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The current and residual deflections of sheet members during one- and two-layer build-up with three

steels under different support conditions are analyzed. A mathematical model of the process is

developed. It is based on the theory of built-up bodies, the unified model of viscoplastic flow, and

continuous cooling transformation diagrams for microstructural transformations during cooling. The

method of numerical modeling of the build-up process based on the finite-element approach is

developed. A significant effect of microstructural transformations and support conditions on the

residual deflection of surfaced sheet members is established. The correlation between the calculated and

experimental data is satisfactory. The obtained results can be used to determine the parameters of the

processes of surfacing sheet members.
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Introduction. Metal build-up (surfacing) is a process that imparts special properties to the working surfaces of

structural members, depending on the operating conditions, such as wear resistance, thermal stability, creep resistance, corrosion

resistance, etc. [6, 7].

There are two classes of problems associated with the geometric properties of surfacing objects. The first class includes

problems in which the weight of the deposited metal does not exceed several percent of the total weight of the parts. This class

includes rolls of rolling mills, rolls of continuous casting machines, NPP reactors, etc.

The second class of problems relates to the modeling of processes during the surfacing of thin-walled members, for

example, tubular or sheet members, for which the thickness of the surfacedmetal is proportional to the thickness of the parts. The

process modeling aim is not only to determine the stress–strain state but also to assess the warping.

Note that when surfacing, especially multilayer thin-walled elements, the thermomechanical fields are strongly

dependent on the thickness. Therefore, models that are based on hypotheses for plates and shells have questionable reliability.

The results obtained in the framework of a spatial problem statement are more reliable.

The subject of mathematical modeling is the current and residual thermomechanical state of parts during surfacing. The

results on this problem are generalized in [3, 6, 7, 17, 18, 21, 22]. A review of the literature allows us to conclude that the

surfacing problems of the second class have been studied inadequately.

This paper examines the results of modeling thermomechanical processes during the build-up of prismatic sheet

members with rectangular in cross-section made of St3sp steel with one or two layers of liquid steels Sv-08A, Kh18N9T, and

25Kh5FMS using the model of growing bodies [1, 8, 9, 15, 19].

The thermomechanical behavior of materials is described by the Bodner–Partom inelastic flow equation [13, 23]. The

microstructural transformations are described using continuous cooling transformation diagrams of austenite decomposition

during cooling [10–12]. The problem is solved by the finite-element method [4, 24].
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1. Subject of the Research.Consider a sheet (laminated) member made of St3sp steel with rectangular cross-section in

the planeOxy. The shape and dimensions of the plate and surfaced rollers are shown in Fig. 1.

Figure 2 schematizes the smooth support of the plate and fixation of sections length l
c
of the edges. For comparison, the

support scheme with a gap between the plate and the foundation (free support) under the same fixing conditions for the edges is

also considered.

To reduce the three-dimensional problem to a two-dimensional one, we use the scheme of simultaneous (instantaneous)

build-up of the roller in the directionOz. In this case, the task is to solve either the problem of plane strain state (PSS) or the

problem of PSS in the planeOxy, depending on the fixation conditions.

In the case of two-layer surfacing, we consider the schemes of building up the rollers without (Fig. 3a) and with

(Fig. 3b) displacement and a simplified scheme for successive instantaneous build-up of layers (Fig. 3c).

2.Model ofMicrostructural Transformations. In the thermomechanical processes of build-up (surfacing), allotropic

transformations in the body due to the decomposition of austenite (� � A) in steels into the phases of ferrite (� � F), pearlite

(� � P), bainite (� � B), andmartensite (� �M) during cooling are taken into account. The transformation of austenite is described

by the continuous cooling transformation (CCT) diagram. Figures 4 and 5 show such diagrams for St3sp and 25Kh5FMS steels

[10, 11]. The bold lines show the boundaries of the transformation domain, while the thin lines are the cooling curves. The

figures near the curves are the volume percentages of austenite decomposition at the exit from the transformation domain.

The law of accumulation of a new phase � �( , , , )� F P B M in the domains along the cooling trajectory is given by the

Koistinen–Marburger phenomenological equation [16]:
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s e
, are the temperatures of the start and end of the transformation; p C� �� �100%, p

e� is the maximum value of the

new phase for this trajectory;C� is the volume fraction of the phase, 0 1 1� � ��C C� ��
, , k is the material constant.

The thermomechanical characteristics of each phaseY� are calculated taking into account the temperature dependence

Y Y� � �� ( ). The linear mixing rule is used to calculate the macrocharacteristics Y for an arbitrary phase composition. The

general formula is

Y t C t Y( , ) ( , ) ( )� � ��
�

��� . (2.1)

Physical quantities calculated using the mixing rule can be heat capacity c
V
; thermal conductivity k; Young’s modulus

E; coefficient of linear thermal expansion�; Poisson’s ratio�, and flowmodel parameters. In Eq. (2.1) and below, the summation
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is over the repeated index. The mixing rule is used over a wide range of temperatures and is in agreement with the experiments in

[3, 14, 15, 18].

The thermophase strain ��
ij

ph
is determined using the specific volumes of the phasesV� according to the formula
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Here � is the current temperature; �
r
is some reference temperature.

The temperature dependence of the specific volumesV� �( ) for the phase � in m
3
/kg, at �

r
� 20 °C is taken in the

following form [12]:

V V
r� � �� � � �( ) [ ( )]� � �

0

1 3 ,

where �� is the coefficient of linear thermal expansion of the phase �;V�
0

is the specific volume of the phase �at the reference

temperature.

3. Model of Built-Up Bodies. A feature of the build-up model is that all the components of the stress tensor are

specified on the build-up surface [1, 21]. According to Figs. 1–3, the following conditions must be satisfied in the element being

built-up:

� � � � � �
xx yy zz xy yz xz

� � � � � � 0 at t t� *
, (3.1)

where t
*
is the build-up moment of the roller.

The finite-element method is used to solve the problem. Consider a roller (Fig. 1) built up of liquidmetal and attached to

a finite-element (FE) mesh. Initially, it has the properties of the “void” material, which is considered thermoelastic and has

parameters E n a a
f

� � �0 0, , , where E is Young’s modulus; � is Poisson’s ratio; �
f
is the coefficient of linear thermal

expansion. The thermophysical characteristics of the “void” are assumed to be the same as those of the build-up material.

At the moment t
*
of filling the roller, let its empty finite elements �V t( )

*
have strain �

ij

*
and let it be filled with a

material with temperature �* .

Thus, conditions (3.1), in fact, mean that when t t� *
,

� � �
ij ij
( , )

* * � 0 in �V t( )
*
. (3.2)

It is assumed that the inelastic strain of an element of the layer built up at t t� *
is equal to zero:
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ij
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t( )
* � 0 in �V t( )

*
. (3.3)

In order for the constitutive equations of Hooke’s law for the build-upmaterial to be consistent with condition (3.1), it is

necessary and sufficient to modify these equations as follows:
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where s e
ij ij
, are the deviators of stress and strain tensors;G K

f f
, are the shear and volume compression moduli of the build-up

material; K
0
is the isotropic hardening parameter in Eq. (4.2); ��

ij

ph
is the thermophase strain (2.1); � ��

ij

ph
( )

* � 0. Here, the

subscript f refers to the build-up material. Thus, to satisfy the build-up condition (3.1), all elements that are built up at t t� *

have constitutive equations individualized by those specific values of strain �
ij

*
and temperature �* at which they were filled.

Under conditions (3.1), the state (� �
ij

* *
, ) for these elements can be interpreted as a natural one since it does not cause stresses.

The process of filling elements and the technological parameters of surfacing are detailed in [6, 7].

4. Problem Statement. With the above equations and notation, the mathematical problem statement includes the

following equations:

– the equilibrium and thermal conduction equations

�
ij j,

� 0, c k Q
v i j
�

( , ),� �� � (4.1)

with the boundary and initial conditions
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The mechanical boundary conditions are specified as build-up and fixation conditions for an element:

– the flow equation
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for the main material �
ij

*
( )0 0�

– the evolution equation for the isotropic hardening parameter

�

( ) �K m K K w
p

� �
1 1

, K ( )0 0� , (4.3)

whereG G
f

, andK K
V Vf
, are shear and volume compression moduli;K

0
andK

1
are determined by the formulasK C K

0
0

� � � ,

K C K
1

1

� � � ; C� are the volume concentrations of the phases, � � A F P B M, , , , , respectively, of austenite, ferrite, pearlite,

bainite, and martensite; K �
0

, K �
1

, m
1
, n, D

0
are the parameters of the model; �w

p
is the plastic strain rate; s

i
is the second

invariant of the stress tensor; � �w
p ij ij

p� � � , s s s
i ij ij

2
1 2� / ;Q is the heat source; k and c

v
are the averaged coefficients of thermal

conductivity and volume heat capacity of the mixture of phases
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k C k� � � , c C c
v v
� � � .

The parameters K
0
and K

1
are calculated using the data from [11].

Some materials, such as steels, annealed copper, and aluminum, have significantly flattened initial sections of the

tension diagrams. whenm
1
�const, the standard Bodner–Partommodel provides a too sharp transition from the elastic region to

the hardening section. To obtain greater flexibility and better agreement with the test results, Eq. (4.3) should bemodified, where

the parameter that affects the hardening rate is considered as a function of plastic work or another hardening parameter.

If the parameter m
1
depends on plastic work, we suggest the following evolution equation:

� ( ) � , ( )m m m m w m m
c b p a1 1 1 1 1 1

0� � � , (4.4)

wherem
a1
,m

b1
,m

c1
are positive constants. Integrating this equation and taking into account the initial condition, we obtain [13]

m m m m m w
b a b c p1 1 1 1 1

� � � �( )exp( ). (4.5)

Formaterials with so-called temperature-dissimilar tension diagrams, typical of low-carbon steels, Eq. (4.5) is modified

as proposed in [20]: the limiting value of the variable hardening coefficient m
b1
is taken as a function of the inelastic strain that

can be represented in the form

m m m m
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where m
b1

1( )
and m

b1

2( )
are the initial and limiting values of the parameter m

b1
; q is the model parameter; �

eff

p
is the plastic strain

intensity, �
eff

p

ij

p

ij

p
e e� �

2

3

; � �
0

p
( )is the plastic strain of transition from the yield plateau to the hardening section of the uniaxial

tension diagram (Fig. 6).

5. Thermomechanical Characteristics of the Material. The determination of thermophysical and mechanical

characteristics of materials is a rather complex task needed to obtain reliable results. It is important to account for the dependence

of these characteristics on temperature and phase composition because they change significantly in the range of change in

temperature. The characteristics for the basic phase composition of the materials are presented below. These data are used to

determine the characteristics of the model for the current phase composition according to the algorithm presented in [22].

To calculate the parameters of the flowmodel, we use uniaxial tension diagrams for a constant strain rate. Figures 6 and

7 show tension diagrams from [2, 5] for St3sp and Sv-08A steels at different temperatures and �� � � �
5 10

4
sec

–1
. The dotted and

solid lines correspond to experimental and calculated data, respectively. The numbers on the right side of the figures are

temperatures in °C.
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The temperature dependences of the Bodner–Partom model parameters for St3sp steel, obtained by processing these

diagrams taking into account (4.4), (4.5), are presented in Table 1. The quantitiesm
c1

10� , �
0

p �0.008, q � 5do not depend on the

temperature �. Hereinafter, D
0

4
10� sec

–1
.

The temperature dependences of the flow model parameters for Sv-08A steel, with (4.4) taken into account, are

presented in Table 2 (q �10does not depend on �).

Figure 8 shows the tension diagrams for 25Kh5FMS steel corresponding to the experimental data beyond the yield

point and ultimate strength given in [5]. Figure 9 shows tensile diagrams for Kh18N9T steel [2, 5]. The full circles correspond to

the experimental data.

The parameters of the Bodner–Partom model for this steel depending on the temperature, obtained using the standard

model (4.3), are presented in Table 3 for m
1
� 1.4 MPa

–1
. Table 4 collects the model parameters for Kh18N9T steel [2, 5].

The temperature dependences of the thermophysical characteristics of materials are taken from [2, 5].

6. Numerical Methods for Solving the Problem. The problem is solved using the methods developed in [4, 6, 7, 20].

The equations with time derivatives are integrated using an implicit scheme with a variable integration step. The nonlinear

boundary-value problem of thermomechanics is solved at each step using a simple iteration method and the Steffensen–Aitken

convergence acceleration procedure. The linearized problem is solved at each iteration by the finite-element method using a

quadrilateral isoparametric element.
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TABLE 1

�, °Ñ E � �
10

5
, MPa n m

a1
, MPa

–1

m
b1

1( )

, MPa
–1

m
b1

2( )

, MPa
–1 K

0
, MPa K

1
, MPa

20 1.98 1.78 0.015 0.015 0.015 685 410

200 1.82 1.305 0.015 0.015 0.18 890 730

300 1.79 1.04 0.14 0.14 0.14 980 1450

350 1.77 0.91 0.13 0.13 0.13 1066 2120

500 1.44 0.85 0.22 0.22 0.22 1210 1050

600 1.14 0.70 1 1 1 719 206

700 0.74 0.5 1 1 1 740 950

TABLE 2

�, °Ñ n m
a1
, MPa

–1
m

b1
, MPa

–1
K
0
, MPa K

1
, MPa

20 1.25 5 0.025 540 720

300 0.90 5 0.065 600 1625

400 0.75 7 0.025 1256 1100

500 0.37 10 0.020 7000 8500

600 0.32 10 0.020 9000 9000

700 0.29 10 0.200 9000 9000



7. Calculation of Deflections of Sheet Member during Surfacing. The build-up of the rollers was modeled as

schematized in Figs. 1–3.

Input data: l � 100 mm, h � 3 mm, �h � 2.3 mm, �l � 5 mm, l
c
� 25 mm, l

z
� 200 mm, where l

z
is the length of the

member along the OZ axis.

The heat transfer coefficient � � 30 W/m
2
°C for the plate surface and � � 100 W/m

2
°C for the foundation surface.

The roller and adjacent material strips are preheated during t
Q

� 9 sec by volumetric heat sources. Their power

corresponds to the enthalpy of the melt that is poured in it and to heating by an electric arc to � � 1550 °C.

When this temperature is reached, the actual temperature �* and strain �
ij

*
of the empty elements of the roller are

recorded. Then they are filled with surfacing material whose mechanical properties are described by Eqs. (3.4), (4.2)–(4.5).

After cooling for t
0
= 23 sec, surfacing cycles are repeated until the end of the surfacing process. A total of 20 rollers are

built up. After cooling, the element is freed from the fastenings shown in Fig. 2, and its residual deflection is measured.

The effect of the martensitic transformation on the kinetics of temperature and displacements is shown at a point in the

main material under the 11th roller (x � � �
55 10

3
m, y � � �

25 10
3

. m) that is surfaced during t &(230–239) sec according to Fig. 2
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TABLE 3

�, °Ñ n K
0
, MPa K

1
, MPa

20 1.20 4670 1190

100 1.16 4675 1400

200 1.12 4675 1590

300 1.08 4670 1920

400 1.03 4670 2270

500 0.93 4100 2575

600 0.80 4300 2115

700 0.65 5660 2000

800 0.52 7900 200

TABLE 4

�, °Ñ n
m
1
,

MPa
–1

K
0
, MPa K

1
, MPa

20 1.05 0.043 1360 2100

400 0.93 0.12 1220 1200

0.90 0.155 1050 1190 1190

800 0.85 0.24 1030 1100



when the lower boundary is free. Such curves are shown in Fig. 10a for the case of surfacingwith Sv-08A steel and in Fig. 10b for

surfacing with 25Kh5FMS steel, which undergoes phase transformations during cooling.

In the second case, there is a significant increase in the deflection in the domain of martensitic transformation. The open

circles in Fig. 10b show the moments of entering and exiting the austenite–martensite transformation domain. The dashed lines

bound this domain on the axes �and t. The instantaneous change in the deflection at t �1100 sec corresponds to the release of the

right edge of the plate from smooth fixing.

Figures 11a and 11b compare the residual deflections during roll surfacing (Fig. 2) after releasing the fastening of the

ends of the member during surfacing with Sv-08A and 25Kh5FMS steels, respectively, and the free lower boundary.

Figures 12a and 12b compare the residual deflections for similar problems with smooth support on the lower boundary.

Figure 12a and 12b shows surfacing with Sv-08A steel and 25Kh5FMS steel, respectively.

The deflections in the case of smooth support (Fig. 12) are significantly smaller than in the case of free lower boundary

(Fig. 11).

During surfacing with 25Kh5FMS steel in similar load conditions, the deflections are higher (Figs. 11b and 12b) due to

the martensitic transformations, especially in the case of free lower boundary (Fig. 11b).

In the case of simultaneous surfacing, we have the following results. Figures 13a and 13b compare the curves of

displacements in the main material at the point (x � � �
50 10

3
m, y � � �

25 10
3

. m) for Sv-08A and 25Kh5FMS steels, respectively,

in the time interval t &0–9 sec in the case of free lower boundary. The notation is the same as in Fig. 10.

Although the displacement kinetics differ in the case of phase transformations (Fig. 11b), the residual deflections differ

insignificantly.

Calculations show that the roll surfacing model predicts larger deflections for both smooth support and free boundary

cases compared to the simultaneous surfacing model.

For three surfacing steels Kh18N9T, 2Kh5FMS, and Sv-08A, experimental and calculation data for single-layer

surfacing in the cases of smooth support and support with a gap are summarized in Table 5.

Typical deflections were determined as follows. After cooling and freeing the fixed edges, the sample was placed on a

smooth plate, and the normal displacement of the upper surface of the plate was measured. The maximum local deflection in the
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cross-section z l
z

� /2 of the built-up part of the plate was taken as the typical deflection given in this table. This typical

deflection is always positive. Columns 1 and 2 contain the calculated data for simultaneous and roll surfacing, respectively.

Column 3 contains the experimental data.

Table 5 demonstrates that the deflections in the case of plane strain state are larger than in the case of plane stress state,

except for the materials with martensitic transformations (25Kh5FMS). For these materials, larger deflections are due to

volumetric transformation effects. Note that during surfacing with a gap between the plate and the welding table, the deflections

are larger than when the plate is tightly pressed to the table.

Similar calculations and experiments were carried out for two-layer surfacing. In particular, the following deflections

were obtained for Sv-08A steel and smooth support. Schemes without overlap of the rollers (Fig. 3a): 1.02 mm in the case of

plane strain state and 0.91 mm in the case of plane stress state. The scheme of successive simultaneous surfacing: 1.00 mm in the

case of plane strain state and 0.91 mm in the case of plane stress state. The experimental deflection is 0.8 mm. The calculated

deflections in the cases of roller surfacing with and without overlap differ by less than 10%.

The disagreement between the calculated and experimental results is due to the inaccuracy of the mathematical model

(because of neglecting the contact interaction between the plate and the smooth support) and the technical difficulties in ensuring

all the fixation and measurement conditions during the experiments and the number of samples used.

Conclusions. The current and residual deflections of plates made of St3sp steel during build-up using Sv-08A,

Kh18N9T, and 25Kh5FMS steels have been calculated in the cases of free boundary and smooth support on the lower surface of

the element. In the case of smooth support, the residual deflection is smaller than in the case of free boundary.

During build-up of materials with martensitic transformations, the deflections are larger due to volumetric effects.
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TABLE 5

Support

conditions

Plane strain

state/Plane stress

state

Materials for surfacing

Kh18N9T 25Kh5FMS Sv-08A

Deflections: calculated (1, 2) and experimental (3) data, mm

1 2 3 1 2 3 1 2 3

Smooth

Plane strain state 1.45 1.61

0.7

1.52 1.69

1.7

1.21 1.22

0.7

Plane stress state 1.34 1.38 1.93 1.72 1.13 1.12

With

gap

Plane strain state 2.77 2.18

2.0

2.81 4.96

2.5

2.84 2.27

1.2

Plane stress state 2.66 1.68 2.55 4.22 2.35 1.69



In the case of plane strain state, the deflections are larger than in the case of plane stress state, except for the materials

with martensitic transformations (25Kh5FMS).

Except for the steel with martensitic transformations (25Kh5FMS), the simultaneous build-up model predicts a larger

deflection than the roll build-up model does and can be used to estimate the upper limit of the deflection.

The deflections in two-layer build-upwith andwithout overlap of the rollers in successive layers differ insignificantly.

The calculated results satisfactorily correlate with the experimental data.

REFERENCES

1. N. Kh. Arutyunyan, A. D. Drozdov, and V. E. Naumov,Mechanics of Growing Viscoelastoplastic Bodies [in Russian],

Nauka, Moscow (1987).

2. N. I. Bezukhov, V. L. Bazhanov, I. I. Gol’denblat, N. A. Nikolaenko, and A. M. Sinyukov, Strength, Stability, and

Vibration Analyses at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).

3. A. S. Zubchenko (ed.),Database of Steels and Alloys [in Russian], 2nd edition, revised and expanded, Mashinostroenie,

Moscow (2003).

4. V. I. Makhnenko, Safe Operation Life of Welded Joints and Components of Modern Structures [in Russian], Naukova

Dumka, Kyiv (2006).

5. I. A. Motovilovets and V. I. Kozlov, Thermoelasticity, Vol. 1 of the six-volume seriesMechanics of Coupled Fields in

Structural Members [in Russian], Naukova Dumka, Kyiv (1987).

6. I. A. Ryabtsev and I. K. Senchenkov, Theory and Practice of Surfacing Operations [in Russian], Ekotekhnologiya, Kyiv

(2013).

7. I. A. Ryabtsev, I. K. Senchenkov, and E. V. Turyk, Surfacing: Materials, Technologies, Mathematical Simulation [in

Russian], Izd. Silezsk. Politekhn. Inst., Gilwice (2015).

8. I. K. Senchenkov, L. M. Lobanov, O. P. Chervinko, and N. A. Pashchin, “Patterns of relative longitudinal displacements

of plates during butt electric welding,” Dop. NAN Ukrainy, No. 6, 66–70 (1998).

9. I. K. Senchenkov, I. A. Ryabtsev, E. Turyk, and G. A. Tabieva, “Calculation of residual stresses in multilayer spiral

surfacing of cylindrical parts based on the theory of build-up of viscous plastic bodies,” Svaroch. Proizv., No. 9, 18–25

(2005).

10. A. A. Popov and A. E. Popova, Isothermal and Continuous Cooling Transformation Diagrams of Supercooled

Austenite. Heat-Treater Reference Book [in Russian], GNTI Mashlit, Moscow–Sverdlovsk (1961).

11. M. Kh. Shorshorov and V. V. Belov, Phase Transformations and Changes in Steel Properties During Welding. Atlas [in

Russian], Nauka, Moscow (1972).

12. S. F. Yur’ev, Specific Volumes of Phases in the Martensitic Transformation of Aaustenite [in Russian], Metallugizdat,

Moscow (1950).

13. S. R. Bodner, Unified Plasticity – an Engineering Approach, Final Rep. Technion, Israel Inst. Of Tech., Haifa (2000).

14. L. Börjesson and L. E. Lindgren, “Simulation of multipass welding with simultaneous computation of material

properties,” ASME, J. Eng. Mater. Tech., No. 123, 106–111 (2001).

15. N. W. Klingbeil, J. L. Beuth, R. K. Chin, and C. H. Amon, “Residual stress-induced warping in direct metal solid

freeform fabrication,” Int. J. Mech. Sci., 44, No. 1, 57–77 (2002).

16. D. Koistinen and R. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in

pure-carbon alloys and plain carbon steels,” Acta Metallica, No. 7, 59–60 (1959).

17. L. E. Lindgren, Computational Welding Mechanics – Thermomechanical and Microstructural Simulations, CRC Press,

Cambridge (2007).

18. D. Radaj, Welding Residual Stresses and Distortion. Calculation and Measurement, DVs Verlag GmbH, Dusseldorf

(2003).

19. I. K. Senchenkov, “Thermomechanical model of growing cylindrical bodies made of physically nonlinear materials,”

Int. Appl. Mech., 41, No. 9, 1059–1065 (2005).

20. A. Y. Shevchenko, M. V. Banyas, and I. K. Senchenkov, “A variant of the equations of nonisothermal plastic flow,” Int.

Appl. Mech., 48, No. 5, 602–607 (2012).

592



21. I. K. Senchenkov, O. P. Chervinko, M. V. Banyas, “Modelling of thermomechanical process in growing viscoplastic

bodies with accounting of microstructural transformations,” in: F. Hetnarski (ed.), Encyclopedia of Thermal Stresses,

Springer Sci-Disness Media Pordrecht, No. 6, pp. 3147–3157.

22. I. K. Senchenkov and N. D. Oksenchuk, “Modeling of a nonisothermal flow with regard for the dependence of plastic

properties on the microstructure of a material,” J. Math. Sci., 190, No. 6, 796–803 (2013).

23. I. K. Senchenkov and G. A. Tabieva, “Determination of the parameters of the bodner-partom model for thermoplastic

deformation of materials,” Int. Appl. Mech., 32, No. 2, 132–139 (1996).

24. I. K. Senchenkov, G. A. Tabieva, I. A. Ryabtsev, and E. Turyk, “Calculation of residual stresses in multilayer helical

surfacing of cylindrical components on the base of the theory of growth of viscoplastic solids,” Weld. Int., 20, No. 2,

150–156 (2006).

593


	Abstract
	Keywords
	Introduction
	1. Subject of the Research
	2. Model of Microstructural Transformations
	3. Model of Built-Up Bodies
	4. Problem Statement
	5. Thermomechanical Characteristics of the Material
	6. Numerical Methods for Solving the Problem
	7. Calculation of Deflections of Sheet Member during Surfacing
	Conclusions
	References

		2023-03-31T03:38:52+0000
	Preflight Ticket Signature




