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The dynamics of sandwich conical shells under nonstationary loading is studied. The equations ofmotion

of sandwich conical shells with a discrete symmetric lightweight ribbed core under axisymmetric

impulsive loading are derived. In analyzing elements of an elastic shell, the Timoshenko theory of shells

and rods is combined with independent static and kinematic hypotheses for each layer. The load-bearing

layers in non-symmetric shells are made of dissimilar materials. The equation of motion for a

non-symmetric sandwich conical shell with a discretely inhomogeneous core is derived using the

Hamilton–Ostrogradsky variational principle. The numerical results on the vibrations of a sandwich

elastic shell are obtained using the finite-element method. The influence of the physical and mechanical

parameters of symmetric and non-symmetric layers on the stress–strain state of shells under the

axisymmetric internal impulsive loading is studied. New mechanical effects are established.
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Introduction. Layered conical shells are widely used in aircraft engineering, rocket and missile engineering,

shipbuilding, and many other fields. The strength and weight requirements and service conditions become more and more

severe. The necessity of meeting contradictory requirements leads to the idea of designing multilayer structures wherein each

layer performs either just one function or, better, several functions. In this case, the layers may differ in both thickness and

physical and mechanical characteristics, which means that the sandwich structure is essentially inhomogeneous.

In what follows, we will consider conical symmetric and non-symmetric sandwich shells of revolution with

inhomogeneous lightweight core and discrete-symmetric reinforcement ribs aligned with the lines of principal curvatures and

connecting the load-bearing layers. The shells are under forced dynamic loading. The ribs are much smaller than the distance

between them. Using cores made of lightweight materials makes it possible to substantially increase the bending stiffness of the

structure while moderately increasing its weight. The theory of layered shells in combination with independent hypotheses for

each layer would be appropriate for use in this case [12]. Thought this increases the total order of the equations, it becomes

possible to analyze the dynamic behavior of a sandwich structure under forced dynamic loading. The paper [8] was among the

first to study the dynamics of sandwich conical shells with discrete inhomogeneous core. The publications [6, 9, 10] were the

first to analyze the dynamics of sandwich conical shells with a discrete inhomogeneous core under non-stationary loading. The

vibrations of sandwich cylindrical shells with a discrete symmetric lightweight core and reinforcement ribs were analyzed in [3,

7, 11, 19, 21–23].

In solving the problem stated, we will use the theory of shells and rods based on the Timoshenko shear model. To derive

the equations of vibration of a sandwich shell inhomogeneous across the thickness, we will use the Hamilton–Ostrogradsky

variational principle. The dynamics of sandwich conical shells with discrete symmetric lightweight core and reinforcement ribs
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will be numerically simulated using the finite-element method. We will present the numerical results for specific problems and

point out new mechanical effects.

1. Problem Statement. Basic Equations. A discrete symmetric elastic conical-type structure inhomogeneous across

the thickness is a structure composed of inner and outer smooth conical shells (inside and outside load-bearing layers) with

certain thicknesses and radiuses. Assume that the middle lines of the shells are parallel, i.e., the cone angle is the same. A

sandwich conical shell with a lightweight core reinforced with discrete ribs is an elastic structure composed of inside (index “1”)

and outside (index “2”) load-bearing layers, lightweight core (index t), and discrete ribs (index j) perfectly bonded to the

load-bearing layers. The shell of total constant thickness h has a smooth mid-surface described by orthogonal coordinates s, z.

When z = 0, the coordinate line s on the mid-surface coincides with the generatrix. The coordinate line z is straight and

orthogonal to the mid-surface. Let z be positive if the point lies on the side of the convex part of the mid-surface. Considering the

axisymmetric vibrations of conical shells, the coordinate system s, t is used usually, with the coordinate s reckoned from the cone

vertex. If the shell is truncated, it is more convenient to use the coordinate s reckoned from the edge of the shell of radius R
0
. In

this case, the current radius of the conical shell is determined as

R R s
s 0

sin ,

where is the cone angle. The coefficients of the first quadratic form and the curvatures of the coordinate surface of the conical

shell are defined by A
1

1, A R
s2
, k

1
0, k R

s2
cos / . The shells are rigidly coupled by discrete ribs and a lightweight core.

The strain state mode of the inside and outside load-bearing layers can be expressed in terms of the components of the

generalized displacement vectorU u u
s

T

1

1

3

1

1

1
( , , ) andU u u

s

T

2

2

3

2

1

2
( , , ) [14]. The displacements fields for the lightweight

ribbed core are defined by the generalized displacement vectorU u u
t s

t t t T
( , , )

3 1
in accordance with the model from [15]. The

strain state of the reinforcing rib directed along the circumferential coordinate is defined by the generalized displacement vector

U u u
J

j j j T
( , , )

1 3 1
.

According to the theory of shear strain in shells [14], the displacements u
i

1
and u

i

3
in the load-bearing layers in the

direction s (longitudinal), z (thickness), and t (time) are expressed as follows if linear displacements are small:

u s z t u s t z s t
i i

i

i

1 0 1
( , , ) ( , ) ( , ),

u s z t u s t i
i i

3 03
1 2( , , ) ( , ) ( , ), (1.1)

where
1

i
is the angle between the normal and the mid-surface of the load-bearing layers.

The kinematic equations for the load-bearing layers and the jth rib take the form
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s
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s
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A

A

s
,
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3

j

j

j

u

R
. (1.2)

Since the reinforcement ribs are assumed to be perfectly bonded to the conical load-bearing layers, the interface

conditions between the centers of gravity of the ribs and the load-bearing layers are as follows [17]:

u u s

H

s
j jk

j

j jk

j1 1 1
2

( ) ( ),

u u s
j jk

j3 3
( ),

1 1
1 2

j jk

j
s k( ) ( , ), (1.3)

where s
j
is the coordinate of the line of the projections of the centers of gravity of the cross-sections of the jth rib onto the

mid-surface of the load-bearing layer; h i
i
( , )1 2 is the thickness of the spherical load-bearing layers;H

j
/ 2is the distance from

the axis of the jth rib to the surface of the smooth shells; h H
t j

is the thickness of the lightweight core.
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According to [15], the displacements of the lightweight core are expressed by

u s z t
z

R
u s t z u s t

t t

t

t

t

t

1 0 1
1( , , ) ( , ) ( , ),

u s z t u s t
t t

3 03
( , , ) ( , ). (1.4)

The kinematic equations for the lightweight core in the case of small strains are as follows:

11

0 1t

t t
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s
z
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s
,

22

03t

t

st t

u

R z
,

2
13

03
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t
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u ,

11

1t

t
u

s
. (1.5)

The compatibility conditions (perfect bonding between the core and the load-bearing layers without separation and

slippage) have the following form [16]:

u z z u h
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2
1( ) ( ) , u u

t i

03 03
,

for

for
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2
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; .

(1.6)

Using the expressions for the displacement field of the load-bearing layers (1.2) and lightweight core (1.4), we simplify

the compatibility conditions (1.6):

u
u u

h h
t

0

0

1

0

2

2 1

2

1 1

1

2

1

4
( ),
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( ). (1.7)

The equations of motion for the load-bearing layers and the lightweight core are derived from the

Hamilton–Ostrogradsky variational stationarity principle:

( )Ê Ï À dt

t

t

0

1

2

, (1.8)

whereÏ is the total potential energy of the elastic system;K is the total kinetic energy of the elastic system; A is the work done by

the external forces; t
1
and t

2
are fixed instants of time.

In deriving the equations of vibration of sandwich shells with lightweight core, the displacement components of the

load-bearing layers, reinforcement ribs, and the lightweight core must be varied independently. The variations of the total

potential and kinetic energy of these components are

Ï Ï Ï Ï
i

i

j

j

J

t

S
t

1

2

1

,

K K K K
i

i

j

j

J

t

S
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1
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1

, (1.9)
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where

Ï T T T M M
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Ê F

u

t

u

u

t

u I
j

j

j

j

j

j

j

j tw

j

2

1

2 1

2

3

2 3

2

1

2 1

j

j

L

j
t

dL

j

, (1.15)

whereF
j
and I

tw

j
are the geometric characteristics of the cross-sections of the reinforcement ribs;

j
is the specific weight of the

rib material;
i
i( , )1 2 and

t
are the specific weights of the materials of the load-bearing layers and core, respectively.

The shell being considered is acted upon by internal axisymmetric distributed nonstationary normal loads P s t
1
( , ),

where s and t are the space and time coordinates.

Note that in calculating the potential and kinetic energy for the core, the integrals in the expressions for Ï
t
and Ê

t

are evaluated over the volume increased by the volume of the ribs. However, this fact hardly influences the error of the shell

theory because the volume of ribs in sandwich shells is less than 5% of the core volume.

In deriving the equations of vibration of sandwich shells with lightweight core, the displacement components of the

load-bearing layers, reinforcement ribs, and the core are varied.

Performing standard transformations in (1.8) and using (1.9)–(1.15), we arrive at two systems of nine-order hyperbolic

equations for an asymmetric sandwich conical shells with a lightweight core reinforced with discrete ribs under axisymmetric

impulsive loading and boundary conditions:
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[ ] , [ ] , [T F

u

t

T F

u

t
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j j j

j

j j j

j i

11

2

1

2 13

2

3

2 11

i i
]
j j tw j

j
I

t

2

1

2
, (1.16)

where [ ]T
j11

i
, [ ]T

i

j13
, and [ ]M

i

j11
on the discontinuity lines are the forces and moments exerted by the load-bearing layers on

the jth rib.

For asymmetric sandwich shells, the system of equations (1.16) is decomposed because of not only the discontinuity

between the ribs and load-bearing layers, but also the dissimilarity of the materials of the load-bearing layers.

The forces/ moments and the strains in the load-bearing layers and reinforcement ribs are related as follows:

T B v
i i i i i

11 11 11 2 22
( ), T B v

i i i i i

22 22 22 1 11
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i i i
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13 13
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i i i

11 11 11
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22 22 22
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where E G v
i

i

i
, ,

13
are the physical and mechanical parameters of the load-bearing layers; k

2
is the integral coefficient of

transverse shear in the Timoshenko shell theory; E
j
and F

j
are the elastic modulus of the material and the cross-sectional area of

the jth rib, respectively.

The forces and moments for the core can be expressed as
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The equations of vibration (1.16) are supplemented with boundary and initial conditions.

2. Numerical Results. We have solved the problem of the dynamic deformation of a sandwich conical shell with

clamped ends under internal distributed loadingP s t
1
( , ). The boundary conditions for the load-bearing layers at s s

0
and s s

N

are

u u i
i i i

1 3 1
0 1 2( , ). (2.1)

The initial conditions for the load-bearing layers at t 0are zero:

u u
i i i

1 3 1
0,

u

t

u

t t
i

i i i

1 3 1
0 1 2( , ). (2.2)

A nonstationary impulse load is given by

P A
t

T
t t T

3
sin [ ( ) ( )] , (2.3)

where ( )t is the Heaviside function.

The input data for the three-layer structure: A 10
6

Pa, Ò 50 10
6

sec; E E E
j1

1

1

2 10
7 10 Pa,

1 2

3
27 10

j
. kg/m

3
,

1

1

1

2

j
0.3, R

0
0.3 m, R h

0 1
30/ , h h h

j1 2
0.01 m, H h

J
2

1
, / 12 15°,

F
j

2 10
4
m
2
. There is no lightweight core.
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In the cases of the presence of lightweight core, its characteristics areÅ Å Å Å
t t1 2 1 2

50 500
, ,

/ / ,
t

25 kg/m
3
,

t

0.33.

The discrete reinforcement ribs are located at the points s k s
j

[ ( ) ]6 1 16 , k 1 5, , s s s
N

( ) /
0

80, ( )s s
N 0

0.39 m.

The initial–boundary-value problem (1.16), (2.1)–(2.3) is solved using the finite-element method. The finite-element

shell model relates the potential strain energy and the potential of the applied forces:

Ï E W, (2.4)

where Å is the potential strain energy; W is the potential of the applied forces.

After the continuous domain is partitioned into finite elements, model (2.4) takes the form

Ï E W
e e

e

E

e

e

E

( )
( ) ( ) ( )

1 1

. (2.5)

The global stiffness matrix and the global vector column in the matrix equation

[ ]{ } { }K U F (2.6)

correspond to the relations

[ ] [ ]
( )

K k
e

e

E

1

,

{ } { }
( )

F f
e

e

E

1

. (2.7)

We have analyzed the dynamic stress–strain state of the symmetric conical sandwich shell. The models are based on a

three-dimensional finite element that ensures the accuracy and reliability of the results [13].

Figure 1 shows the finite-element model of the sandwich conical shell with discrete symmetric lightweight core

reinforced with ribs. The model has the following components: outer load-bearing layer (a), inner load-bearing layer (b);

lightweight core (c); reinforcement ribs (d), sandwich shell (e). The finite-element model with a generatrix length of 0.39m and a

cone angle of 15° has 15,600 spatial finite elements and 18,960 nodes.

415

d e

Fig. 1

a b c



The numerical results obtained allow us to analyze the stress–strain state of sandwich conical elastic shells at any instant

(the computation time interval being 0 40t T ). For example, Fig. 2a demonstrates how the normal deflection u
3
of the

mid-surfaces of the load-bearing layers depend on the space coordinate s. Hereafter, curve 1 corresponds to u
3

1
of the inner shell,

and curve 2 to u
3

2
of the outer shell at t T315. (the time the u

3
is maximum). The lightweight core is absent. The points at which

curves 1 and 2 intersect indicate the position of the ribs. These plots allow visual evaluation the influence of the conicity of the

shell on the antisymmetry of the distribution of u
3
along the s-coordinate. The first natural frequency of the shell is equal to

1602 Hz.

The results obtained are in a good agreement with those in [17].

To validate the software used, we used 0and s x. The equation was derived for a cylinder of radius R
0
and length

L S
N

0.39 m. The dynamic processes were studied on the time interval 0 40t T.

Figure 3 shows the dependence of the normal deflections u
3

1
and u

3

2
of the bearing layers in a cylindrical shell on the

coordinate x at t T315. (the time the u
3
is maximum). It can be seen that the deflection u

3
for the cylindrical sandwich shell is

symmetric about the central cross-section. This fact is also indicative of the reliability of the results obtained for the sandwich

conical shell with the finite-element method. These results are also in a good agreement with the results obtained in [18] using the

finite-difference method. The first natural frequency of the cylindrical sandwich structure is equal to 1533 Hz.

Figure 2b shows how the normal stress
22

depends on the coordinate s in the sandwich conical shell. Hereafter curve 1

corresponds to
22

1
in the inner conical shell, and curve 2 to

22

2
in the outer conical shell at t T315. (the time

22
is maximum).

The lightweight core is absent. The first natural frequency of the shell is equal to 1602 Hz.
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Let us analyze the influence of the lightweight core located between the load-bearing layers and the discrete

symmetrical ribs of the shell. The physical and mechanical parameters of the lightweight core (foamed plastic) are:

Å Å
t1 2

50
,

/ , Å Å
t1 2,

/ 500,
t

25 kg/m
3
,

t
0.33.

Figure 4a demonstrates the dependence of the normal deflections u
3

1
and u

3

2
of the load-bearing layers on the

longitudinal coordinate sat t T225. (the time the u
3
is maximum). The ratio of the elastic moduli of the load-bearing layers and

the lightweight coreÅ Å
t1 2

50
,

/ . The points at which curves 1 and 2 intersect indicate the position of the ribs. The curves allow

visual evaluation of the influence of the conicity of the shell on the antisymmetry of distribution of u
3
along the s-coordinate.

The first natural frequency of the shell is equal to 1774 Hz.

Figure 4b shows the dependencies of the normal stresses
22

1
and

22

2
in the mid-surfaces of the load-bearing layers on

the coordinate s for Å Å
t1 2

50
,

/ at t T225. (the time
22

is maximum). The first natural frequency of the shell is equal to

1774 Hz.

Figure 5a shows the dependence of the normal deflections u
3

1
and u

3

2
of the mid-surfaces of the load-bearing layers for

Å Å
t1 2

500
,

/ on the coordinate s at t = 3.0T (the time the u
3
is maximum). The points at which curves 1 and 2 intersect indicate

the position of the ribs. The curves allow visual evaluation of the influence of the conicity of the shell on the antisymmetry of the

distribution of u
3
along the space coordinate. The first natural frequency of the shell is equal to 1620 Hz.

Figure 5b shows the dependence of the normal stresses
22

1
and

22

2
in the mid-surfaces of the load-bearing layers for

Å Å
t1 2

500
,

/ on the coordinate s at t = 3.0T (the time the
22

is maximum). The first natural frequency of the shell is equal to

1620 Hz.
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Let us now discuss the results on the influence of the cone angle / 6 30° on the dynamic behavior of symmetric

sandwich shells with discretely symmetric lightweight core reinforced with ribs. All the other dimensions and physical and

mechanical parameters as well as the type of loading remain the same.

The finite-element model of the shell with a generatrix length of 0.39 m and a cone angle of 30° contains 33,696 spatial

finite elements and 39,816 nodes. Using the spatial finite element ensures the requirec accuracy and reliability of the results [15].

The numerical results obtained allow us to analyze the stress–strain state of the conical elastic sandwich shell at any instant (the

computation time interval being 0 40t T ).

Figure 6a shows the dependence of the normal deflection u
3
of the mid-surfaces of the load-bearing layers on the

coordinate s. Here the notation is same as for shells with a cone angle of 15°. The deflection u
3
peaks at t T695. . The

lightweight core is absent. The points at which curves 1 and 2 intersect indicate the posiiton of the ribs. The curves allow visual

evaluation of the influence of the conicity of the shell on the antisymmetry of distribution of u
3
along the coordinate s. The first

natural frequency of the shell is equal to 1514 Hz.

Figure 6b demonstrates the dependence of the maximum normal stresses
22

1
and

22

2
in the mid-surfaces of the

load-bearing layers of the shell without core on the coordinate s at t = 6.95T. The first natural frequency of the shell is equal to

1514 Hz.

Figure 7a shows the dependence of the maximum normal deflection u
3
of the mid-surfaces of the load-bearing layers

on the coordinate s for Å Å
t1 2

50
,

/ at t = 6.45T. The points at which curves 1 and 2 intersect indicate the position of the ribs.

The curves allow visual evaluation of the influence of conicity on the anti-symmetry of the distribution of u
3
along the

coordinate s. The first natural frequency of the shell is equal to 1655 Hz.
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Figure 7b demonstrates the dependence of the maximum normal stress
22

in the mid-surfaces of the load-bearing

layers on the coordinate s for Å Å
t1 2

50
,

/ at t T645. . The curves allow visual evaluation of the influence of conicity on the

anti-symmetry of the distribution of
22

along the coordinate s. The first natural frequency of the shell is equal to 1655 Hz.

Figure 8a shows the dependence of the maximum normal deflection u
3
of the mid-surfaces of the load-bearing layers

on the coordinate s for Å Å
t1 2

500
,

/ at t = 6.60T. The points at which curves 1 and 2 intersect indicate the position of the ribs.

The curves allow visual evaluation of the influence of conicity on the anti-symmetry of the distribution of u
3
along the

coordinate s. The first natural frequency of the shell is equal to 1532 Hz.

Figure 8b shows the dependence of the maximum normal stress
22

in the mid-surfaces of the load-bearing layers on

the coordinate s for Å Å
t1 2

500
,

/ at t = 6.60T. The curves allow visual evaluation of conicity on the anti-symmetry of the

distribution of
22

along the coordinate s. The first natural frequency of the shell is equal to 1532 Hz.

3. Nonstationary Forced Vibrations of Asymmetric Conical Sandwich Shells with a Discretely Symmetric

Lightweight Core Reinforced with Ribs. The dynamics and statics of layered shells was studied in many works, including [1,

2, 4, 5, 20–22], where a great number of fundamental problems were solved using analytical and approximate methods. The

vibration behavior of asymmetric sandwich shells with a lightweight core was analyzed in [13]. In what follows, we will study,

using the finite-element method, the non-stationary forced vibrations of non-symmetric conical sandwich shells with a discretely

symmetric lightweight core reinforced with ribs. The load-bearing layers are made of dissimilar materials. In this case, Eqs.

(1.16) are decomposed due to not only the presence of discontinuous coefficients in the last three equations but also the

dissimilarity of the layer materials. The finite-element model of a shell with a generatrix length of 0.39m and a cone angle of 15°,

contains 15,600 spatial finite elements and 18,960 nodes (Fig. 1).

Input data:

E
1

1 11
2 10 Pa, E E

j1

2 10
7 10 Pa,

1

1 3
78 10. kg/m

3
,

2

1 3
27 10

j
. kg/m

3
,

R
0

0.3 m, R h
0 1

30/ , h h h
j1 2

0.01 m, H h
j

2
1
, / 12 15°, F

j
2 10

4
m
2
.

The non-stationary impulsive loading is defined by (2.3). The inside layer is made of steel, while the outside layer is

made of AMG-6 alloy; the thickness of the foam plastic core is 0.02 m, the ratio of the moduli of the load-bearing layers and the

filler is ( ) /Å Å Å
t1 2

2 50. The reinforcement ribs are located at the points s k s
j

[ ( ) ]6 1 16 , k 1 5, , s s s
N

( ) /
0

80,

( )s s
N 0

0.39 m.

The numerical results obtained allow us to analyze the stress–strain state of asymmetric sandwich conical elastic shells

at any instant (the computation period being 0 40t T ).

Figure 9a demonstrates the dependence of the normal deflection u
3
of themid-surfaces of the load-bearing layers on the

coordinate s at t = 3.1T (the time the u
3
is maximum). The core is absent. The points at which curves 1 and 2 intersect indicate the
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position of the ribs. These plots allow visual evaluation of the influence the conicity of the shell on the anti-symmetry of the

distribution of u
3
along the spatial coordinate. The first natural frequency of the conical shell is equal to 1559 Hz.

Figure 9b shows the dependence of the normal stress
22

in the mid-surfaces of the load-bearing layers on the

coordinate s at t = 3.1T (the time the
22

is maximum). The first natural frequency of the conical shell is equal to 1559 Hz. The

core is absent. The points at which curves 1 and 2 intersect indicate the position of the ribs. These plots allow visual evaluation of

the influence of the conicity of the shell on the anti-symmetry of distribution of
22

along the spatial coordinate.

Figure 10a demonstrates the dependence of the normal deflection u
3
of the mid-surfaces of the load-bearing layers on

the coordinate s at t = 2.45T (the time the u
3
is maximum). The ratio of elastic moduli ( ) /Å Å Å

t1 2
2 50. The points at which

curves 1 and 2 intersect indicate the position of the ribs. These plots allow visual evaluation of the influence of conicity on the

anti-symmetry of the distribution of u
3
along the spatial coordinate. The first natural frequency of the conical shell is equal to

1746 Hz.

Figure 10b shows the dependence of the normal stress
22

in the mid-surfaces of the load-bearing layers on the

coordinate s at t = 2.45T (the time the
22

is maximum). The ratio of the elastic moduli ( ) /Å Å Å
t1 2

2 50. These plots allow

visual evaluation of the influence of conicity on the anti-symmetry of the distribution of
22

along the spatial coordinate. The

first natural frequency of the conical shell is equal to 1746 Hz.

Conclusions. In solving the problem for sandwich conical shells, we have used the independent Timoshenko static and

kinematic hypotheses for each layer. This has increased the order of the governing equations of vibrations of shells with a

discretely symmetric lightweight core reinforced with ribs, but made it possible to study in more detail the dynamic processes in
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these shells. Using the finite-element method, we have demonstrated that the geometric, physical, and mechanical parameters of

the shell layers have strong quantitative and qualitative effects on the vibrations of conical sandwich shells. In a symmetric

conical shell without foam plastic core, as the cone angle increases by 15°, the deflection u
3

1
decreases by 74%, the

circumferential stresses increase by 64%, and the first natural frequency decreases by 6%. This indicates that the bending

stresses make a major contribution to the stress–strain state of the conical shell with a great cone angle, and the shell vibrates

slower. The first natural frequency increases by 11% for the symmetric conical shell with a cone angle of 15° and inside layer

made of foam plastic with Å Å
t1 2

50
,

/ and by 14% for the asymmetric conical structure with foam plastic Å Å
t1 2

50
,

/ . If the

inside load-bearing layers of asymmetric conical shells are made of steel, the first natural frequencies decrease due to the

increase in their weight.
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