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Abstract
The Kyoto Protocol envisages the use of various instruments to achieve emission reduction 
targets, one of which is the European Union Emission Trading Scheme (EU ETS), the most 
important market worldwide for CO2 emission allowances. The volume of European Union 
Allowances traded represents over 45% of all the carbon dioxide generated by human activ-
ity within the continent. In its first two phases (2005–2012), the behaviour of the EU ETS 
was erratic, as a result of discretionary policies, an oversupply of allowances and reduced 
economic activity due to the global crisis. These factors caused excessively low prices that 
distorted the initial goals of achieving low-carbon solutions. From 2013, changes were 
made to the market regulation mechanisms in order to correct these structural deficien-
cies. Empirical analysis of daily prices in the two central phases of the market, following 
the pattern of ARCH and GARCH models, shows that the measures taken within the EU 
generated greater confidence and stability in the market and thus reduced volatility. Subse-
quent price behaviour, following a bullish path, has confirmed the success of the measures 
taken and their contribution to fulfilling emission reduction targets.
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1  Introduction

Constantly rising levels of consumption and the resultant increase in global industrial 
activity have generated new patterns of production and energy consumption, which are 
the main cause of the increasing volume of emissions of greenhouse gases (GHG). The 
presence of these gases in the atmosphere is generating a global climate change which, 
in turn, has a severe impact on natural resources and socioeconomic systems. Especially 
relevant in this respect is the role played by carbon dioxide (CO2), which accounts for over 
70% of total GHG emissions, according to the Intergovernmental Panel on Climate Change 
(IPCC). Three world powers are responsible for the bulk of CO2 emissions: China, which 
produces over 29% of the total, followed by North America (21%) and the European Union 
(11%) (International Energy Agency 2016).

The Kyoto Protocol, adopted in December 1997, is the legal instrument that first set tar-
gets for reducing and capping GHG emissions1 by the largest developed countries and by 
countries with economies in transition. The 2016 Paris agreement reasserted this commit-
ment, setting the goal of limiting the increase in global average temperature to 2 °C above 
pre-industrial levels. Despite the difficulties involved in reaching agreements and achieving 
compliance, certain key energy indicators show that some progress is being achieved. For 
instance, estimated CO2 emissions in 2015 presented negative growth, producing a “decou-
pling of the previously close relationship between global economic growth, energy demand 
and energy-related CO2 emissions” (International Energy Agency 2016).

In designing a sustainable environmental policy for the EU, two types of market instru-
ment were considered: on the one hand, those focused on modifying the prices of goods 
and services, mainly by means of taxes (Villar-Rubio and Huete-Morales 2017). Such 
instruments are primarily designed to raise revenues, to provide financial or fiscal incen-
tives (through price reductions) and to change the behaviour of producers and/or consum-
ers. Secondly, market instruments may also act on quantities, determining the maximum 
amount of a substance that may be produced, by means of systems of tradable permits 
(Quesada-Rubio et al. 2011; Quesada et al. 2010).

Among the latter instruments are flexibility mechanisms (Fig.  1), which can be used 
as a complement to internal measures and policies to reduce emissions. The most widely 
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Fig. 1   Flexibility mechanisms included in the Kyoto Protocol

1  The Kyoto Protocol was drafted with the initial objective of reducing global greenhouse gas emissions, 
during the period 2008–2012, by 5.2% in relation to 1990 levels.
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used flexibility mechanism is the Emissions Trading System (ETS), under which a ceil-
ing (cap) is imposed on the total amount of emissions allowed for a given period of time. 
Each participant receives a certain amount of emission permits or allowances,2 depending 
on criteria such as historical emission values, or through an auction process. These per-
mits can then be traded in a secondary market. Thus, during the specified period of time, 
participants who emit less than their quota can sell their surplus permits to others whose 
emissions exceed their maximum allowable quantity, and thus the price of the permits is 
determined by the market, through supply and demand.

Many such mechanisms have been implemented or are being evaluated, especially in the 
last 2 years. The carbon market has a turnover of about 52 billion dollars, including fiscal 
and market mechanisms (World Bank and Ecofys 2016), a volume of trade that is growing 
with the involvement of additional countries, and despite the negative impact of certain 
factors such as the falling price of permits, less stringent caps in some ETS and increased 
productive efficiency in some sectors, such as the automobile industry, which has invested 
heavily in clean energies.

The European Union Emission Trading Scheme (EU ETS), created in 2005, is the most 
important in the world.3 With 31 countries (the 28 members of the European Union plus 
Iceland, Liechtenstein and Norway), the EU ETS largely determines demand and prices in 
other markets. Emission permits issued under this trading system are called EUAs (Euro-
pean Union Allowances), and also known as “carbon credits”. EUAs account for 70% of 
the world’s CO2 emissions, and the EU ETS represents approximately 45% of all the CO2 
generated by human activity on the continent, more than two billion tonnes of CO2, and 
regulates the emissions of over 11,000 power plants and large industrial facilities (Mazza 
and Petitjean 2015).

In addition to the above, there are “Project-based mechanisms”, consisting of two emis-
sion reduction instruments: on the one hand, the Clean Development Mechanism (CDM), 
which allows countries that have ratified the Kyoto Protocol to obtain Certified Emissions 
Reductions (CERs) equivalent to one tonne of CO2 not emitted into the atmosphere, and 
which, like EUAs, can be sold in a secondary market. CERs are obtained through action on 
projects that reduce GHG emissions and contribute to sustainable development in develop-
ing countries. On the other hand are Mechanisms for Joint Implementation (MJI), which 
allow countries to obtain Emission Reduction Units (ERUs), by which Member States can 
anticipate the acquisition of emission credits by carrying out emission reduction projects 
in other industrialised countries with specified targets (mainly Eastern European or OECD 
countries).

2 � Chronological evolution of the emission permits market

Directive 2003/87/EC regulating the GHG emission allowances trading system within the 
European Union was implemented on 1 January 2005, covering CO2 emissions from ther-
mal power stations, cogeneration, other combustion plants with thermal power exceeding 

2  Each permit allows the holder to emit one metric ton of carbon dioxide (CO2), or equivalent amounts of 
nitrous oxide (NO2) and perfluorocarbons (PFCs).
3  Similar to the ETS in the European Union, other “Cap & Trade” systems have been adopted in other 
countries or regions, such as the CCX (Chicago Climate Exchange) created in the USA in 2003, and the NZ 
ETS (New Zealand Emissions Trading Scheme), applied since 2009 in New Zealand, among many others.
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20 MW, refineries, coke plants, steel, cement, ceramics, glass and paper mills. Each Mem-
ber State prepared and submitted to the European Commission its National Allocation Plan 
(NAP), which would determine the total amount of allowances to be allocated and the allo-
cation procedure. European legislation had prepared the development of the emission per-
mits market in four distinct phases (Fig. 2).

In Phase I (2005–2007), considered as a test phase, at least 95% of the allowances were 
allocated free of charge. At the end of each year, the Administration verified the actual 
emissions of each company, so that if a company/facility had emitted more tons of CO2 
than those covered by the allowances received, it had to acquire in the market allowances 
for the difference and deliver them to the Administration. On the contrary, if the company 
polluted less, it could sell the leftover permits. If they did not comply with the limit laid 
down in the NAP, companies could be penalised by a fine of €40 per tonne in excess of the 
cap allocated in the period 2005–2007, which would increase to €100 in Phase II.

Overestimation of CO2 emission levels (initially based on forecasts rather than actual 
measurements) resulted in an over-allocation of allowances, which was transferred to the 
market as an oversupply. This, coupled with the inability to buy emission allowances and to 
accumulate them for later use, led to a sharp drop in EUA prices in April 2006 (over 54% 
in a few days), resulting in a price close to €0. This adversely affected the perception of the 
utility of the permits market, and discouraged companies from investing and innovating in 
clean technologies.

In Phase II (2008–2012), although the volume of free allocations was decreased to 90% 
and unlimited accumulation of permits was allowed, these measures failed to prevent the 
oversupply of emission rights. As can be seen in Fig.  3, at the beginning of this period 
prices rose to almost €23 per EUA, reflecting market demand for cumulative emission 
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Fig. 2   Chronology of the different phases of the EU Emissions Trading System
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rights, in the expectation that they would be useful in the future. Nevertheless, over the 
period as a whole, prices tended to fall, and ended close to €8, due to the excess supply of 
carbon assets and to the lower demand for EUAs because of the 2008 financial crisis (de 
Perthuis and Trotignon 2014).

In Phase III (2013–2020),4 and in accordance with Directive 2009/29/EC, the NAPs dis-
appeared, and a community approach was adopted, in which the EU set a ceiling for annual 
global emissions, in view of its emission reduction target. The EU allocates the rights as 
follows: 43% to be granted by each country free of charge to stipulated companies, and the 
remaining 57% to be auctioned.

Following this criterion, each industrial facility is assigned a volume of free issues, 
called “free allocation”, taking into account the technological state of each sector and its 
potential for reducing GHG emissions.5 To fill the gap between this free allocation and the 
real allocation, auctions are held, on a schedule regulated by the EU. Auction prices are set 
by the law of supply and demand.

However, the problem of excess permits in the market remained, and because these 
rights were cumulative, normal market behaviour was inhibited. Among the measures con-
sidered, such as extending the use of EUAs to other sectors, or establishing a minimum 
auction price (Brink et al. 2016; Clò et al. 2013; European Commission 2012; Koch et al. 
2014; Marcu 2013; Verdonk et al. 2013), the EU proposed two regulatory mechanisms. In 
the short term, the issuance of 900 million permits would be postponed (back-loading of 
auctions), so that the market would naturally drain the surplus of EUAs. Furthermore, to 
facilitate long-term market stability, a Market Stability Reserve (MSR) would be created, 
as a mechanism to absorb and maintain the rights in excess of 833 million (thus fewer 
rights would be auctioned); they would then be injected into the market (in multiples of 
100 million) if the number of rights fell below 400 million. There are currently 1693 mil-
lion rights in circulation (European Commission 2017a), and so if the MSR were in opera-
tion, it would absorb 860 million rights.

Regulatory uncertainty caused notable price fluctuations (Koch et  al. 2014), causing 
prices to fall sharply to €2.7 in April 2013. Since then, the market has taken a favourable 
view of the measures taken by the European Commission, and so the price of the rights has 
risen steadily, and for the first time since 2012 it is now above €8.30.

In this third period, it is worth noting the rapid growth of the CO2 price in the summer 
of 2015, reaching for the first time (since 2012) levels above 8.30€. Holiday periods should 
be more  quieter a priori, with few movements in the trading tables and little industrial 
activity and fall in prices should be expected. However, auctions are reduced practically to 
half the volume offered in months like August (less liquidity) and energy demand increases 
due to higher temperatures, so it could explain this price increase that has been repeating 
more than once during this season on subsequent years.

In short, the emission allowances market is far from being effective in achieving its 
objectives, and from being efficient in incorporating information into market prices. 
Many factors have characterised this market, underlying its erratic behaviour since its 
inception in 2005. The relative immaturity of the market (Seifert et al. 2008), coupled 
with its semi-public origin (public issuance of rights through private sector platforms), 

4  Croatia’s entry into the EU ETS took place at the start of Phase III.
5  Only sectors considered to be at risk of carbon leakage (i.e. production or investment relocation to areas 
that do not have emission limits, leading to an increase in global emissions) receive a free allowance alloca-
tion.
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and the continuing uncertainties generated by the lack of a univocal policy in the regu-
lation of the market, all contribute to market inefficiency. However, recent developments 
have provided grounds for optimism, and the measures adopted between Phases I and II 
have enhanced market efficiency (Bredin et al. 2014; Medina et al. 2014).

The main aim of this paper is to demonstrate that the measures adopted by the Euro-
pean Commission at the end of Phase II have indeed contributed to improving the 
functioning of the EU ETS market, and have had a significant impact in Phase III, a 
period characterised by decreased volatility in the price of CO2 rights, and have helped 
smooth the effects of external shocks motivated by political uncertainty. In order to 
make an empirical comparison, daily oscillations in EUA prices were modelled using 
GARCH(p,q) models. If our hypothesis is confirmed, this would be consistent with pre-
vious research and establish that the new measures were well accepted by the market, 
as an incentive to participate in the rights market (Venmans 2015). To the best of our 
knowledge, only one previous study has analysed and compared Phases II and III (Sanin 
et  al. 2015), and none have considered the changes in volatility between the different 
phases of the project in order to determine the improvement or otherwise of market 
efficiency.

The CO2 allowances markets have attracted considerable attention, both among 
researchers and in professional communities, and numerous studies have examined 
the behaviour of these markets, in most cases employing autoregressive modelling to 
explain the volatility of carbon bond yields, and thus determine the greater or lesser 
efficiency of the market in the first two phases of the ETS (Byun and Cho 2013; Cast-
agneto-Gissey 2014; Feng et al. 2012; Gürler et al. 2016; Rannou and Barneto 2016). 
Other models have also been used for this purpose, such as autoregressive vectors and 
Granger causality test (Cummins 2013; Tang et al. 2013), the Roll model that Medina 
et al. (2014) used to compare the efficiency of Phases I and II, and the joint-expectations 
microstructural model of security prices proposed by Ibrahim and Kalaitzoglou (2016).

Other ETS are emerging, and so studies limited to certain geographic areas have also 
been conducted; thus, strategic analyses have been made of the carbon rights markets 
in China (Liu et al. 2015, 2017) and in India (Kapoor and Ghosh 2014; Pradhan et al. 
2017). In order to build efficient strategies of participation in the markets, numerous 
papers have focused on determining the main drivers of EUA prices (Aatola et al. 2013; 
Alberola et al. 2008; Chevallier 2011; Creti et al. 2012; Guðbrandsdóttir and Haralds-
son 2011; Hammoudeh et al. 2014; Koch et al. 2014; Mansanet-Bataller et al. 2011) and 
of the recently created EUA options (Chevallier 2013; Daskalakis et  al. 2009; Viteva 
et  al. 2014). Others have sought to determine the relations between EUAs and other 
asset classes, such as CERs (Guðbrandsdóttir and Haraldsson 2011; Nazifi 2013), oil 
(Yu et al. 2015; Zheng et al. 2013), energy markets in general (Zhang and Wei 2010) or 
other asset classes (Zheng et al. 2015). A novel and promising standpoint is considering 
nonlinearities as a better approach, although results are not yet conclusive (Atsalakis 
2016; Chevallier 2011; Gil-Alana et al. 2016; Li and Lu 2015). Despite this being a rel-
atively young market, positive results have been achieved by some investment strategies, 
such as those based on mean reversion (Chang et  al. 2013) or on momentum (Cross-
land et al. 2013). A more extensive review of the literature in this field can be found in 
Hintermann et al. (2016).

The remainder of this paper is organised as follows. Section 3 presents the data consid-
ered, and Sect. 4 describes the empirical method used in the ARCH and GARCH models. 
Section 5 discusses the empirical findings for Phases I and II, and finally, Sect. 6 presents 
the principal conclusions drawn and suggests fruitful areas for future research.
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3 � Data and sample

The behaviour of EUA futures has been erratic from its very beginning and because of 
different factors. First, it has infringed the principles of non-arbitrage that usually gov-
ern financial markets, and this in itself may have constituted a factor of price imbalance 
(Bredin and Parsons 2016). Second, it has developed an idiosyncratic type of seasonality, 
due to peaks in trading activity in search for allowances to cover the previous-year legal 
requirements (Balietti 2016), extreme and unexpected changes in temperatures (Alberola 
et al. 2008) or its regular calendar structure (Medina et al. 2014).

Nevertheless, most studies of the allowances markets have focused on the futures mar-
kets, mainly on the settlement of the year-ahead EUA December futures contract traded on 
the Intercontinental-European Climate Exchange (ICE-ECX). December expiries are the 
most active contracts, since the vast majority of EUA transactions consider this maturity 
to be the most important (Koch et al. 2016). Accordingly, our analysis is based on these 
data, using daily quotes (in euros) extracted from the Thomson Reuters Eikon database. 
ICE-ECX, which is part of the ICE conglomerate, is a London-based trading platform 
that serves as the UK auction house and which trades 96% of futures contracts (Mansanet-
Bataller et al. 2011) and more than 80% of spot operations.

The two central market operating periods have been taken as reference: Phase II 
(2008–2012) and Phase III (2013–2021), in the latter case taking a limit date of 6 May 
2016, in order to obtain out-of-sample data with which to test our hypotheses. Phase I 
(2005–2007) is excluded as it comprised an initial period of “test and learning”, of only 
3  years’ duration (Labandeira and Rodríguez 2006), and was characterised by the exist-
ence of jumps and non-stationarity (Daskalakis et al. 2009), impeding reliable comparison 
between periods.

In addition to the ICE-ECX, there are other auction and trading platforms, such as the 
Leipzig-based European Energy Exchange (EEX) and two smaller ones, NASDAQ OMX 
and NYMEX. However, given their low volume of trading, these platforms were excluded 
from our study. Mizrach (2012) performed a historical review of the integration of Euro-
pean allowances markets.

In 2013, over 40% of the allowances were auctioned and it is estimated that for the 
period 2013–2020 this level will rise to 50%, since the volume of free allocation rights has 
decreased by more than the limit. (In 2013, the emission limit of fixed installations closed 
at 2084 million emission rights.) In EU ETS Phase III (2013–2020), this limit is reduced 
each year by an initially considered linear reduction factor of 1.74% of the average total 
amount of rights issued each year in the period 2008–2012.6

4 � Method

Autoregressive conditional heteroskedastic (ARCH) and generalised autoregressive condi-
tional heteroskedastic (GARCH) models have been widely used to analyse and forecast eco-
nomic or financial time series characterised by periods of high or low volatility and significant 

6  In July 2015, the European Commission proposed an amendment to the EU ETS, increasing the speed of 
decline of the annual emissions cap from − 1.74% per year to − 2.20%, and enhancing the carbon leakage 
framework to preserve the competitiveness of European industry (FTI-CL Energy 2017).
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kurtosis. The models have been used for diverse purposes, reflecting inflation adjustments 
(Engle 1983), electricity prices (Garcia et al. 2005), stock prices (Bollerslev et al. 1992; Casas 
Monsegny and Cepeda Cuervo 2008), options (Hao and Zhang 2013) and crude oil prices 
(Hou and Suardi 2012).

ARCH and GARCH models have been used satisfactorily in several studies of the prices 
of the carbon rights, both in their general aspect and in models with variations (Benz and 
Truck 2009; Chevallier et al. 2011; Conrad et al. 2012; Mazza and Petitjean 2015; Paolella 
and Taschini 2008).

The GARCH model was proposed by Bollerslev (1986) as a natural generalisation of the 
ARCH process introduced by Engle in 1983, which recognised the difference between the 
unconditional and the conditional variance, allowing the latter to change over time as a func-
tion of past errors.

The GARCH model provides a longer memory and a more flexible lag structure (Brock-
well and Davis 1996), enabling the inclusion of lagged conditional variances. Therefore, these 
models are usually applied to economic or financial series, since they can show changes in 
second-order conditional moments, which tend to be correlated in time (periods of high vola-
tility are followed by periods of low volatility and vice versa). On many occasions, too, this 
type of financial series presents a significant level of kurtosis.

Let the series yt, in the ARCH(q) model, be yt = �t ⋅ �t where σt is the volatility and �t i.i.d. 
with zero mean and finite variance (white noise). The conditional variance of the series at each 
time V

(
yt|yt−1

)
= �2

t
 is characterised by the following autoregressive process:

𝛼i ≥ 0i=1…q, 𝛼0 > 0 where �0 is the minimal value observed of conditional variance (Bera 
and Higgins 1993). The GARCH(p,q) model adds a term that allows us to assume that the 
conditional variance also depends on its past observations:

where:

to ensure stationarity and a conditional variance that is strictly positive.
The descriptive analysis is performed with R software and the tseries package. The model 
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5 � Results

5.1 � Descriptive analysis of CO2 emission allowances

In view of the volatility presented, we suggest the following approach for modelling 
CO2 emission allowance log returns:

Figure 4 shows the evolution of the log returns during each period, with a low struc-
ture in the mean and similar to white noise. However, its distribution is non-normal, and 
there is great variability in the series, with peaks indicating the presence of heteroske-
dasticity. For this reason, we must use ARCH models, which assume that the conditional 
variance depends on the past, with an autoregressive structure, or its generalisation 
within GARCH models (which associate moving average terms with this dependency).

As can be seen, volatility was substantially lower in Phase III (2013–2016) than 
in Phase II, especially as of April 2013. In the second phase, there was much uncer-
tainty among investors, as the issuance and allocation of EUAs was highly discretion-
ary, dependent on political decisions and based on estimated data, which often differed 
greatly from actual data. However, in the current, third, phase, despite continuing direct 
allocations, most rights are acquired through auctioning, which means that companies 
can better predict the funds, in US dollars, they will need. The normalisation of market 
operations and the temporary disappearance of political instability led to a period of 
greater price stability, manifested in reduced volatility, which was only broken by the 
discussion and subsequent decision on back-loading and the creation of the MSR.

Analysis of the normality of the data shows that although the skewness is not very 
high in either period (0.015 and − 1.753, respectively), there is a significant level of 
kurtosis (3.699 and 23.997). The Kolmogorov–Smirnov test of normality confirms this 
situation, showing that the two sets of log returns do not correspond to a normal distri-
bution (p < 0.001). Figure 5 corroborates this statement.
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Fig. 4   Daily log returns of CO2 emission allowances prices during Phase II (2008–2012) and Phase III 
(2013–6 May 2016)
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5.2 � Model fitted for Phase II

The non-normality of log returns is common in the prices of assets listed on financial mar-
kets (in many cases, broad tails and excessive kurtosis are observed), and the same behav-
iour is apparent in the market for emission rights. To reflect this behaviour, an ARCH(q) 
and a GARCH(p, q) model were calibrated to the data, following previous studies of vola-
tility in carbon markets (Zheng et al. 2015).

Table 1 shows the results obtained for the first period, using the maximum log like-
lihood approach. Several models were analysed for different conditional distributions, 
the normal distribution and the standardised Student-t distribution of quasi-maximum 

Fig. 5   Histogram and norm curve of daily EUA log returns from 2 January 2008 to 31 December 2012 and 
from 2 January 2013 to 6 May 2016

Table 1   Estimated parameters, 
p value, log likelihood, Akaike 
information criterion (AIC) and 
Bayesian information criterion 
(BIC) for the estimated models. 
First period (from 2 January 
2008 to 31 December 2012)

Parameter Estimate Standard error p value

ARCH(1)
 Mean 2.038 × 10−4 5.320 × 10−4 0.702
 �

0
4.705 × 10−4 6.285 × 10−5 < 0.0001

 �
1

0.639 0.139 < 0.0001
 Degrees of freedom 3.320 0.375 < 0.0001

Log Likelihood: 2959.551 normalised: 2.339
AIC: − 4.674 BIC: − 4.662
Conditional distribution: Student-t
GARCH(1,1)
 Mean 3.901 × 10−4 4.437 × 10−4 0.379
 �

0
2.774 × 10−6 2.075 × 10−6 0.181

 �
1

0.118 0.025 < 0.0001
 �

1
0.896 0.019 < 0.0001

 Degrees of freedom 4.485 0.612 < 0.0001
Log likelihood: 3051.678 normalised: 2.412
AIC: − 4.817 BIC: − 4.796
Conditional distribution: Student-t
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likelihood estimation (QMLE). For the ARCH(1) model, Student-t was taken as the 
conditional distribution because it provides lower values for the Akaike information 
criterion (AIC) and the Bayesian information criterion (BIC). Moreover, the Student-t 
specification can provide the excess kurtosis in the conditional distribution, which is not 
the case with a normal distribution.

Figure 6 shows the fitted values for the ARCH(1) model, together with the volatil-
ity of the adjusted series. To ensure the validity and suitability of the model and the 
effectiveness of our predictions, the estimated residuals should behave as white noise. 
The Ljung–Box test allows us to check the randomness of residuals (Ljung and Box 
1978). In this case, the test reveals significant correlations for a certain number of 
delays (p value < 0.001). The Lagrange multiplier ARCH test (Engle 1982) was also 
performed, with the null hypothesis of the absence of ARCH components, αi = 0i=1…q 
and the alternative hypothesis of conditional heteroskedasticity in the variance pro-
cess, i.e. the presence of autocorrelation in the squared residuals. Application of this 
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Fig. 6   Daily EUA log returns from 2 January 2008 to 31 December 2012 for the ARCH(1) and 
GARCH(1,1) models. Fitted log returns and 95% confidence intervals are shown in the left panel, and vola-
tility in the right
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test to the observations showed that heteroskedastic effects were highly significant (p 
value < 0.001).

To reflect this behaviour, a GARCH(1, 1) model was calibrated to fit the data (Fig. 6). In 
this model, Student-t was taken as a conditional distribution, since this approach, too, pro-
vides lower AIC and BIC values. The ARCH test p value was 0.218, showing the goodness 
of this fitted model, due to the absence of conditional heteroskedasticity in the variance 
process. The Ljung–Box test assured the randomness and independence of the standardised 
residuals. Overall, these measures confirmed the suitability of the GARCH(1,1) model.

5.3 � Model fitted for Phase III

In the second period, too, the standardised Student-t distribution was taken into account, 
since both the AIC and the BIC showed this to be the best distribution for the log returns 
adjustment (Table 2). The Lagrange multiplier ARCH test did not indicate the presence of 
heteroskedastic effects (p value = 0.995) and so it did not seem necessary to use a GARCH 
model for the correct adjustment of log returns in this period. However, the Ljung–Box test 
indicated that the standardised residuals were not random and independent, but were cor-
related (p value < 0.001). For this reason, a GARCH model was fitted to the series, and in 
this case, there was no correlation between the standardised residuals. Likewise, with the 
GARCH model (1,1), the ARCH test indicated no heteroskedastic effects (p value = 0.965). 
Accordingly, this model is considered optimum for the log returns adjustment. Figure  7 
shows the results of these two models.

In conclusion, the GARCH(1,1) model is suitable for the fitting of this type of financial 
series, in which we work with log returns. In terms of series volatility (standard deviation), 
it is interesting to know how this changes over time. Figure 8 shows that in the first period, 

Table 2   Estimated parameters, 
p value, log likelihood, Akaike 
information criterion (AIC) and 
Bayesian information criterion 
(BIC) for the estimated models. 
Second period (from 2 January 
2013 to 6 May 2016)

Parameter Estimate Standard error p value

ARCH(1)
 Mean 7.005 × 10−4 6.869 × 10−4 0.307
 �

0
1.088 × 10−3 3.717 × 10−4 0.003

 �
1

1.000 0.375 0.008
 Degrees of freedom 2.470 0.217 < 0.0001

Log likelihood: 1852.77 normalised: 2.169
AIC: − 4.329 BIC: − 4.307
Conditional distribution: t-Student
GARCH(1,1)
 Mean 7.005 × 10−4 6.104 × 10−4 0.251
 �

0
9.156 × 10−6 4.554 × 10−6 0.0444

 �
1

0.118 0.029 < 0.0001
 �

1
0.863 0.023 < 0.0001

 Degrees of freedom 4.016 0.564 < 0.0001
Log likelihood: 1930.841 normalised: 2.261
AIC: − 4.510 BIC: − 4.482
Conditional distribution: t-Student
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Fig. 7   Daily EUA log returns from 2 January 2013 to 6 May 2016 for ARCH(1) and GARCH(1,1) model. 
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2012 (left panel), and for the second period, 2 January 2013 to 6 May 2016 (right panel)
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the volatility is expected to increase considerably, while in the second, the variability of the 
series is predicted to be much lower.

6 � Conclusions

The EU ETS arose as a means of fulfilling the commitments made in the Kyoto Protocol, 
to move towards a low carbon future and to achieve the goal of limiting the global average 
temperature increase to 2 °C above pre-industrial levels. Allowances were claimed to be 
a key driver of this transformation, in the belief that high CO2 prices would push major 
GHG producers to consider technological change and to invest in greener, more efficient 
sources of energy. However, the permits market turned out to be inefficient, largely due to 
its immaturity.

The direct allocation mechanism, a typical feature of an intervened market, did not con-
stitute a real incentive to pollute less, since companies could access the market to acquire 
the necessary rights to cover their excess pollution. In addition, the fines of €40 and €100 
per tonne were insufficient to be coercive. Many other factors also contributed to the rela-
tive failure of the market in its early years. Thus, the oversupply of rights in the initial 
stages, coupled with falling demand due to reduced economic activity during the crisis, 
uncertainty over the discretionary allocation of rights, and contradictory effects on other 
policies (in particular, on renewable energies), altogether aggravated the continuing decline 
in the prices of quoted rights. These factors highlighted the imperfections of the rights-
trading system and the ineffectiveness of carbon policies in promoting the search for low-
carbon solutions (Gulbrandsen and Stenqvist 2013) and in overcoming companies’ distrust 
in the market (Venmans 2015).

Nevertheless, much progress has been made in the design of the allowances market since 
Phase III. In this paper, we show that EUA price volatility decreased during the two peri-
ods considered, which is indicative of improved market functioning, and of a clear trend 
towards stability. The increase in the rate of emissions through auctioning, the normalisa-
tion of market operations, the adoption of new measures, both short term (back-loading) 
and long term (MSR), together with the temporary disappearance of political instability, 
have helped raise confidence in the ETS, thus producing greater price stability (Fan et al. 
2017; Perino and Willner 2016).

Despite the problems identified along this paper, the outlook is good with regard to 
the contribution made by the EU ETS to reducing carbon emissions in the EU (European 
Commission 2017b), not only because of the improving market efficiency and the increas-
ing confidence placed in this mechanism, but also due to the current positive slope of the 
forward curve of EUA futures (Bredin and Parsons 2016).

The results of this work can enrich both practitioners and researchers. Authorities 
should be aware that the main problem facing the EU ETS is that of low prices, which 
make it impossible to generate incentives in the short or long term to invest in green energy 
and thus reduce carbon levels (FTI-CL Energy 2017). Findings show that the changes 
made between Phase II and Phase III were relevant in improving market efficiency, but that 
they are probably not enough. New regulatory measures are needed, such as the introduc-
tion of a tax to guarantee a minimum price for rights (Brink et al. 2016) or the modifica-
tion of cap levels (Koch et al. 2014), in order to achieve EUA prices that will effectively 
reduce carbon levels by 2050. It is also worth noting that several other countries are devel-
oping similar carbon markets, like India or China. The latter, for instance, learnt from the 
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European experience, and has recently created a carbon market with a “soft cap” (flexible) 
in which carbon credits (allowances) are allocated according to the actual emissions fig-
ures, and restricted to the power sector (Gan 2018). The conclusions of this work could 
guide authorities to explore and predict the impact of new legal measures and the exten-
sion to other industries. For academics, the results of this study reassert the optimality of 
GARCH models to describe the behaviour associated with fluctuations in the carbon rights 
markets, which in turn could be used in extended research on the main drivers of carbon 
prices.

This work is not exempt from limitations. First, the track record of the EU ETS market 
is relatively short, and it is still subject to several idiosyncrasies, which limits the possibil-
ity to extrapolate the results. Another limitation is that Phase III is still in progress by the 
time this work is written, so the efficacy of legal measures would be better checked at the 
end of the period.

Many significant aspects remain to be studied in future research, including the seasonal-
ity of the market, the control over arbitrage, discretionary allocations for more efficient per-
formance and best practices in comparison with other markets, such as those established 
for sulphur dioxide and nitrogen oxide. Researcher could also focus on the use of novel 
statistical approaches that can be applied (especially nonlinear approaches), recently devel-
oped, that could complement the results from more classical techniques.

Acknowledgements  This contribution was carried out with funding and support from the Social-Labour 
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