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A unified approach to the analysis of the nonstationary vibrations of piezoelectric ceramic plane layers,

cylinders, and spheres taking into account the functional inhomogeneity and viscoelasticity of the

material is proposed. The standardmodel of vibration damping and the Kelvin–Voigt viscoelastic model

are considered. The proposed approach makes it possible to study the transition of the transducer to a

static state or to a steady-state vibration mode under nonstationary perturbations. The effect of

functional inhomogeneity on the nonstationary vibrations of a piezoelectric element is analyzed. The

damping of the vibrations and viscoelastic axisymmetric vibrations of a radially polarized cylinder

under electrical and mechanical perturbation using the Heaviside function is calculated. The dynamics

of damping is analyzed, and the obtained results are compared with the static solution to validate the

results. The generation of voltage by a piezoceramic cylinder under mechanical axisymmetric loading is

also studied taking into account the viscoelastic properties of the material. It was found that the time to

reach the steady-state mode for mechanical and electrical loads is almost the same.

Keywords: nonstationary electroelasticity, piezoceramic cylinder, functionally graded material, energy

dissipation, vibration damping, Voigt viscoelastic model

Introduction. The vibrations of piezoelectric transducers under nonstationary electrical and mechanical perturbations

in the electroelastic statement were considered in [1, 5, 11, 12, 17, etc.]. The results obtained may differ from the actual values

due to the manifestation of the viscoelastic properties of piezoelectrics and material inhomogeneity. In the physical context,

nonstationary perturbations damp over time and change over to steady-state vibrations or static state, depending on the type of

load. The process of piezoelectric bodies’ reaching the steadymode under nonstationary perturbations has not been studiedwell.

Steady-state vibrations of piezoelectric bodies were widely described using a linear problem statement [2–4, 6, 7, 10,

13–16, etc.]. In particular, [6, 9, 15] describe modern methods and approaches to analyzing the dynamic behavior of electrically

elastic bodies, their interaction with acoustic and thermal fields, and working standards for determining material characteristics.

The main types, geometry, operating modes, and operating features of the most common piezoelectric elements are described in

[3].

Piezoelectric transducers can operate both in the generation mode (inverse piezoelectric effect, actuator) and in the

mode of receiving vibrations (direct piezoelectric effect, sensor) [3–6]. In the latter case, a potential difference occurs on the

open electrodes, i.e., an electrical signal is generated that can be read by other devices in the electrical circuit. The problem of

identifying the input mechanical signal from the output electrical signal for bimorphic bodies was solved in [5].

For steady-state vibrations, a common way to take into account energy damping is to introduce material characteristics

in a complex form. In this approach, the main problem is to obtain a complete set of loss tangents for the mechanical, electrical,

and dielectric characteristics of the material (10 constants total), which, in the general case, depend on the frequency range of the
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load [16]. Taking into account the energy dissipation with the help of complexmoduli makes it possible to find the real amplitude

values of the parameters of the electromechanical state of the transducer in the vicinity of resonances [4]. In the interresonance

range, energy dissipation has little effect on vibrations, and the calculation with real material constants provides a satisfactory

result. Dissipative heating of piezoelectric viscoelastic layered shells was studied using a nonlinear problem statement in [2, 13].

The problem of discrepancy between the real electromechanical state and the mathematical model can also be related to

the inhomogeneity of material characteristics. Functional inhomogeneity of the material can be specially designed and

implemented to ensure special energy conversion tasks. Functionally graded materials are obtained by combining materials with

different values of physical and chemical parameters. Functionally graded piezoelectric cells are used for sensors, actuators, and

energy harvesters since the appropriate arrangement can eliminate the disadvantages of traditional materials and enhance the

benefits of the materials used. The forced vibrations of multilayer and functionally graded piezoceramic cylinders are studied in

[10] by the method of separation of variables using spline collocations and the method of discrete orthogonalization. Themethod

of separation of variables in the coordinates õ ó, is used for rectangular plates in [14]. Functionally inhomogeneous piezoceramic

plates, cylinders, and spheres under static loads were designed in [8, 18].

One of the simplest methods for taking into account vibration damping is to introduce a damping element proportional

to the displacement rate into the equation of motion. This model of damping directly follows from the law of energy conservation

and is equally suitable for both nonstationary mode and harmonic analysis [7, 13].

The viscoelastic Voigt (or Kelvin–Voigt) model can be implemented exclusively by a viscous damper (Newtonian

viscous body) and a purely elastic element (Hookean elastic body) connected in parallel. This model qualitatively describes the

phenomenon of elastic aftereffect, in which the deformation develops with a delay relative to the applied load [7, 13]. Thus, the

damping element is introduced into the material relations and is proportional to the strain rate [7].

In this paper, a new approach to analyzing the nonstationary vibrations of functionally inhomogeneous viscoelastic

piezoceramic bodies is proposed, based on the universal approach to studying vibrations of plane layers, cylinders, and spheres

described in [1, 12].

1. Simplest Model of Vibration Damping. We consider the thickness vibrations of a plane piezoelectric element or

axisymmetric vibrations of a hollow sphere and an infinite cylinder with consideration of the functionally graded and

viscoelastic properties of thematerial. To study them, we use the generalized approach used in [1, 12] with the introduction of the

parameterN , whereN � 0corresponds to a plane piezoelectric element;N �1corresponds to a cylindrical,N � 2corresponds to a

spherical body. The following notation is used in the problem statement: radial r(for a plane layer, thickness) coordinate; electric

displacement D
r
in the direction of the axis r; �

rr
, �
��

are the radial (thickness) and circumferential (transverse) mechanical

stresses; electric potential � ; elastic moduli ñ
ij

E
at constant electric field; piezoelectric moduli e

ij
; dielectric constant �

ij

S
at

constant strain. All the material characteristics are considered to be functionally dependent on the thickness coordinate:
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33 33
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r� ( ).

Hereinafter, R
1
, R

2
are the inner and outer radii of the cylinder or sphere; h is the wall thickness of the piezoelectric

element.

All subsequent formulas and results will be represented in dimensionless form:
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where t h c
h
� �

00 00
/ , ñ ñ e

Å S

00 33 33

2

33
� � / � , � �

00
� .

Tabulated values of material characteristics are used for normalizing values.

Dependences (1.1) are chosen so that the input equations do not change their form. We omit the dimensionless signs

below.
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The simplest model of vibration damping is formed by introducing a damping term into the equation of motion in the

form of the product of rate and damping coefficient k
1
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Maxwell’s quasistatic equation in this model has the classical form
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The material relations for thickness polarization are written as follows [1]:
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Substitute (1.4) into (1.2), (1.3), taking into account the functional dependence of the material constants on the

coordinate r. The dash next to the material characteristic indicates the derivative with respect to the thickness coordinate:
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In (1.5), the replacement à c N c c� 
 
 


11 11 13
1 2( )( ) / is used.

Equations (1.5), (1.6) are supplemented with mechanical boundary conditions

u R U t
t i

( ( )
, )
� or �

rr t i
R P t( ( )
, )
� (i �1 2, ), (1.7)

boundary conditions for electric field quantities

�( )R
1

0� , �( ) ( )R V t
2
� (1.8)

and initial conditions

u U r
t
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,
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( ). (1.9)

In (1.5) and (1.6), we move from a continuum to a discrete statement in a spatial coordinate using finite-difference

expressions of the second order of accuracy. We introduce the partition r R i
i
� � 


1
1( )� (� � h m/ , i m� �1 1,... , ) and look for a

solution with respect to u u r
i i
� ( ) and � �

i i
r� ( ). We get a system of equations that can be written in matrix form as follows:
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To solve the system of equations (1.10), (1.11), an implicit time integration scheme is used. We use the Newmark

scheme (here � is the parameter of the scheme; �t is the time step; u
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Substituting (1.12) into (1.10), we obtain the system of equations
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System (1.13) is supplemented with the boundary conditions (1.7), (1.8) using (if necessary) one-sided difference

expressions
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When a piezoelectric device operates in the direct piezoelectric effect mode, the potential difference across its open

electrodes is determined by displacement using the following mathematical transformations of Maxwell’s equation [5]:
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When changing over from continuous to discrete expressions, we have
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Taking into account the functional inhomogeneity of the material, we transform (1.15) to the form
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Equation (1.15) or (1.16) is used as an electrical boundary condition when the element is mechanically loaded and

describes the relationship between the generated voltage and the displacements of the element.

2. Kelvin–Voigt Model. In the Kelvin–Voigt damping model, the equations of motion and Maxwell’s equation have

the classical form:
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The damping terms in the stress expressions are proportional to the strain rate. Since in the axisymmetric case, the

expressions include two linear strains (�
rr
, �
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) and two normal stresses (�
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), we introduce three damping coefficients
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We assume that the damping coefficients are proportional to the corresponding coefficients of Eqs. (2.3):
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Problems (2.1)–(2.3) are supplemented with the boundary and initial conditions (1.7)–(1.9).

With the introduction of the velocity v as an additional unknown function, it is convenient to change over from system

(2.1), (2.2) to a system of ordinary differential equations of the first order and apply standard methods (e.g., the Runge–Kutta

method) for time integration. Substituting (2.3) into (2.1), we get
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Equation (2.4) is supplemented with Maxwell’s equation in the form (1.6) and the boundary conditions
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The electrical boundary conditions are chosen in the form (1.8).

We look for a solution in the form of the vector

Y � � � � � � �
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i i i
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i
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1
1( )� (� � h m/ , i m� �1 1,... , ) partition
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From the difference form of Eq. (1.6) in matrix form (1.11), we express the electric potential in terms of displacement

and differentiate it with respect to time:
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� . (2.7)

We differentiate (2.5), (1.8) with respect to time and supplement the system of equations with expressions for the

unknown quantities at the edge points
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System (2.4), (2.6)–(2.8) is written in the form

�Y FY� . (2.9)

The system of differential equations (2.8) is solved by the Runge–Kutta method under the initial conditions
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3. Numerical Results. Let us consider piezoceramic hollow radially polarized cylinders (N �1) made of PZT-4

piezoceramics or a functionally graded material based on PZT-4 (table).

It is assumed that the cylindrical surfaces are free of mechanical loads (Ð Ð
1 2

0� � ), and a stepwise unit electric signal is

applied to the conductive coatings of the piezoelectric elements (V t H t( ) ( )� , H t( ) is the Heaviside function). The geometry of

the piezoelectric elements is determined by the dimensionless parameters R
1
and R

2
.

When modeling the functional inhomogeneity of the material characteristics, it was assumed that their thickness

distribution is parabolic with a factor
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where b is the deviation of the material characteristic from the tabulated values on the central fibers in percent; x r R� 


1
is the

thickness coordinate.

Figure 1 shows the vibration curves of the outer surfaces of the cylinder with radii R
1

1� and R
2

2� . When b � 0we

have an inhomogeneous cylinder material, and when b �10% and 20% all the material characteristics from the table change as in

(3.1) relative to the tabulated values.
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Figure 1 shows that functional inhomogeneity affects only the propagation rate of thickness vibrations. In this case, due

to the decrease in the material characteristics relative to the homogeneous body, the propagation velocity decreases, which is

consistent with the results in [1, 11]. The vibration amplitude of the cylinder midsurface does not depend on b, and the period

increases by 0.4% per every 10% deviation.

Figure 2 compares the damping models. Figure 2a shows the nonstationary vibrations of the outer surface of a

homogeneous cylinder with radiiR
1

3� andR
2

4� for models (1.2)–(1.4) and different values of the damping coefficient k
1
.We

see that when k
1
� 0.02, almost complete damping occurs when t

ç
� 500; when k

1
� 0.01—t

ç
� 900, and when k

1
� 0.005—

t
ç
�1500. The dimensionless unit of time for a body with a wall thickness of 1 cm corresponds to 22 10

6
. !




sec, i.e., the damping

times are 1.1 msec, 1.98 msec, and 3.3 msec, respectively. The vibrations of a viscoelastic body approach the solution of the

corresponding static problem (Fig. 2) u R( )
2
� 2.4, with the amplitude decreasing exponentially.

Figure 2b show the vibrations of the outer surface of the same cylinder according to the viscoelastic Voigt model

(2.1)–(2.3) for different values of the damping coefficient k
33
.

We can see that the amplitude decreases, approaching to the static solution. During the observation period (2.64 msec),

the amplitude of vibrations decreased by 30% when k
33
�0.01; by 53% when k

33
�0.02, and by 67% when k

33
�0.03. There

are 42 vibration cycles in the interval under consideration. Thus, it can be predicted that when k
33
� 0.03, beginning from

t
ç
� 2200, the deviation from the static value will not exceed 3%. The period of vibrations is 616 10

6
. !




sec, and the frequency is

16.2 Hz.

Figure 3 shows the results for the cylinder loaded with a unit potential difference in the static case.

The displacement is 3.6 on the inner surface and 2.37 on the outer surface. That is, from in Figs. 2 and 3, it follows that,

the viscoelastic properties of the material are taken into account, the electroelastic vibrations tend to the static solution, which is

fully consistent with the classical vibration theory and indicative of the correctness of the results obtained.

The generation of voltage under mechanical loading of the piezoceramic cylinder illustrates the direct piezoelectric

effect. Figure 4 shows the calculated for a unit external pressure P
2

1� in the static case. The displacements change from 17.74

on the inner surface to 16.42 on the outer surface. The difference in electrical potential is 1.53.

Figure 5 shows the curves of dynamic displacements of the outer surface of the cylinder and the generated voltage

between its open electrodes. Heremodel (1.2)–(1.4) forP
1

0� ,P H t
2
� ( )and the electrical boundary condition (1.15) are used.

Figure 5 shows pulsating vibrations of the outer surface. The damping with the values of k
1
considered is the same as in

Fig. 2a. The displacements tend to u R( )
2
�16.4, and the electric potential to �( )R

2
�–1.52, which is fully consistent with the

results in Fig. 4.
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The period of mechanically caused vibrations is about 12% shorter than under electrical load. Vibration frequency is

18.5 kHz. The amplitude decreases nonlinearly. The maximum displacements that occur under the step loading are twice as high

as those in the static case. The same is true for mechanical stresses.

Conclusions. A numerical solution to the problem of the nonstationary vibrations of a radially polarized viscoelastic

piezoceramic cylinder made of a functionally graded material has been obtained. The effect of the functional inhomogeneity of

the material is manifested as a change in the propagation rate of perturbations along the thickness. Comparing two models of

energy dissipation, it was found that the inclusion of a damping element proportional to the displacement rate in the equation of

motion causes damping much faster than in the Voigt model with the same damping coefficients. Numerical calculations have

shown that the perturbations caused by a nonstationary load have a vibration amplitude that is approximately twice as high as the

corresponding value in the static case. To determine the damping coefficients using both methods, it is necessary to know the

damping time in a real object. In general, the twomodels of energy dissipation have similar vibrations, i.e., the simpler one can be

used in the future.

During the study of voltage generation under mechanical load, the vibration frequency increased. With a positive

external load, the displacements occur in a positive region, and the potential difference is negative. The displacement and electric

potential curves are proportional to each other at the scale considered.

The results obtained are important for assessing the electromechanical state, including the electrical and mechanical

strength of the piezoelectric element under nonstationary perturbations. The proposed approach makes it possible to analyze

transient modes for piezoceramic planar bodies, cylinders, and spheres, including those made of functionally graded material.
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