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Quaternion attitude determination algorithms based on vector measurements are proposed. The

projections of the normalized vectors in the reference and the body-fixed coordinate systems are

assumed to be known. The task is to determine the quaternion of rotation of the body-fixed coordinate

system relative to the reference coordinate system. The accuracies of the proposed algorithms and the

QUEST algorithm are compared. It is shown that the proposed algorithms are practically equivalent in

terms of attitude determination accuracy.
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Introduction. Let us determine the quaternion of transformation from the reference coordinate system to the

body-fixed coordinate system. We will use information on the projections of vectors in these coordinate systems [1, 2]. At the

initial stage of analysis, the q-method [4] and the QUEST algorithm [5] employ the direction cosine matrix, which is then

expressed in terms of the quaternion. We will develop and generalize the approach of [6, 7] without the need to introduce the

direction cosine matrix.

Problem Solution. If a rotation quaternion q corresponds to the transformation from a fixed coordinate system to a

moving one, then the expressions of the same vector in the moving (r) and fixed (r
0
) coordinated systems are related by

r q r q
~

0
, (1)

where
~
q is the conjugate quaternion.

Represent formula (1) in the form

q r r q
0

. (2)

Formula (2) has the following matrix form:
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This expression can be represented as
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4 1

, (4)

where

W V V
a

a U
0

0
=

T

, U =

0

0

0

u u

u u

u u

z y

z x

y x

, u r r a r r
0 0

, .

For n vectors, we have
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i
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Considering the measurement errors, we introduce the loss function
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where
i
are weight coefficients;
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Since a quaternion must be normalized, we use the following form of losses:

l
T T

1

1

2

1( ) ( )q q Gq q q , (6)

where is the Lagrange multiplier.

We have

l
1

4 1

( )q

q
Gq q 0 .

The minimum condition is

Gq q. (7)

Then
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T T

( )q q Gq q q
1

2

1

2

1

2

. (8)

This means that we are interested in the minimum value of the parameter . Thus, the problem is reduced to finding the

eigenvector (quaternion) of the matrixG that corresponds to the minimum of the eigenvalue . To this end, it is convenient to use

the eig Matlab routine.

Let us solve the problem without this function.

Expressing the quaternion as a vector q q[ ]q
v

T

0
, we reduce (8) to the form
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Let us represent system (9) in the form

q b q
T

v0 0
Z q , q

v v0
Z Hq q . (10)

As in [5], we will consider the second equation of this system:

( )I H Y Z,

where Y q
v

q/
0
is the Gibbs vector. Then

Y I H Z( )
1

. (11)

Assuming that
min

, we find Y and q:
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. (12)

A shortcoming of this expression is the presence of the Gibbs vector, which does not allow us to use this expression in

the case of a 180° rotation. To do away with it, we will do the following.

The eigenvalues of the matrixG are the roots of the following characteristic equation [3]:
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Let us derive a similar equation for the matrix H
3 3

:

3
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whereG in (13) should be replaced by H.

According to the Cayley–Hamilton theorem, each matrix corresponds to its characteristic equation:
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Let us represent the expression ( )H I
1
as
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We have
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Equating the coefficients of like powers of H in (15) and (17), we get

ñ
1

, ñ
2

, ( )ñ
3

. (18)

We can write

Y L / , (19)

where L I H H Z( )
2

.

Thus,
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It is important that the Gibbs vector is absent in (20).

Assuming that
min

0, we can find the minimum eigenvalue from the simplified characteristic equation

c c
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0
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.
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To analyze the accuracy of the algorithms, we assume that 30°, 20°, 10°, r
01

1 20 30[ ]
T
, r

02
4 5 0[ ]

T
,

~
r E r
1 1 1

,
~
r E r
2 2 2

, where r
1
and r

2
are the values of the vectors without measurement errors.

The matrix

E
1

095 0 0 0 1 0 0 0 101[ . ; ; . ] , E
2

101 0 0 0 1 0 0 0 095[ . ; ; . ]

characterize the measurement errors. The weight coefficients are assumed equal to unity.

Using the eig function, we find
min

.
1

5
97717 10 . If we use formula (20), then

min
.

2

4
10760 10 .

The following angles have been obtained:

29.7226°, 19.4205°, 9.7095°, with the eig function;

29.7226°, 19.4205°, 9.7095°, with formula (12);

29.7226°, 19.4205°, 9.7095°, with formula (20) and
min 1

;

29.7227°, 19.4206°, 9.7096°, with formula (20) and
min 2

.

For comparison: the QUEST algorithm yields

29.7229°, 19.4085°, 9.7140°.

It can be seen that the results are very similar.

Since
min

0, we can reduce the amount of calculation by setting
min

0. Then, using formulas (12) and (20), we get

29.7214°, 19.4198°, 9.7086°.

That is, we can set
min

0 for practical purposed. Then

I H H H
2 1

,

i.e., L H Z
1

.

Formula (19) becomes simpler:

616



q

X
X

1

1

1

2

, (22)

where
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Using formula (22), we get

29.7214°, 19.4206°, 9.7086°.

Conclusions. Effective quaternion attitude determination algorithms based on vector measurements have been

proposed. The algorithm that involves the determination of the eigenvalues and eigenvectors of the matrixG is the most general.

The algorithms are practically equivalent in terms of the attitude determination accuracy.
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