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Two approaches to studying the free vibrations of functionally graded plates using a three-dimensional

problem statement are developed. The first approach does not have the error of approximation of the

unknown functions across the plate thickness. The distribution of the elastic modulus in the first

approach is modeled by the exponential law. In the second approach, the polynomial approximation of

the unknown functions across the plate thickness is used. The elastic modulus changes as a fourth-degree

polynomial. The second approach reduces the unknown functions to the external surfaces of the layers,

allowing the partitioning of the layers into sublayers to improve the results. These approaches are used

to analyze the free vibrations of a plate made of functionally graded material on a rigid foundation and

on a foundation in the form of a finite-thickness layer.
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Introduction. The use of composite structures, particularly those made of functionally graded materials with a high

elastic modulus gradient across the thickness of the structure, is increasing in modern engineering. These composite structures

are subjected to complex deformation conditions. They have different edge conditions and contacts on their outer surfaces, and

they are often exposed to nearly resonant dynamic loads. These characteristics can lead to significant three-dimensional dynamic

deformation.

The use of accurate methods of spatial elasticity theory to study the free vibrations of these structures is mainly limited

to the consideration of hinged plates. In particular, problems related to materials with constant stiffness characteristics were

considered in [2, 3, 15–17]. The problem of finding the frequencies of free vibrations using the discrete orthogonalization

method was considered in [1]. The design of functionally graded structures based on this approach is addressed in [1, 9]. The

classical Kirchhoff–Love plate theory, which is based on simplified hypothesis, can lead to significant errors of the

characteristics of free vibrations of plates made of functionally graded materials in certain cases.

The free vibrations of plates made of functionally gradedmaterials were studied using various refinedmodels in [5, 7, 8,

11]. Various numerical-analytical methods for the three-dimensional analysis of plates made of functionally graded materials

continue to be developed [6, 10, 12, 13, 18]. In these studies, the elastic modulus is assumed to change either exponentially or

polynomially. Despite the large number of works on the dynamic deformation of multilayered plates, we failed to find exact

solutions based on a three-dimensional statement for finding the natural frequencies of plates made of functionally graded

materials on a rigid foundation or on a foundation in the form of a finite thickness layer considering the inertial properties of the

foundation. Static loading of structures with elastic modulus dependent on the thickness was considered in [14]. Note that

previous studies using applied approaches mainly focused on structures on a foundation modeled by one modulus of subgrade

reaction (Fuss–Winkler model) or two moduli of subgrade reaction (Pasternak model).
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In what follows, we will study, for the first time, the free vibrations of plates made of functionally graded materials on a

rigid foundation and on a foundation in the form of a layer of finite thickness, taking into account the inertial properties of the

elastic foundation and using a three-dimensional problem statement. We will show that shear models for plates and models of

elastic foundations that disregard their inertial properties are inapplicable to such problems.

1. Problem Statement. Consider a layered structure described in a Cartesian coordinate system. Direction 1 is identical

to the direction X, direction 2 is identical to the direction Y, and direction 3 is identical to the direction Z. The axis Z is directed

downwards. The superscript “(k)” is the layer number. The physical and mechanical characteristics of the functionally graded

layers are related as follows:
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We study the free vibrations of functionally graded plates on an elastic and perfectly rigid foundation using two

approaches. The first approach is based on variable separation, according to which the displacement vector and the transverse

components of the stress tensor are represented as follows:
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This approach is a development of the work [14], which addressed the statics of plates on an elastic foundation with a

thickness-dependent elastic modulus, and the works [15, 16], which studied the free vibrations of plates and shallow shells using

an exact problem statement.

The system of integral-differential equations for this approach was derived variationally and can be solved analytically

in the case of hinged support. The distribution of the elastic modulus over the thickness is modeled by an exponential law. Since

this approach does not have any approximation error, the calculated results can be considered as a benchmark for testing various

approximate methods for analyzing the free vibrations of functionally graded plates.

In the second approach, the unknown functions are approximated by polynomials across the thickness of the structure.

The change in the elastic modulus is modeled using a fourth-degree polynomial. The displacement vector is represented as

follows:
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The second approach reduces the unknown functions to the face surfaces of the layer. This allows us to partition them

into sublayers across the thickness, if necessary, to minimize the approximation error.

Since free vibrations are being studied, the unknown displacement functions in both approaches are assumed to change

as e
i t�

. We will apply the approaches to the case of hinged support.

2. Approach 1 (A1) to Studying Free Vibrations Involving Analytical Search for the Distribution of the

Unknown Functions over the Thickness of the Structure. Using the kinematic equations and the expressions for

displacements and transverse stresses (1.2), we can write the expressions of strains:
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Hooke’s law [4] and relations (2.1) allow us to determine the longitudinal components of the stress tensor
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We obtain the equations of vibrations using the variational approach. In the layer plane, they take the form
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with respect to the layer thickness
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and the boundary conditions:

on the layer edge:
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In the cases of hinged edge and free vibrations, we can write
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Substituting expressions (2.5) into Eqs. (2.4), we obtain
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The solution of system (2.6) is represented in the following form [14]:
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We obtain the system of homogeneous algebraic equations
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Expanding the determinant of system (2.7), we obtain the relations between the parameters �
( )k

and �

2
. Then from

system (2.7) we obtain the coefficients �
( )k

. The unknown functions f
i

k( )
are determined as follows [14]:
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We derive the governing system of equations for integration constants C
i

k( )
by satisfying the interface conditions

between layers and the conditions on the surfaces of the sandwich (when determining the frequencies of free vibrations, the load

on the surface is absent). The parameter �
2
is determined by equating the determinant of this system to zero.

3. Approach 2 (A2) to Studying Free Vibrations with Polynomial Approximation of the Unknown Functions

across the Layer Thickness. The components of the strain tensor of the layer, using the introduced approximation (1.3), are

determined from the following relations:
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With (3.1), the stresses can be expressed using Hooke’s law:
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In view of (3.1) and (3.2), the variation of the potential strain energy takes the following form:
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The variation of kinetic energy can be written as follows:
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The equation of free vibrations can be derived from the following variational relation:
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expressions (3.3) and (3.4) and performing transformations of Eq. (3.5), we obtain the differential equations of free vibrations
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Numerical analysis based on this system will be conducted approximating the elastic modulus by a fourth-degree

polynomial. If necessary, the layers of the structure can be partitioned into sublayers.

4. Numerical Results. Let us test the applicability of the developed approach with polynomial approximation of the

unknown functions with respect to the thickness (A2) to studying the free vibrations of inhomogeneous plates made of

functionally graded material on an elastic foundation in the form of a finite thickness layer. We will consider a two-layer plate as

an example. The physical and mechanical characteristics of the material layers of the plate and the elastic foundation are as

follows:

E z Ee
z( )

( )
( )

1
1

�

�

, E z Ee
z( )

( )
( )

2
2

�

�

, E E
( )3

� (third layer is foundation);

� �

�( )
( )

( )
1

1

z e
z

� , � �

�( )
( )

( )
2

2

z e
z

� , � �

( )3
� , E �1, � �1,

�

( )1
5� 	 , �

( )2
5� , h h h

( ) ( )
/

1 2
2� � , h h

( )
/

3
19 2� , L h/ � 5, L a b� � .

Let us consider hinged support. For this case, the solution obtained with the approach (A1) can be considered as a

reference since it does not have any approximation error. In the (A2), the exponential law of change in the elastic modulus is

modeled by a fourth-degree polynomial.

Table 1 compares the first natural frequencies of the structure, obtained using the two approaches. Using the approach

(A2), we considered each layer to have one sublayer, either without or with compression, and each layer divided into 10

sublayers. For comparison, the table includes the natural frequencies determined with the approach (A1) with and without regard

to the inertial properties of the foundation.

Figure 1 shows the distribution of displacements of the two-layer plate with the inertial characteristics of the elastic

foundation taken into account. The foundation is not shown in the figure. The top part of the figure shows the displacements for

Y b� / 2, and the bottom part shows displacements for X a� / 2. The figures have been plotted using the approach (A1). They do

not differ from those plotted using the approach (A2) (omitted to save space).
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TABLE 1

� � �

2 2 2
� ( / )h E

Frequency

number

Approach (A2).

Each layer has one

sublayer; no

compression

Approach (A2).

Each layer has one

sublayer

Approach (A2).

Each layer has 10

sublayers

Approach (A1)

Approach (A1), no

inertia of the

foundation

� �

( )
.

3
0 00001�

1 1.8819e–001 1.6393e–001 1.5198e–001 1.5167e–001 1.8547e–001

2 3.0878e–001 3.0878e–001 3.0877e–001 3.0877e–001 3.7367e–001

3 3.6094e–001 3.6094e–001 3.6064e–001 3.6015e–001 9.3689e–001



Transverse bending vibrations occur at the first frequency (Fig. 1a). Planar vibrations occur at the second frequency.

The plate is compressed along one coordinate axis and expands along the other axis, and vice versa, while the displacements of

the upper and lower surfaces of the plate are equal (Fig. 1b). Planar vibrations occur at the third frequency, similarly to the

vibrations at the second resonant frequency, but the outer surfaces vibrate in opposite directions simultaneously (Fig. 1c). At the

second and third frequencies, there is no compression. The frequencies determined with the approaches (A1) and (A2) are in

good agreement only in the fourth significant digit, even when compression is neglected.

The error of the square of the first frequency is the highest. In the case of one sublayer, the approach (A2) leads to an

error of 8.1% of the square of the natural frequency. With compression is neglected, the error is 24.1%. An important feature of

the approach (A2) is the possibility to consider a layer to have many sublayers. When the layer is divided into 10 sublayers, the

results obtained with the approach (A2) are practically indistinguishable from those obtained with the approach (A1), which

confirms their reliability.

If the inertial properties of the elastic foundation are neglected, transverse bending vibrations occur at the first resonant

frequency (Fig. 1a), as in the case of taking the inertia of the elastic foundation into account. The error of the first bending

frequency is 22.3% in this case. The vibrations occurring at the second resonant frequency when the inertial properties of the

elastic foundation are neglected are similar to the vibrations at the third frequency when the inertial properties of the elastic

foundation are taken into account (Fig. 1c). At the third resonant frequency (Fig. 2), planar vibrations occur with simultaneous
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compression (tension) along the axes X andY , with noticeable tensile (compressive) displacements in the transverse direction. If

the inertial characteristics of the foundation are taken into account, such vibrations occur at the ninth frequency.

Let us consider a two-layer plate with the same physical and mechanical properties as in the previous example on a

perfectly rigid foundation. Table 2 summarizes the calculated results.

Figure 3 shows the displacement distribution.

At the first frequency, planar vibrations occur with compression along one coordinate axis and expansion along the

other axis. The vibrations at the second frequency involve simultaneous compression (tension) along the two coordinate axes. At

the third frequency, bending vibrations occur. In this case, the approach (A2) applied to the layer with one sublayer produces a

sufficient accuracy only in determining the third frequency. The error of the squared frequency is 5%. Partitioning the layers into

10 sublayers allows the approach (A2) to accurately describe free vibrations. In this case, it is necessary to consider transverse

compression.

The first three natural frequencies differ significantly from the real values. The displacement distribution at the third

frequency obtained neglecting compression (Fig. 4) does not coincide with that obtained using the three-dimensional approach

(Fig. 3c). With compression taken into account, such vibrations occur at the fourth frequency.

Conclusion. The developed approach with polynomial approximation of the unknown functions across the thickness of

the structure ensures sufficient accuracy when considering each layer to have one sublayer in studying the free vibrations of a
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TABLE 2
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2 2 2
� ( / )h E

Frequency

number

Approach (A2). Each layer has

one sublayer; no compression

Approach (A2). Each

layer has one sublayer

Approach (A2). Each

layer has 10 sublayers
Approach (A1)

1 1.2110e+000 1.21098e+000 8.26195e–001 8.23023e–001

2 1.7745e+000 1.81464e+000 1.38638e+000 1.38283e+000

3 1.4358e+001 1.88245e+000 1.79349e+000 1.79319e+000

a b

Fig. 3

0.5

1

–1 0 1 2 x –1 0 1 2 x –1 0 1 2 x

–1 0 1 2 y –1 0 1 2 y –1 0 1 2 y

0

–0.5

z

0.5

1

0

–0.5

z

0.5

1

0

–0.5

z

0.5

1

0

–0.5

z

0.5

1

0

–0.5

z

0.5

1

0

–0.5

z



plate made of functionally graded material on an elastic foundation in the form of a finite thickness layer, except for the squared

frequency of bending vibrations. Applying the approach without regard to compression leads to a significant error. Neglecting

the inertial properties of the foundation can result in both quantitative and qualitative errors of the parameters of free vibrations.

Applying the approach with polynomial approximation and without partitioning the layers into sublayers to a plate on a perfectly

rigid foundation may lead to significant errors. These approaches should be applied taking into account compression.

Partitioning the layers into ten sublayers increases the accuracy to the level ensured by the analytical determination of the

distribution of functions over the thickness of the plate.
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