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A combined numerical-and-analytical technique for studying the forced geometrically nonlinear

vibrations of laminated shells of revolution made of piezoelectric viscoelastic materials under electrical

and mechanical loadings with allowance for transverse shear strains and temperature of dissipative

heating is proposed. The technique is based on the finite-element method in the variational statement

and the harmonic linearization method. The results of numerical modeling of a hinged three-layer

cylindrical panel consisting of similar outer piezoelectric layers and inner passive viscoelastic layer are

presented. The behavior of the deflection in the neighborhood of the first resonance for cylindrical

panels of different thickness is studied. The temperature field of vibroheating of the viscoelectroelastic

cylindrical panel under electrical loading is analyzed numerically.
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method, temperature of dissipative heating

Introduction.Multilayer plates and shells made of piezoelectric viscoelastic materials are widely used in various fields

of modern engineering. These structures should meet strict requirements for dimensions and possible mechanical displacements

and strains under acting loads and operating temperatures. Forced harmonic vibrations are main modes of operation of these

structures. Harmonic electromechanical loading with frequency close to resonance may result in intensive vibrations and

intensive heating depending on the loading level and heat transfer conditions. The increase in the temperature known as

dissipative heating [4, 15] is attributed to hysteresis losses. It should be noted that the physical and mechanical characteristics of

a number of piezoelectric materials make it possible to design thin-walled members with allowance for their operation with

considerable displacements. To simulate the electromechanical vibrations of such members, various hypotheses are employed.

In the case of very thin members made of viscoelastic materials, the use of classical Kirchhoff–Love hypotheses may cause

considerable errors in calculating vibration damping and distribution of dissipative heating temperature. For this reason, it is

important to develop methods of geometrically nonlinear analysis of the dynamic behavior of piezoelectric viscoelastic plates

and shells at resonant frequencies with allowance for the dissipative heating and transverse shear strains.

The main approaches to the analysis of the nonlinear dynamics of elastic plates and shells are detailed in [6, 9–12,

21–23].
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In this connection, the papers [14, 24, 25, 27] should be mentioned among a few publications on the geometrically

nonlinear vibrations of inhomogeneous plates and shells with piezoelectric layers. Electromechanical models of the behavior of

laminated thin-walled members made of inelastic piezoelectric materials and the effect of dissipative heating, geometrical and

physical nonlinearities on their dynamic behavior are addressed in [15–17]. The finite-element method, whose features are

considered in [1, 13, 25], is the most universal numerical method of solving nonlinear problems for inhomogeneous plates and

shells.

The present paper is devoted to the development of a combined numerical and analytical technique of studying the

forced nonlinear vibrations of laminated viscoelastic piezoelectric shells of revolution and dissipative heating temperature under

mechanical and electrical loadings at resonant frequencies with allowance for transverse shear strains. We will consider

laminated shells using the Timoshenko-type hypothesis and nonlinear Karman theory supplemented with hypotheses for the

electrical quantities. It is assumed that the components of electric-field strength and the normal component of the electric-flux

density are nonzero, while the temperature field is distributed quadratically within each layer and the physical and mechanical

parameters are independent of the temperature and electrical fields.

Wewill use the variational finite-element method. To approximate the displacements and geometry of the shell within a

finite element, cubical polynomials will be used, while the deflection will be approximated by Hermite bicubic polynomials. The

derived matrix equation will be solved using the classic method of expansion of unknowns into series of harmonics that are

determined by solving generalized eigenvalue and eigenfunction problem in the electroelastic case. This makes it possible to

reduce the matrix equation of motion to a second-order differential equation with nonlinear quadratic and cubic terms, which can

be solved with the harmonic linearization method [2].

To validate the technique developed, we will consider the problem of the forced vibrations of a hinged

viscoelectroelastic cylindrical sandwich panel of symmetric form under either mechanical or electrical loading. For this purpose,

we will derive a nonlinear differential equation with respect to time by expanding the solution into a double trigonometric series.

We will analyze the behavior of the deflection of cylindrical panels of various thicknesses at the principal resonance and

compare the results obtained using the Kirchhoff–Love hypotheses and technique [20] with those found numerically using the

refined Timoshenko-type theory.

Also, using the approach [7, 18] and the finite-element method to solve the nonstationary thermal-conduction problem,

we will analyze the temperature field for the above-mentioned hinged viscoelectroelastic cylindrical panel under an electrical

load.

1. Variational Problem Statement. As noted in [1, 3], the Timoshenko theory is one of the theories widely used to

analyze the stress–strain state of inhomogeneous plates and shells with the finite-element method (FEM). This is due to the fact

that the functionals appearing in variational formulations of the problems include only the first derivatives of the displacements.

In developing the FEM, the variant of the so-called five-modal theory is employed in the nonlinear shell theory. In this theory,

the displacement field is defined by five independent functions, which are the deflection w, two tangential displacements of the

mid-surface u
0
and v

0
, and two functions u

1
and v

1
defining the independent rotation of the normal:

u s z u s zu s( , , ) ( , ) ( , )
0 1

,

v s z v s zv s( , , ) ( , ) ( , )
0 1

,

w s z w s( , , ) ( , ). (1.1)

Consider a sandwich shell of revolution with thickness H h h h
1 2 3

consisting of transversely isotropic

viscoelastic piezoelectric layers with thickness polarization. The shell is described in a curvilinear orthogonal coordinate system

( , , )s z . Let the mid-surface of the inner layer be the datum. The meridian of this surface is described by the equation r r x( ).

The surfaces z a a a a
0 1 2 3
, , , are coveredwith either solid or discrete electrodes to which potentialsV V V V

0 1 2 3
, , , are applied.

The equations of state relating stresses and strains are derived using the refined theory [4] that takes into account

transverse shear strains and is supplemented with hypotheses for electrical qunatities. In this case, it is assumed that the

components of electric-field strength and the normal component of electric-flux density (D
z

0, D
s

0, D 0) are nonzero.

Using the above hypotheses for the electromechanical quantities, Timoshenko’s shear theory, and the classical

equations of state for piezoelectric media [4, 8], the equations of state for the kth layer of the shell are as follows:
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where c
ij

E k( )
and e

ij

k( )
are the viscoelastic and piezoelectric moduli;

ij

S k( )
are the dielectric permittivities of the piezoelectric

material of the kth layer.

In what follows, we will consider shells for which z R/
1
and z R/

2
can be neglected compared with unity (R

1
and R

2

are the radii of principal curvatures of the mid-surface). Using the Karman nonlinear theory of thin-walled elements, expressions

(1.1), and Cauchy’s relations, we obtain the components of the strain tensor [15]:
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where is the angle between the normal to the shell surface and the axis of revolution [20]. Considering the above hypotheses

for the electric-flux density and integrating the expression
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over the thickness coordinate z, we get
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With (1.5) and (1.6), the equations of state (1.2) become
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To solve the three-dimensional problem of the dynamic behavior of inhomogeneous bodies of revolution under

electromechanical loading, we use the following variational equation [4]:

0, (1.8)
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1

2
2

2

2
c e E E E

u

t

u
u

ijkl ij kl ijk i jk ij

s

i j

i

i

i

i

V

i i

S
t
u dV P u ds. (1.9)

For simplicity, we will restrict the consideration to symmetric shells.

With the above hypotheses, the variational equation (1.8) is reduced to a nonlinear two-dimensional equation. Let us

represent the two-dimensional functional as two components:

L NL
, (1.10)

where
L
is the linear component including the quadratic terms for displacements and their derivatives, and

NL
is a functional

that includes terms of high order,
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P
z
,P

s
,P are the components of the surface load vector,

( )k
and

( )k
are the density and the coefficient of viscous friction of the

kth layer, respectively.

2. Finite-Element Method. To solve the variational problem, we will use the finite-element method with elements in

the form of a twelve-node isoparametric quadrangle.

A cylindrical coordinate system ( , , )r s is used as a global one combining all finite elements. Note that the meridional s

and axial x coordinates are related by ds Adx, A dr dx1
2

( / ) .

A normalized coordinate system ( , ) is used as a local one, in which the approximating functions are defined and

integrated.

To approximate the deflection, its derivatives, tangential displacements, and rotation angles, cubical polynomials [13,

19] are used. The shell deflection is approximated within an element by Hermite bicubical polynomials:
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where w
i
,

w

s i

,
1

r

w

i

,

2
w

r s
i

are the amplitudes of the deflection and its derivatives at the corner points of the element,

L
i
( , ) are Hermite polynomials [13, 19].

The tangential components of the shell mid-surface and angles of rotation within an element are approximated by

cubical polynomials:

u N u
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1 1
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12
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The explicit form of the polynomials N
i
( , ) can be found in [13, 19].

In this case, the coordinates s, r, are related to the coordinates , as

s N s
i i

i

( , )

1

12

, r N r
i i

i

( , )

1

12

, N
i i

i

( , )

1

12

, (2.3)

where s
i
, r
i
,

i
are the nodal values of the coordinates.

From relations (2.1)–(2.3) it follows that the finite element has 64 degrees of freedom: 8 degrees (w, w s/ , w r/ ( ),

2
w r s/ ( ), u

0
, v

0
, u

1
, v

1
) at each corner point and 4 degrees (u

0
, v

0
, u

1
, v

1
) at each node located on the sides of the

quadrangle.

In [13, 19], the same finite element is used to solve static and dynamic problems for single-layer and multilayer shells.

Here the numerical results on the stress–strain state of elastic and viscoelastic shells are compared with those obtained with

analytical and other numerical methods. It should be noted that the usage of such approximation functions enables high accuracy

of the solution for shells of different geometry.

It is assumed that the shell mid-surface is divided by N nodal points into M finite elements.

Representing the components of mechanical and electrical loads as

P N P
i i

i

( , )

1

12

, V N V
i i

i

( , )

1

12

using the expressions for displacements (1.1) and strains (1.4), and the stationarity condition for functional (1.10) 0, we

arrive at a system of nonlinear differential second-order equations for the deflection, its derivatives, tangential displacements,

and angles of rotation [5, 19]:

w w
j

m

jm

M

1

0, …,
v v

j

m

jm

M

1 11

0. (2.4)

The differentiation with respect to u
0
, v

0
, u

1
, v

1
is carried out at all nodal points of the element, while the differentiation

with respect to w, w
s
, w , w

s
is performed at the corner points of the quadrangular element.

The system of differential equations (2.4) has the following matrix form:

[ ] [ ] [ ] ( ) ( )M

t

C
t

K t
NL

2

2

U U
U G U Q , (2.5)
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where [ ]M is the mass matrix, [ ]C is the loss matrix, [ ]K is the stiffness matrix,Q( )t is the column vector of the external load,U is

the column vector of the deflection and its derivatives, tangential displacements, and angles of rotation at corner points,G U
NL

( )

is the column vector whose components are obtained by differentiating the nonlinear component of functional (1.10). This vector

includes elements with quadratic and cubic nonlinearity of the shell deflection.

The initial conditions are

U 0,
U

t
0 at t 0. (2.6)

Let us represent the solution of the vector equation (2.5) under conditions (2.6) as a series describing the free vibrations

of an electroelastic shell (energy dissipation being neglected):

U W( , , , ) ( , , ) ( )w v t w v f t
n

n

n1

1

1
, (2.7)

where f t
n
( ) are functions of time to be determined.

The vibration modes are determined by solving the generalized eigenvalue problem

[ ] [ ]K M
n n n

W W
2

0, (2.8)

whereW
n
is the orthonormalized eigenvector satisfying the following conditions [1]:
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2

, ,

, ,
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m m

C
m n

m n

0

2

, ,

, ,
(2.9)

where
m
is the circular frequency of free vibrations of the shell,

m
is the damping factor of the mth vibration mode.

Substituting (2.7) into (2.5), multiplying it by the transposed vectorW
n
, and allowing for (2.9), we obtain

2

2

2
2

f t

t

f t

t
f t f t

n

n n

n

n n n NL n n

( ) ( )
( ) ( , ( ))W G W W WQ

n
t( ),

n 1 2, , , (2.10)

where, upon substitution of (2.7) into (2.7), the column vector G G W
NL NL n n

f t( , ( )) becomes to be dependent onW
n
and

scalar function f t
n
( ), which is reflected in the symbolic notation.

Calculating the components of the vector G W
NL n n

f t( , ( )) and multiplying the obtained vector and the transposed

vectorW
n
on the left-hand side, and grouping the coefficients of ( ( ))f t

n

2
and ( ( ))f t

n

3
, we reduce the nonlinear differential

second-order equation (2.10) to the form

d f t

dt

df t

dt
f t f t f t

n

n n

n

n n n n

2

2

2

1

2

2

3
2

( ) ( )
( ) ( ) ( ) ( )F t

n
,

n 1 2, , . (2.11)

Consider a shell undergoing single-frequency vibrations under harmonic loading F t F t
n n
( ) cos

0
.

With the dimensionless parameters
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Eq. (2.11) becomes
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Using the harmonic linearization method [2] and representing the solution as

y A B Zcos sin
1 1

, (2.14)

we arrive at the following system of three nonlinear algebraic equations for the coefficients A B Z, , :
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If the square of the amplitude X (X A B
2 2

) and the coefficient Z are considered unknown, the system of equations

(2.15) is simplified:
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Eliminating X from (2.16), we obtain an algebraic equation of the 9th degree for Z:
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Finding the real roots of polynomial (2.17), we can find the square of the amplitude X and the coefficients A and B:

X
Z Z Z

Z
2

3

2

3

1

2

2 1

, A X Z X
3

4
1 2 3

2

2

1 1 2
[( ) ] , B XD

1
.

3. Analytical-and-Numerical Method for Solving the Problem of the Nonlinear Vibrations of a Hinged

Three-Layer Viscoelectroelastic Cylindrical Panel.Nonlinear problems of the dynamic behavior of a closed cylindrical shell

and hinged cylindrical panel are solved analytically using double trigonometric series. These solutions can be regarded as

standard in the development of numerical methods.

Let us consider the problem of the nonlinear vibrations of a symmetric cylindrical sandwich panel with radius R under

uniformly distributed pressure P P t
z 0

cos . A potential is applied to the electroded surfaces of the panel. In problems of the

bending vibrations of plates and shells, inertial forces acting along the normal to the mid-surface dominate. Neglecting the

inertial forces for the tangential and shear components, we arrive at the following simplified variational equation:

( )
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0, (3.1)
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Denoting x s ( )0 x a and y R ( )0 y b , we reduce the problem to the variational equation (3.1) subject to the

initial conditions

w 0,
w

t
0 at t 0 (3.3)

and the boundary conditions
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w 0,

2

2
0

w

x

, v
0

0, v
1

0 at x 0, x a,

w 0,

2

2
0

w

y

, u
0

0, u
1

0 at y 0, y b. (3.4)

Considering the boundary conditions (3.4), we seek the solution in the form of a double trigonometric series:
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where k
m

a
m

, p
n

b
n

, ( , , ,m n 1 2 3, ).

Let us expand the components of mechanical and electrical loads into series of trigonometric functions:
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Using expressions (3.5), (3.6) and condition (3.1), we obtain a system of equations for the coefficients of the series:
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where
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is the coefficient of viscous friction;Q V
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The solutions of the first four equations appearing in (3.7) can be represented as
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Substituting expressions (3.8) for u
mn

0
, v

mn

0
, u
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1
, v

mn

1
into the fifth equation of system (3.7), we arrive at the nonlinear

second-order differential equation

d w

dt

dw

dt
w w w

mn

mn

mn

mn mn mn mn

2

2

2

1

2

2

3

1

2
1*

( ) ( ) P
mn

679



1 1

1

0 12

2

11

2

11

2 2 2

1 55

2

R
Q

C k C p

C k p

Q
C p

mn

m n

m n

mn

n
( )

( )

( k

D k p C

m

m n

2 2

11

2 2

55

)

( )

, (3.9)
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*
is the damping factor.

Since the mechanical loading and electrical potential are periodic time functions, Eq. (3.9) can be solved with the

method described in Sec. 2.

4. Technique of Analysis of the Temperature Field. The analysis of the thermomechanical state of the above

viscoelastic piezoelectric shells of revolution under electromechanical loading is reduced to the sequential solution of the

problem of the forced vibrations of these shells and the problem of nonstationary heat conduction to determine the dissipative

heating temperature.

To determine this temperature, we use the FEM with the same mesh of finite elements as in the case of the dynamic

problem considered above (Sec. 2). We will use the following three-dimensional variational heat-conduction equation [4]:

I 0, (4.1)
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whereV is the volume of the body of revolution bounded by the surface ,
( )k

is heat conductivity, C
k( )

is the specific heat

capacity,
( )k

is the density of the material of the kth layer,
T
is the coefficient of heat transfer from the body surface to the

environment of temperature
c
.

For the vibration heating problem, the function of heat sources D
k( )

for the kth layer appearing in (4.2) is equal to the

cycle-average dissipative function, which is defined in the terms of the complex physical and mechanical characteristics of the

material, the complex components of stress tensor
ij

k

ij

k

ij

k
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( ) ( ) ( )
, strain tensor
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k
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Various methods for determining temperatures fields in plates and shells are presented in [7, 18]. In many cases, the

three-dimensional heat-conduction problem is reduced to a sequence of two-dimensional problems (Sec. 2). To this end, we

represent the temperature as a series:

T s z t T s t p z
k

i

k

i

i

m

( ) ( )
( , , , ) ( , , ) ( )

0

, (4.4)

where T s t
i

k( )
( , , ) are unknown functions characterizing the temperature field on the coordinate surface; p z

i
( ) are given

functions of distribution of the temperature field over the shell thickness. These functions satisfy the conditions of perfect

thermal contact between the layers and allow describing the temperature over the thickness of each layer as a polynomial of

arbitrarymth degree. In solving many practical problems, it is possible to retain three terms in series (4.4). Then, it follows from

(4.4) that the temperature of the kth layer is approximated by a square polynomial in z (m= 2).

Using the standard FEM procedure and assuming that the time derivative dT dt/ is not varied, we arrive at a system of

3N linear differential equations for the nodal values T
i
. To solve the system of ordinary differential equations, we use the

finite-difference method with time approximation dT dt T t t T t t
i i i
/ ( ) ( ) / . To find the temperatureT

i
at t t, we use

the equation with unknowns written for the same instant of time. This allows using an implicit scheme for the solving the

problem with respect to time, namely, to derive a system of 3N linear algebraic equations to determine the temperature at nodal

points [7, 18].

5. Analysis of Numerical Results. The developed technique of analyzing the nonlinear vibrations of laminated shells

with transverse shear strains was validated by comparing the numerical results obtained with the analytical-and-numerical

approach and with the finite-element method.

We consider, as an example, the problem for a three-layer hinged cylindrical panel of constant thickness whose middle

layer is passive and viscoelastic. The panel is acted upon by uniformly distributedmechanical pressureP P t
z 0

cos . The outer

layers of the panel are made of a piezoelectric viscoelastic material. The electroded surfaces are free of potential.

The middle layer of the panel is made of an aluminum alloy with the following characteristics:

E E iE i( . . )73 00016 10
10

N/m
2
, 0.34, 028 10

4
. kg/m

3
.

The piezoelectric layers are made of PZT (EC-65) piezoceramic with the following complex physical-and-mechanical

characteristics [26]:
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ij ij
i ,
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where 075 10
4

. kg/m
3
is the density of piezoceramic.

The parameters s
ij

E
, d

ij
,

ij

T
are related to the physical-and-mechanical characteristics c

ij

E
, e

ij
,

ij

S
of the piezomaterial

by the transformation formulas [6].

The numerical results presented below correspond to the following shells: a thin-walled shell (H R/ 0.01) with

parametersH 0.001 m, h h
1 3

0.00025 m, h
2

0.0005 m, R 0.1 m, a L 0.1 m, b R 0.1 m; medium-thickness shell

( /H R 0.1) with parameters H 0.01 m, h h
1 3

0.0025 m, h
2

0.005 m, R 0.1 m, a L 0.1 m, b R 0.1 m; and very

thick shell (H R/ 0.2) with parametersH 0.01m, h h
1 3

0.005m, h
2

0.01m,R 0.1m, a L 0.1m, b R 0.1m.

The damping factor of each vibration mode
n
is strongly dependent on the physical-and-mechanical properties of the

material, the thickness of layers, and the frequency of free vibrations. Depending on the values of these parameters, it can vary

from 0.0001 to 0.5.

Here, using the technique [1] and allowing for the viscoelectroelastic properties of the layers, we have determined the

loss matrix. Next, allowing for the orthogonality of the eigenfunctions, we have calculated the damping factor for each vibration

mode.

In solving the problemwith the finite-element method, the quarter of the shell surface was divided into 25 quadrangular

finite elements with 456 nodal points.

The figures presented below show the deflection amplitudes at the middle point ( / , / )a b2 2 of the panel at the resonant

frequency at which the deflection amplitude is maximum.

For cylindrical panels with different thicknesses ( /H R 0.01, H R/ 0.1, H R/ 0.2), we have compared the results

obtained with the classic Kirchhoff–Love theory and the approach [20] with those obtained with the refined Timoshenko-type

theory.

In Figs. 1–5, and w denote the excitation frequency and the deflection amplitude at the middle point of the panel:

10
4
rad/sec, w a b w( / , / )2 2 10

3
m.

Figure 1 shows the variation in the deflection amplitude of the panel with H R/ 0.01 at the first resonant frequency

1

4
188186 10. rad/sec for the damping factor of the first mode

1
0.01. The mechanical loading is defined by P

0
01. MPa.

The solid line represents the results obtained with the FEM, while the dashed line to the results obtained analytically. Note that

the results obtained for the same panel using the Timoshenko theory with either the FEM or analytically are similar to those

found with the classical theory.

For other values of the thicknesses, deviations are different. As an example, Fig. 2 demonstrates the behavior of the

deflection amplitude at the first resonant frequency
1

4
3 10.05328 rad/sec for the panel with H R/ 0.1 under mechanical

loading P
0

0.01 MPa for the damping factor 0.0016.
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Figure 3 illustrates the behavior of the deflection amplitude for a very thick panel with H R/ 0.2 under the same

loading. An analytical method has been used. The solid lines in Figs. 2 and 3 refer to Timoshenko’s theory, while the dashed line

to the Kirchhoff–Love classical theory.

Figures 2 and 3 indicate that allowing for the transverse shear strains reduces the resonant frequency and increases the

deflection amplitude. Hence, refined hypotheses should be applied to moderately thin panels.

Figure 4 shows the variation in the deflection amplitude at the first resonant frequency
1

4
3 10.05328 rad/sec under

mechanical loading P
0

0.01 MPa for H R/ 0.1 and
1

0.0016 (the solid line corresponds to the finite element method, and

the dashed line to the analytical method). It can be seen that the results obtained with these approaches are in good agreement,

which is indicative of high accuracy of finite element software.

For comparison, Fig. 5 demonstrates the deflection amplitude at the first resonant frequency calculated with the

analytical approach based on Timoshenko’s theory (P
0

0.01 MPa,
1

0.0016) for H R/ 0.1 (solid line) and H R/ 10

(dashed line). In the latter case, the solution is similar to that for a plate.

From Figs. 2–5 it follows that the influence of the geometrical nonlinearity on the frequency dependence of the

deflection amplitude is strongly dependent on the cylindrical panel and the viscoelastic characteristics of its material.

To validate the method of analyzing the nonlinear transverse vibrations of thin-walled elements under electrical

loading, we have analyzed vibrations of the above panel with outer electrodes subject to a potential with an amplitude of 360 V,

and the inner electrode subject to a zero potential.
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For comparison, Fig. 6 presents the results obtained with the finite-element method (solid line) and analytical method

(dashed line), described in Sec. 3, for a panel withH R/ 0.1 and
1

0.01 at the first resonant frequency. Here and w are the

excitation frequency and the deflection amplitude at the middle point of the panel: 10
4

rad/sec,

w a b w( / , / )2 2 10
4
m.

Figure 7 shows the dynamic variation of the defection amplitude w a b w( / , / )
~

2 2 10
4
m at the middle point of the

panel with H R/ 0.1 under mechanical loading P
0

0.01 MPa for the damping factor
1

0.0016 and the following values of

the circular excitation frequency: 027 10
5

. rad/sec (dash-and-dot line), 028 10
5

. rad/sec (dashed line), 029 10
5

.

rad/sec (dotted line), and 0295 10
5

. rad/sec (solid line). These results have been obtained analytically.

Using the technique of solving the heat conduction problem presented in the previous section, we have analyzed the

dissipative heating temperature field of a panel of medium thickness (H R/ 0.1) under electrical loading (some electric

potential applied to the outer electrode and zero potential applied to the inner electrode).

To determine the dissipative function, we used the complex characteristics of PZT (EC-65) piezoceramic and

aluminum and the coefficientsA,B, Z found numerically for calculating the complex components of the strain and stress tensors.

To determine the temperature field, we used the finite-element method with the following heat-physical characteristics

and environmental temperature: heat-conduction coefficient
( ) ( )1 3

1.25 W/(m°C) for the piezoceramic layers and
( )2

200 W/(m°C) for the aluminum layer, the thermal diffusivity coefficients a a
( ) ( )

.
1 3

04 10
6
m
2
/sec and a

( )
.

2
01 10

5

m
2
/sec, respectively, the heat-transfer coefficient

T
20 W/(m

2
°C), environmental temperature

c
20 °C.

Figure 8 demonstrates the dependence of the temperature of the panel at the middle point ( / , / )a b2 2 on the angular

frequency 10
4
rad/sec at the first resonant frequency

1

4
3 10.05328 rad/sec for the following amplitudes of the

electrical potential on the outer surfaces of the cylindrical panel: 60 V (dash-and-dot line), 70 V (solid line), and 75 V (dashed

line).

The numerical results show that allowing for geometric nonlinearity strongly affects the distribution of temperature at

the first resonant frequency.

Conclusions. We have developed a combined numerical-and-analytical technique for analyzing the forced

geometrically nonlinear vibrations of layered viscoelastic piezoelectrical shells of revolution and shell-like structural members

under electromechanical loading with allowance for the transverse shear strains and dissipative heating. The numerical approach

has been tested by solving the problem of the vibrations of a hinged viscoelectroelastic cylindrical panel at the first resonant

frequency. The results calculated for the panels of different thicknesses have been compared to those obtained using the classical

Kirchhoff–Love hypotheses and refined Timoshenko-type hypotheses. The numerical simulation has shown that allowing for

the transverse shear strains decreases the resonant frequency. In studying the forced geometrically nonlinear vibrations of

moderately thin panels, refined hypotheses should be applied. We have analyzed the dissipative heating temperature of the

viscoelectroelastic cylindrical panel under electrical loading.
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