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The system of partial inhomogeneous differential equations of elasticity of a three-dimensional

anisotropic body in a cylindrical coordinate system is obtained using the modified Hu–Washizu

variational principle. To reduce it to a one-dimensional one, the Bubnov–Galerkin method is employed.

The discrete orthogonalizationmethod is applied to solve the one-dimensional problem along the normal

to the shell mid-surface. The stress state of an anisotropic thick-walled composite layered cylindrical

shell acted upon by lateral pressure is analyzed. The dependence of the stress state on the angle of

rotation of the principal axes of elasticity of a unidirectional fibrous material and the number of

cross-stacked layers is analyzed.
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Introduction. Variational principles are effectively used in solving problems of solid mechanics [1–3, 5, 8, 12, 14, 15,

22, 23]. They are used to model complex structures acted upon by various physical factors. The method of discrete

orthogonalization, whose main stage is solving a canonical system of ordinary differential equations [17–21, 24], used for

solving elasticity problems with separable variables was only combined with the variational principle in [3]. The Reissner

principle represents the Hamiltonian form of Lagrange’s principle [14]. In this case, the set of necessary stationarity conditions is

formulated as a system of equations for first-order partial derivatives of the components of the displacement vector and stress

tensor. This system can be reduced to a usual normal form only by excluding the dependence of the functions on two coordinates.

The difficulties arising in deriving the canonical system based on the Reissner principle are the same as without it, but its usage is

better justified in this case [3, 12, 22]. The functional transformation methods [1, 4, 8, 14] make it possible to establish the

stationarity conditions for a functional in the form of a system of differential equations for the chosen variables. After reducing

the dimension of the problem, the system becomes of normal form. Its dimension can be reduced either by representing the

solution of the tree-dimensional problem as a series expansion in two variables or by using simplifying hypotheses of various

applied theories. In what follows, we will present a technique of modifying the functional of the generalized Hu–Washizu

principle to the required form using the linear anisotropic elasticity theory. This technique is applied to a hollow composite

thick-walled layered cylinder (Fig. 1). It is assumed that its material has one plane of elastic symmetry.

1. Basic Equations.

1.1. Variational Hu–Washizu Principle. In line with the Hu–Washizu variational principle [6], we can derive the

constitutive equations, kinematic equations, and appropriate boundary conditions using the stationarity condition of the

functional
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where the following quantities are varied without addition conditions: u
i
are displacements, e

ij
are strains,

ij
are stresses, p

i

are the stresses on the surface S
2
caused by the displacements u

i
. Also,W e

ij
( )is the potential strain energy, ( )u

i
and ( )u

i
are

the potentials of volume and surface loads; u
i
are the components of the displacement vector. Here the semicolon before the

parameters i and j denotes covariant differentiation with respect to the coordinate with index i j, 1, 2, 3. The potential strain

energy has the following vector-matrix representation:

W e B
ij

T
( )

1

2

, (1.2)

where
T

zz rr r rz z
( , , , , , )2 2 2 ; B is the stiffness matrix.

Introducing a vector
T

zz rr r rz z
( , , , , , ), we obtain the following equations from the stationarity

condition for
1
:

B , (1.3)

( )u , (1.4)

ij j i
f

,
0, (1.5)

as well as the boundary conditions
ij j i
n F on the surface S

1
and the displacements u u

i i
and the stresses p n

i ij j
on

S
2
.

Equations (1.4) relate strains and displacements. From (1.3) it follows that

A , (1.6)

where A B
1
.

The elements of the matrices A and B are denoted by a
ij
and b

ij
( , , )i j 1 6 , respectively. Since a a

ij ji
and b b

ij ji
,

the matrices A and B are symmetric. Let us establish the relationship between these matrices.

1.2. Modified Mixed Variational Principle. According to [3, 13, 16], the Hu–Washizu mixed variational principle can

be modified by splitting the vectors and into two parts:

1
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Equations (1.3) have the following matrix form:
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where, according to (1.7), the blocks A
ij
of the matrix A in (1.3) have the following expressions for an anisotropic material with

one plane of elastic symmetry:
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Using A and (1.8), we obtain

1 11 1 12 2
A A , (1.10)

2 21 1 22 2
A A , (1.11)

Then, from (1.11) we get
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1
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A A A . (1.12)

Substituting this expression into (1.10), we arrive at the expressions
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Considering

B (1.15)

we obtain
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Then, for the anisotropic material we get

1 11 1 12 2
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Comparison of (1.15) and (1.14) gives
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Substituting (1.14) into (1.12), we obtain

2 22

1

2 22

1

21 11 12 22

1

21

1

1 22

1

21
A A A A A A A A A( ) (A A A A A A

11 12 22

1

21 12 22

1

2
)

81



A A A A A A A A A A
22

1

21 11 12 22

1

21

1

1 22

1

22

1

21 11
( ) ( A A A A A

12 22

1

21 12 22

1

2
) . (1.21)

According to (1.21) and (1.18), we have
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Thus, expressions (1.19), (1.20), (1.22), and (1.23) relate the matrices in (1.3) and (1.6) of the generalized Hooke’s law

for the material under consideration.

Unlike the Hu–Washizu principle, we assume that the displacements u
r
, u , u

z
, strains

zz
,

z
, , and stresses

rr
,

r
,

rz
appearing in (1.1) are independent. From the equations
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With the new notation, the potentialW e
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( ) takes the form
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Considering (1.26) and eliminating
1
from (1.27), we get
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After simple transformations, we finely obtain
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We transform the expression
ij ij

in a similar way. Comparing the matrix expressions
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A A and
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B B , we see that B B A A
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Eliminating
2
from the expression
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u( ), we get
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With (1.28)–(1.30), the potential becomes
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Also, according to (1.1), we have
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where u
r
, u , u

z
are the displacements that coincide with the axes of the cylindrical coordinate system shown in Fig. 1; h

1
and

h
n 1

are the thicknesses of the first and (n + 1)th layers of the shell, respectively.

Varying the potential of the surface loads (1.32), we arrive at the variation of the work done by external forces:
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where q q q
r r r

, q q q , q q q
z z z

, while p
i

0, i 1 3, .

Then the potential
1
appearing in (1.1) can be represented in final form:

Ï
1 1 1 2

1 2

W u dV u dS p u u dS
i i

S

i i i

SV

( , ) ( ) ( ) ( ) . (1.34)

The expression for
1
is a part of functional (1.1). Then, the variation of functional (1.34) caused by the change in the

components of the displacement vector u and stresses
1
becomes
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In what follows, we will use the following linear kinematic equations from [11]:
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where e
rr

i
are the linear strains along the coordinate axis r; e

rz

i
and e

r

i
are the shear strains tangent to the corresponding

coordinate surfaces.

Using the stationarity condition of functional (1.35), the expressions for the stresses
1

T

rr r rz
( , , ),

displacements u u u u
T

r z
( , , ), the kinematic equations (1.36), and the variations of the work done by the external forces

(1.33) and equating the coefficients of the independent variations
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r
,
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and u

r
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z
in the integral over the

volume V, we get
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where r is the cylinder radius independent of the coordinates z and ;
rr

i
,

rz

i
,

r

i
are the components of the stress tensor (1.7);

u
z

i
, u

i
, u

r

i
are the displacements of points of the ith layer of the shell along the axes of the cylindrical coordinate system z, , r;

q q q
r z
, , are the projections of the vector of specific volume forces onto the tangents to the coordinate lines r, z, ; c

kl

i
(k, l = 1, 2,

3, 6) are constants characterizing the ith layer determined from the mechanical constants a
kl

i
[9, 13] of the shell material as

follows:
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Thus, using the variational equation (1.35), we have derived the system of six inhomogeneous differential equations of

linear elasticity for the three-dimensional shell model (1.37). It includes partial derivatives with respect to six components of the

vectors
1

T

rr r rz
( , , ) and u u u u

T

r z
( , , ) and can be used to analyze the stress–strain state of an anisotropic layered

thick-walled composite cylindrical shell.

The solution of system (1.37) must satisfy the boundary conditions on the lateral surfaces:

rr r
r z q z
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1

0
( , , ) ( );

rz
r z

0

1
0( , , ) ;

r
r z

0

1
0( , , ) at r r

1
;
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n

r

n
r z q z( , , ) ( )
2

;
rz

n
r z( , , )
2

0;
r

n
r z( , , )
2

0 at r r
2
; (1.38)
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the conditions at the ends z 0, z L (Fig. 1):
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u u 0 (1.39)

and the perfect bonding conditions for layers:
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1
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i
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1
,

u r u r
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i

i z

i

i
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1
, u r u r
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i

i

i
( ) ( )

1
, (1.40)

where i is the layer number. Conditions (1.39) mean that there are diaphragm perfectly rigid in its plane at the cylinder ends [7].

In (1.38), q z
r

0
( ) and q z

r

n
( ) are the internal and external pressures, respectively, on the lateral surfaces of the shell.

2. Problem-Solving Technique. Reduction of the elasticity equations of the three-dimensional shell model to a

unidimensional one. To solve the system of equations (1.37) subject to the boundary conditions (1.38) and (1.39), we will use the

Bubnov–Galerkin procedure. Following it, we expand all the functions into trigonometric series [7] in coordinates z and so that

they satisfy the boundary conditions (1.39):

rr pk mk

km

r z y r k y r k( , , ) [ ( )cos ( )sin ]
, ,1 1

01

sin l z
m

,

rz pk mk
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m

,

r pk mk
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sin l z
m

,
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m

,
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m

,

u r z y r k y r k
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( , , ) [ ( )sin ( )cos ]
, ,6 6

01

sin l z
m

, (2.1)

where y
i pk,

and y
i mk,

(i 1 6, ) are the components of the stress–strain state in the Fourier series; p, m, and k are the wave

numbers in the series; l m L
m

/ is the parameter where L is the length of the cylinder generatrix (Fig. 1).

After mathematical rearrangements and separation of variables in (1.37) and use of formulas (2.1), we obtain, for the ith

layer, the following system of twelfth-order differential equations in Cauchy form:

dy
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T r y f

i
i i i
( ) , T r t r

i
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i
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,
( , ,... , )n l 1 12 , (2.2)

where y y y y y y y y y
i

p

i

p
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p

i

p

i

p

i

p

i

m

i

1 2 3 4 5 6 1 2, , , , , , , ,
, , , , , , ,

m

i

m

i

m

i

m

i

m

i
y y y y, , , ,

, , , ,3 4 5 6
is the unknown vector function; f

i
is

the load. The nonzero elements of the matrix T r
i
( ) and the coefficients of the unknowns in (2.2) are given in [21].

The one-dimensional stress–strain state problem for a thick-walled cylindrical shell can be solved using the numerical

discrete-orthogonalization method [17–20].
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System (2.2) with the boundary conditions (1.38) can be solved to find the stresses
rr

i
,

rz

i
,

r

i
and displacements u

r

i
,

u
z

i
, u

i
for the variable z by substituting the corresponding coordinate z along the cylinder generatrix 0 z L into the

trigonometric series (2.1).

The stresses
2

T

zz z
( , , ) for the chosen material can be expressed in terms of the unknown functions of the

generalized Hooke’s law (1.15):
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i i
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16 26 66 36
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To determine these components, we will employ kinematic equations from [11] for e
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i
, e

i
, e

z

i
:

e
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z
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, e
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r

i1 1

, e
u

z r

u

z

i

i

z

i
1

, (2.4)

where e
zz

i
and e

i
are the linear strains along the coordinate axes z, ; e

z

i
are the shear strains tangent to the corresponding

coordinate surface.

3. Analysis of Numerical Results. Let us consider, as an example, a layered thick-walled anisotropic cylindrical shell

made of a fibrous composite (Fig. 1). The shell is acted upon by distributed pressure q q z L
0
sin( / ), q

0
1.0 MPa. The

principal axes of elasticity of the orthotropic material can rotate through an angle about the shell generatrix (Fig. 1).

The shell material is boroplastic with the following mechanical characteristics: Å Å
11 0

280 , Å Å Å
22 33 0

31 ,

G G Å
12 23 0

105. ,G Å
13 0

21.2 , v
21

0.25, v
12

0.0277, Å
0

10000 MPa. The shell dimensions are: the radius of the inner

and outer lateral surfaces r
1

0.54 m and r
2

0.66 m, the length L = 1.2 m.

The stress state of the shell was analyzed for varying number of layers (from one to eight) and for the angle changing

from 0 to 90°. The orthotropic case was also considered by equating themechanical characteristics c
16
, c

26
, c

36
, and a

45
to zero.

The results are presented in the figures below. Figures 2–7 represent the following stresses:
rr
(Fig. 2),

rz
(Fig. 3),

r

(Fig. 4),
zz
(Fig. 5), (Fig. 6), and

z
(Fig. 7). The stresses

rr
,

zz
, and were calculated at the point z = 0.5L on the

outer surface, while the stresses
rz
,

z
, and

r
were determined at the points z = 0 (

rz
,

z
) and z = 0.25L (

r
) of the

mid-surface. The curves are denoted as follows: 1 for single layer, 2 for two layers, 3 for three layers, 4 for four layers, and 1 for

the orthotropic case.

The results for an anisotropic (orthotropic) thick-walled cylindrical shell with five and more layers are omitted here.

This is because a thick-walled anisotropic cylinder with four symmetrically cross-stacked layers with the boundary conditions
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(1.39) under a lateral symmetric load is considered virtually orthotropic. Such orthotropic solutions were obtained in [3, 10] for a

cylindrical shell with L r/ 2(r is the mid-surface radius) which was found to become orthotropic when the number of layers is

equal to 14 and 7, respectively.

As can be seen from Figs. 2–7, the stresses obtained for one- and two-layer anisotropic cylinders using the above

approach differ from those determined without usage of the anisotropic mechanical characteristics of the material. Figure 2

shows that this difference for the normal stress
rr

in the single-layer shell is equal to 2.5% and decreases with increasing

number of layers, becoming zero for four layers. The stress
rr
depends on the angle . For example, the stress

rr
reaches its

minimum for 30° 40°, the difference between it and the values at 0 and 90° being 16%.

The difference between the values of the shear stress
rz
(Fig. 3) found with and without allowance for the anisotropic

mechanical characteristics increases from 16% to 43% as the number of layers changes from one to two. As the number of layers

increases to four, this difference tends to zero. The shear stress
rz
decreases in absolute magnitude with increase in the angle of

rotation of the principal axes of elasticity from 0 to 90°.

The shear stress
r

(Fig. 4) that is absent in the orthotropic case arises in solving the problem with the proposed

approach. In this case, increasing the number of layers to two increases the maximum values of the stress. With further increase

in the number of layers, this stress decreases to zero.

Figure 5 shows that the normal stress
zz
varies similarly to

rz
. The value of

zz
at 90° is 3% of the same value at

0. Also, the values of
zz

for single-layer shells obtained with the proposed approach differ from those in the orthotropic

case. This difference is maximum (40%) is the range 50° 60°.

Unlike
rr
, the normal stress (Fig. 6) become maximum in the range of angles from 30° to 40°. The maximum

difference between these stresses is at 0 and equal to 32%. The effect of the number of layers on is insufficient. The

maximum difference between single-layer and four-layer shells is 2%.
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Figure 7 shows how the shear stress
z

varies with the angle of rotation of the principal axes of elasticity, when load

acts on the outer lateral surface of the shell. In this case, the stress is maximum for 20° 40° if the number of layer is odd and

for 50° 60° if the number of layers is even.

Conclusions. Based on the modified Hy–Washizu variational principle, we have obtained a three-dimensional system

of equations describing the stress–strain state of a thick-walled anisotropic cylindrical shell. To solve the system, the

Bubnov–Galerkin and the discrete-orthogonalization methods were used. The approach we have developed makes it possible to

solve spatial problems of the stress–strain state of thick-walled layered cylindrical shells made of anisotropic material with one

plane of elastic symmetry. As an example, the stress state of an anisotropic thick-walled composite cylindrical shell under a

lateral external load was analyzed for different angles of rotation of the principal exes of elasticity and different the number of

layers.
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