration of LPS to induce neuroinflammation. Here,

I summarise literature indicating that the neuroinflamma-

tory effects of LPS are time dependent, and suggest that

their findings can be explained by the time at which they

chose to measure neuroinflammation.
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Lipopolysaccharide (LPS) is a component of Gram-nega-

tive bacterial cell wall. Once recognized by the immune

system, LPS elicits a proinflammatory response (Zhang and

Ghosh 2000) and has thus become extensively used in

research for this purpose (e.g., van Dam et al. 1992; Gatti

and Bartfai 1993; Laye et al. 1994; Breder et al. 1994;

Quan et al. 1999). In particular, inflammation within the

brain (neuroinflammation) can be obtained by central or

peripheral administration of LPS (Rivest 2003). However,

Tiwari et al. (2016) recently reported not observing neu-

roinflammatory effects of peripheral LPS administration

(via repeated intraperitoneal injections) to rats. Why this

discrepancy with the previous literature?

While it is common knowledge that negative results are

less frequently published (Fanelli 2012), a close look at the

literature (Table 1) demonstrates that the results of this

study have an alternative explanation. In Table 1, I have

summarized only the studies cited within Tiwari et al.

(2016), where peripheral injection of LPS was used. Based

on this table, it is possible to make two important obser-

vations: (1) within the range of doses of LPS administered

in those studies (from 100 to 10,000 lg/kg), Tiwari et al.
(2016) used one of the lowest doses (125 lg/kg, i.e., about
100 times less then the high end of the spectrum) and (2)

studies using low doses of LPS have found neuroinflam-

matory effects within a short period of time post-injection

(few hours), while studies using high doses have found

neuroinflammatory effects in both the short- (few hours)

and long-term (months). Tiwari et al. (2016) collected

brain samples at a relatively long time period post-

injection.

Most studies in Table 1 do not reveal whether low doses

of LPS elicit long-term responses, but there are two studies

that do so. In the study by Biesmans et al. (2013), where

several LPS doses were tested, the authors quantified

neuroinflammatory effects of one intraperitoneal injection

of LPS over time. The findings reveal that, at the dose of

630 lg/kg, a dose five times higher than that of Tiwari

et al. (2016), several effects within the brain have already

subsided at 24 h post-LPS injection. Similar results were

obtained by Spulber et al. (2012), at a lower dose (330 lg/
kg). Tiwari et al. (2016) collected their brain samples at

48 h after their last administration of LPS. Given the low

dose and the time of collection, they should no longer

observe neuroinflammatory changes, which they did not.

Notably, a study in rats (Quan et al. 1999) found inflam-

mation in certain brain regions 2 h post intravenous

administration, using a dose of LPS more than ten times
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lower than the one used by Tiwari et al. (2016). Therefore,

while the authors write that their finding of a lack of

neuroinflammatory effect cannot be attributed to dosage or

short- versus long-term effects of LPS, it is likely that it

can in fact be attributed to the combination of these two

variables. Thus, their conclusion that ‘‘LPS (i.p.) admin-

istration is devoid of any neuroinflammatory effects’’

should be placed in the context of the dose used and the

timing they chose to collect their samples. Finally, the title

of their article ‘‘Redefining the role of peripheral LPS as a

neuroinflammatory agent…’’ must be considered care-

fully—the role of LPS cannot be redefined based solely on

a single study where a low dosage has been administered

and where samples are collected after a long time period

has elapsed. Combined, the study by Tiwari et al. (2016)

and the literature summarized here should serve as a

warning for future studies about the importance of con-

sidering both dose and timing when neuroinflammatory

effects are expected.
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For ease of comparison the study by Tiwari et al. (2016) is highlighted in bold

Studies where collection time point was not evident or clearly stated are not reported in the table (this includes references to review articles)

LPS doses have been converted to lg/kg for purposes of comparison

CCL2 chemokine (C–C motif) ligand 2, GSH glutathione, IDO indoleamine 2, 3 dioxygenase, IL interleukin, iNOS inducible nitric oxide

synthase, MCP-1 monocyte chemoattractant protein-1, NF nuclear factor, TNF tumor necrosis factor
a Only considering results for the wild-type mice
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