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Introduction. Our goal here is to study features of the stress distribution in a single-rooted tooth, which is initially

modeled by an elastic cylindrical rodwithmechanical characteristics varying continuously along the radius. Actually, a tooth is a

more complex structure.

A tooth has three layers of calcified tissues: enamel, dentin, and cementum. The dental cavity is filled with pulp. The

pulp is covered by a dentin, which represents the main calcified tissue. The dentin on the visual portion of the tooth is covered by

enamel, while the tooth roots in the jaw are covered by cementum. A more complete picture of the real structure is shown in

Fig. 1.

Biomechanics actively studies a tooth as a composite structure. For example, the recent publications [1, 2] are devoted

to the experimental investigation of the strength properties of a tooth and draw the following conclusion: “… hard tooth tissues

are made of the same protein-mineral material but have unlike structure that is responsible for dissimilar mechanical

characteristics. For example, the enamel strength is 7 to 10 times higher than that of dentine; however, the elastic moduli of

materials that compose the hard tooth tissues smoothly vary under certain operation conditions in such a way that stresses and

strains do not grow to parasite levels under loading…”. In this connection, the publications [8, 9] are noteworthy.

The representation of a tooth as a composition of many layers with dissimilar properties resembles the geometric

structure of either bamboo or onion and can be considered adequate at the initial stages of the tooth analysis within the

framework of modern biomechanics. For this reason, modeling a tooth within the framework of the inhomogeneous elasticity

theory as a multilayer cylindrical structure can be considered permissible if we take into account the fact that the unremovable

radius dependence of the mechanical properties of the structure has already been established in composite mechanics.

Cylindrical shapes are found frequently in nature, engineering, and even in household use. A classic example from

nature is either tree trunk or bone. A like example from engineering is a circular bolt. In private life a man constantly uses
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something round and long, from a stick, pencil, and water pipe to a rolling pin to shape and flatten dough. For the most part, all of

these objects are subject to various mechanical loads such as tension, compression, bending, twisting, shearing, etc. Because of

this, the mechanics of materials and structures has always much attention to cylindrical bodies. Their mechanical behavior has

been described in a great many scientific publications. As a rule, bodies in the form of solid or hollow cylinders are considered as

homogeneous in their mechanical properties. However, in many cases cylindrical objects are essentially inhomogeneous [3, 4,

28]. The most frequently such inhomogeneity is manifested as radius dependence of density and other mechanical properties. In

this connection, we recall bamboo or bone, which have higher density and are stronger on the outer surface, the density and the

tensile and shear moduli of elasticity decreasing with depth. Because the inhomogeneity is observed not only in natural

materials, it would be technologically appropriate to introduce it in other materials. For example, the theory of functionally

graded materials (FGM), which has been formulated not so long and is actively developed, focuses on artificially made

inhomogeneous materials and is the main user of results on inhomogeneous materials.

Remark 1. The success and relevancy of the FGM theory are supported by the first publications [19–21, 27, 31], the

review [5], informative monographs [26, 30], and a number of useful papers published recently [10, 22, 23, 29].

While the mechanics of homogeneous bodies can be considered as a fully developed division of science, the mechanics

of inhomogeneous bodies is yet to be adequately investigated. This especially applies to the analytical mechanics of

inhomogeneous bodies which develops strict mathematical models described either by differential or integral equations (to

which analytical methods are applied). In what follows, we address one of the above-mentioned fragments as a continuation of

the publications [4, 12 – 18, 28]. From the standpoint of the general theory of materials, we will analyze cylindrical bodies using

the axisymmetric theory of inhomogeneous isotropic and transversely isotropic elasticity for the type of inhomogeneity where

the mechanical properties of an elastic medium vary along the radius [12–18].

1. Basic Static Equations of an Elastic Cylindrical Body. Let us consider the case where the elastic parameters are

functionally dependent of the coordinate r, while the Lame elastic constants and are functions

( ) ( )r l r
o

, ( ) ( ) , ,
( )

r m r
o o o o

o

o o

const
2

, (1)

that are differentiable at least two times.

The axisymmetric state is described using circular cylindrical coordinates ( , , )r z in the case where the z-axis is the

symmetry axis, while the -coordinate is absent. In this case [3, 6, 7, 24, 25], the displacement vector includes only two nonzero

components u u u u
r z

( , , )0 ; the strain tensor has four nonzero components:

rr r r
u

,
, ( / )u r

r
,

zz z z
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,
,
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The expression of dilatation is simpler as well:
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The linear stress tensor includes four nonzero components:

( , , , , , )
rr zz rz r z

0 0 .

Then constitutive equations become
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2 . (2)

The system of equilibrium equations (without body forces) includes only two equations:
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r

, ,
( / )( )1 0,
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r z r
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The system of Lame’s equations also consists of two equations:
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2
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,
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rr r zz, . ,

( / )1 , (4)

which take the following form without dilatation:

( ) ( / ) ( ) ( )
, ,
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2
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z z zz r r r
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( ) ( ) ( / )

, ,
,
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The first fundamental difference from the problem of inhomogeneous theory is in the constitutive equations:

rr rr
r z r e r z r r z( , ) ( ) ( , ) ( ) ( , )2 ,

( , ) ( ) ( , ) ( ) ( , )r z r e r z r r z2 ,

zz zz
r z r e r z r r z( , ) ( ) ( , ) ( ) ( , )2 ,

rz rz
r z r r z( , ) ( ) ( , )2 . (7)

These formulas indicate that both homogeneous and inhomogeneous elasticity theories are formally identical in the

kinematic part of the description of the mechanical state (displacements and strains). In other words, the inhomogeneity of

physical properties as the functional dependence of density and elastic characteristics causes stress redistribution, according to

the laws of inhomogeneity. Note that in any boundary-value problem, all the mechanical fields vary from point to point,

becoming inhomogeneous.

2. The Simplest ProblemModeling the Longitudinal Compression of a Tooth.Consider the classical homogeneous

elasticity problem of universal uniaxial tension–compression as applied to the inhomogeneous elasticity theory with

radius-dependent elastic parameters. Let such strain occur in a long straight rod with circular cross-section whose axis coincides

with the 0z-axis in the cylindrical coordinate system 0r z. The lateral surface of the cylinder is free of stresses. Under such

conditions, the stress–strain state is homogeneous and axisymmetric in all cross-sections except for the areas near the rod ends.

The state is characterized by only one nonzero component
zz

of the stress tensor and two nonzero components
rr

and
zz

of

the strain tensor (or two principal elongations
r
and

z
). As in the case of homogeneous elasticity theory, the displacements,

strains, and stresses are independent of the axial coordinate. However, they vary along the radius within all cross-sections
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identically. Analyzing the problem, we can introduce new elastic parameters corresponding to Young’s modulus and Poisson’s

ratio in the homogeneous elasticity theory. Here the constitutive relations (7) are primary. Under the above conditions, they are

simplified:

0 2( ) ( ) ( ) ( )r e r r r
î

rr

î
,

zz

î î

zz

î
r e r r r( ) ( ) ( ) ( )2 ,

å
î

rr

î

zz

î
. (8)

It is assumed that the rod undergoes longitudinal deformation of fixed magnitude and constant in the axial coordinate,

when the longitudinal displacement varies slightly in comparison with the length and diameter of the rod. This produces the

stress # identical along the length and similarly varying along the radius.

Adding the first two equations from (8), we arrive at the expression for dilatation:

zz

î î î

zz

î
r r r e r e r r r( ) [ ( ) ( )] ( ) ( ) ( ) / [ ( )3 2 3 2 ( )]r . (9)

Substituting (9) into the second equation in (8) yields the following relation between the axial stress and strain:
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î
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zz

î

zz

î
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Formula (10) represents the elementary law
zz

î

zz

î
r E r( ) ( ) of the relation between the stress and longitudinal strain

of the rod which employs the variable (radius-dependent) Young modulus expressed in the terms of variable Lame moduli:

E r
r r r

r r
( )

( )[ ( ) ( )]

( ) ( )

3 2
. (11)

Substituting the expression for dilatation into the first equation in (8), we obtain

zz rr

r

r r
r

( )

( ( ) ( ))
( )

2
. (12)

This formula demonstrates the classic Poisson law for inhomogeneous materials concerning the relation between the

transverse compression of the rod cross-section under longitudinal uniaxial compression and the radial strain. Formula (12)

allows introducing a variable Poisson’s ratio:

( )
( )

( )

( )

( ( ) ( ))
r

r

r

r

r r

rr

zz
2

(13)

and inhomogeneity laws into the kinematic parameters.

3. Functionally Gradient Model of Inhomogeneous Elasticity Theory. Consider the case where the elastic

parameters depend functionally on the coordinate r, while the Lame elastic constants and are functions

( ) ( )r l r
o

, ( ) ( ) ( , )r m r
o o o

const , (14)

that are differentiable at least two times. Then formulas (11) and (13) becomes

E r
m r l r m r

l r m r
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, (15)
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2
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Thus, all the four elastic constants (variable elastic parameters in the inhomogeneous isotropic elasticity theory) vary

differently with radius. If the Lame moduli vary similarly, the Young modulus varies in the same way, while Poisson’s ratio

remains constant. It should be noted that the assumption of the constancy of Poisson’s ratio is used rather frequently in

inhomogeneous elasticity.

Let us assume that the exponential dependence of the Lame moduli, which is frequently used in the inhomogeneous

elasticity theory, is described as

( )r e
o

lr
, ( ) ( , )r e l m

o

mr
const . (17)

Then formulas (15) and (16) become simpler:

E r
e

e

e
o o o

m l r

o o

m l r

mr
( )

( )
( )

( )

3 2
, (18)

( )

( )
( )

r

e

o

o o

m l r
2

. (19)

An analysis of the last two formulas shows that the distinction in the radial dependence of all the elastic parameters

remains in the case of exponential dependence. If the difference between the parameters is small (when the difference between

the ways the Lame parameters vary with the radius is also small), the same small difference e will be for the Young modulus,

while Poisson’s ratio remains almost constant.

Let us consider some features of the deformation of an inhomogeneous (over the thickness) rod under uniaxial

compression. It is assumed that its elastic parameters depend exponentially on the radius and decrease substantially with distance

from the outer surface r R
o
as follows according to (17):

( ) , ( ) ( , )
( ) ( )

r e r e l m
o

l R r

o

m R r
o o

const . (20)

The parameters l and m define inhomogeneity as the difference between the parameters
o
and

o
on the outer surface

and at the center of the rod:

( )0
o

lR
e

o

, ( )0
o

mR
e

o

. (21)

Since the Youngmodulus is strongly dependent on the radius, the compressive stress in the fixed cross-section will also

be strongly dependent of the radius:

zz

o o o

m l r

o o

m l r

mr

zz
r

e

e

e r( )
( )

( )

( )

( )

3 2
. (22)

The increase in the radius of the rod cross-section (swell) is insignificant and different from that in a homogeneous

material:

( )
( )

( ) ( )
( )

r
r

r e

rr

zz

o

o o

m l r
2

. (23)

The above-mentioned features of deformation of a straight circular rod with inhomogeneous mechanical properties

under uniaxial compressionmay be used as a landmark for more adequate models of the deformation of a single-rooted tooth as a

complex structure with inhomogeneous properties varying from the surface of the tooth to its middle.

4. NumericalModeling of the Universal Compressive Deformation of a Rod as Applied to a Single-Rooted Tooth.

Let the rod length L = 30 mm and diameter 2R
o
= 6 mm. Assume that the Lame moduli of the upper layer of the tooth (enamel)

and of the layer closest to its middle differ by a factor of 7 to 10 [1, 2]. We also assume that the distinction of the variable Lame

moduli in the exponential description is 10% (at l = 0.9 m) and the values of these moduli for the enamel are
o
and

o
.

253



To determine approximately the Young modulus E for the enamel, we employ the experimental curves presented in

Fig. 4 from [2]. Approximate recalculation of the curve 1 for stress–strain relationship for the enamel shows that the ~

relationship remains constant until 78MPa which corresponds to 6 10
4
. Then Å 13 10

10
Pa, which is similar to the

modulus of tungsten. If the average statistical value of Poisson’s ratio for all layers form the tooth 0.3, the Lame moduli

o
5 10

10
,

o
75 10

10
. .

With formula (20), we determine the values of the parameters l and m provided that R
o

0.003 m and the moduli at a

distance from the surface of the cylinder to its center decrease by a factor of 7.4:
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( . ) ( . )

r e r e
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l r

o

m r0 003 0 003
.

If the equalities e
l0 003.

0.1 and e
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, (24)
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r
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667( . )0 003 r
, (25)
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( )
( . )

r

e

o

o o

r
2

74 0 003
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Formulas (25) and (26) make it possible to determine the decrease in two parameters important in engineering: Young’s

modulus decreases by a factor of 7.55 (from Å 13 10
10

to 172 10
10

. ), while Poisson’s ratio decreases by a factor of 0.09 (from

0.3 to 0.273). Thus, the expansion of the cylinder in the transverse direction under compression is rather small across the

cylinder thickness, while the variation in Young’s modulus in the radial direction is substantial.

5. More General Models of Inhomogeneous Elasticity Theory in Tension–Compression Problems for a Cylinder

within the Framework of the Theory of Functionally Graded Materials. Consider a circular cylinder under certain

constraints. The cylinder is acted upon by forces applied at the ends, while the lateral surface is free of loads. It is assumed that

the rod is transversely isotropic and its anisotropy axis coincides with that of the rod as well as with the 0z-axis in the cylindrical

coordinate system 0r z. Moreover, we assume that the material characteristics vary only in the cross-sectional plane (isotropy

plane), are constant along the length, and depend on the radial coordinate only.

The general system of equations of the inhomogeneous linear elasticity theory becomes [3, 18]:

Cauchy’s relations

rr r r
r z u r z( , ) ( , )

,
, ( , ) ( , ) /r z u r z r

r
,

zz z z
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,
,
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1 2 ,

r
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z
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r r z z r r r, , ,

( , ) ( , ) ( ( , ) / ) ( / ) ( , )1
z z

r z
,
( , ). (27)

If the elastic parameters are radius-dependent (which corresponds to the assumption of problem axisymmetry), the

constitutive equations for a transversely isotropic material are valid.

Remark 2.Although the five independent elastic parametersC r
IK

( )of a transversely isotropic material are represented

in the form of a matrix:

C

C C C

C C C

C C C

C
IK

11 12 13

12 11 13

13 13 33

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1 2

44

11 12

C

C C( / )( )

,
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these equations are most commonly written as dependence of strains on stresses:

rr rr rr r rz zz
r z A r r z A r r z A r r( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )z ,
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Of the nine mechanical parameters A r G r
rr rz
( ),... , ( ), only five of them are independent and should be determined

experimentally. Written in the terms of technical elastic parameters, Eqs. (28) and (29) become
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r
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( )
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1
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where E andG are Young’s and shear moduli for any direction in the isotropy plane; is Poisson’s ratio which characterizes the

decrease in the rod cross-section in the isotropy plane when subject to tension in the same plane; E andG are Young’s and shear

moduli in the direction perpendicular to the isotropy plane; is Poisson’s ratio characterizing the decrease in the rod

cross-section in the isotropy plane when subject to tension in the direction perpendicular to the isotropy plane; is Poisson’s

ratio characterizing the decrease in the rod cross-section in the direction perpendicular to the isotropy plane when subject to

tension in the direction perpendicular to the isotropy plane and the identities / /E E and E G2 1( ) hold.

Thus, the transversely isotropicmaterial is defined by the five independent technical elastic parametersÅ G E G, , , , .

It should be noted that the technical elastic parameters are usually used in the mechanics of materials. In solving

elasticity problems, the classical elastic parameters are more convenient. The classical and technical parameters are related as

c Ñ
E E

E E

E
1111 11
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2 2
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1 1 2
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E E

E E
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1133 13 2 2

1

1 1 2

( )

( )( ) ( / )

,
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c C
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The constitutive equations of the inhomogeneous elasticity theory including all the independent elastic parameters

Ñ r Ñ r Ñ r Ñ r
11 12 13 33
( ), ( ), ( ), ( ), andÑ r

44
( ) become:
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44
. (33)

The system of equations of the axisymmetric inhomogeneous elasticity theory is closed by the system of equations of

motion (3).

In what follows, we will consider two problem-solving methods commonly used in the elasticity theory: (i) the

complete system of equations is written in terms of displacements (Lame-type system of equations) and (ii) the complete system

of equations is represented by the Beltrami–Michell equation for stresses.

5.1. Problem-Solving Method Based on Analysis of Equations for Displacements (Lame-type Equations). To derive

the Lame-type system of equations, we will substitute the Cauchy relations and constitutive equations (28)–(31) into the

equilibrium equations (6). This transformation from the equilibrium equations (3) with unknown stresses to the Lame-type

system of equations with unknown displacements is complicated due to the necessity to differentiate the radius-dependent elastic

parameter functions c r c r c r c r c r
11 12 13 33 44
( ), ( ), ( ), ( ), ( ). This system includes two equations:
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The five terms underlined in (34) and (35) are those new terms that are absent in the Lame equations of the

homogeneous elasticity theory and describe special features of the inhomogeneous theory. They contain the derivatives of elastic

parameters that are assumed to depend on the radius.

Let us introduce the Love function (potential) to reduce Eqs. (34) and (35) to a new equation for the Love function. To

this end, it is necessary to repeat the classical way from the system of equations (34) and (35) for the two unknown functions

u r z
r
( , ) and u r z

z
( , ) to the analysis of Love functions. At the first step, two new functions are introduced:

u r z R r z u r z Z r z
r r z
( , ) ( , ), ( , ) ( , )

,
. (36)

Substituting Eqs. (36) into system (34), (35), we get
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Remark 3. System (37) corresponds to that of the homogenous theory. If the functions c z c z c z c z
11 12 13 44
( ), ( ), ( ), ( )are

transformed to constants, the second system follows from the first one (the underlined terms are equal to zero).

Let us introduce a Love-type function ( , )r z in a standard way. Then Eqs. (37) are satisfied identically by introducing

the Love function
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while Eqs. (38) are transformed to the equations
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for determining the Love functions.

After laborious transformations, Eq. (40) takes a form that has new terms compared with the similar equation for an

isotropic material [3]:
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2 ( )[ ( ) ( )] ( ) ( ) [ ( )]

( ) ( )

2

44 11
c r c r

,

k r
r r

r r
rz4

2
2

( )
( ) ( )

( ) ( )
, k r

r

r r
( )

( )

( ) ( )2
,

k r
r r r r r r r r

r
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 8

( )[ ( ) ( )]r r r2
,

k r
r

rz3

3 4
1

2
1

( )

( ) ( ) ( )( )

r

r r r

2

2( )[ ( ) ( )]
,

k r

r r r r
r

r r

r r
( )

( ) ( ) ( ) ( ) ( ) ( )

( )[ (

1

) ( )]2 r
, k r

r r
r

r r r r

r
z2

1
2

( )

( ) ( ) ( ) ( ) ( ) ( )

( )[ ( ) ( )]r r2
,

k r
r

r r
r2

2

2 4
1

( )

( )

( )[ ( ) ( )]2 r
,

257



k r
r r r

r1

2 2
3 2

1
2

1
3 2

1

( )

( ) ( ) ( )
3

2( )[ ( ) ( )]r r r
. (42)

Remark 4. Of the ten coefficients appearing in (42), only the two first ones (k
rz5
, k

rz3
) are independent of the

derivatives of the elastic parameters. Of the eight remaining coefficients, only the sixth one k r
rz3
( ) is nonzero in going to the

homogeneous elasticity theory. These three coefficients define the part of Eq. (42) obtained in the homogeneous elasticity

theory. The other seven coefficients include derivatives linearly and are equal to zero in the homogeneous elasticity theory. In

this case, the third, fourth, and fifth coefficients k r
rz4
( ), k r( ), and k r

r
( )appearing in (42) contain only the first derivative, the

tenth coefficient k r
r1
( ) contains the first and second derivatives, the seventh, eighth, and ninth coefficients k r( ), k r

z2
( ), and

k r
r2
( ) include the first, second, and third derivatives.

Equation (41) contains a Laplacian. Sometimes, in applying the procedure of separation of variables, it is convenient to

expand the Laplacian as u u r u u u u
rr r zz r zz, , , ,

( / )1 . Then the operators containing the Laplacian become:

u u u u
r r r zz zzzz

2
, ,

,

u u u
rr r rr rrzz, , ,

, u u u
r r r rzz, , ,

and Eq. (41) takes the form

r r r r rzz rzzzz rz r rrzz
k r k r

, , , ,
( ( ) ( ))2

4 2

k r
r r r zz zzzz

( )( )
, ,

2

k r k k r k
r r rr r r r rz r rzz2 3
( ) ( ( ) )

, , ,

k r k r k r k r k r
r z zz r rr r r

( ) ( ( ) ( )) ( ) ( )
, , ,2 2 1

0. (43)

This equation can also be written in the form of three groups, where the first one contains operators with respect to r

(first and second rows), the second group contains only operators with respect to z (third row), and the third one contains mixed

operators (fourth row):

r r r r r r r rr r r r
k r k r k

, , ,
( ) ( )

2

k r k r k r
r r rr r r

( ) ( ) ( )
, ,2 1

k r k r k r
r zz zzzz z zz

( )( ) ( ( ) ( ))
, , ,

2
2

2
4 2 3r rzz rzzzz rz r rrzz rz

k r k r k r
, , ,

( ( ) ( )) ( ( ) k r
r rzz
( ))

,
0. (44)

Remark 5. The complication appearing in Eqs. (41), (43), and (44) compared with the equation in the homogeneous

elasticity theory is typical for the inhomogeneous theory [3, 4, 18, 28].

Thus, any problem can be solved in several steps. First, we find the solution of Eq. (44) with a specific potential ( , )r z .

Next, considering this potential and formulas (36), we determine the displacements u r z
r
( , ) and u r z

z
( , ). With (27), we

determine the components of the strain tensor
rr zz

r z r z r z( , ), ( , ), ( , ), and
rz

r z( , ). At the last step, with (33) we find the

stresses
rr zz

r z r z r z( , ), ( , ), ( , ), and
rz

r z( , ). In so doing, it is necessary to keep in mind that the constitutive relations

(33) additionally include the radius-dependences of the elastic parameters.

5.2. Problem-Solving Method Based on Analysis of the Equations for Stresses. In solving the equilibrium problem

using the above algorithm for the cylindrical rod formulated in Sec. 5, a potential (function) in terms of which stresses are

expressed is introduced in the homogeneous elasticity theory. The same procedure can be employed in the case of

inhomogeneous axisymmetric elasticity with respect to the stress tensor ( , , , , , )
rr zz rz r z

0 0 . A special

feature of this way for the inhomogeneous elasticity theory is very useful due to the fact that the procedure of introduction of the

potential is somewhat different.

In what follows, we will consider the equilibrium problem for a hollow cylindrical rod of finite length 0 z Z
L
and

r r r
0 1

. The rod is subject to compression by constant forces P applied to the ends. This problem has a special feature: the
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mechanical fields in cross-sections in a very long rod are identical, and the analysis is reduced to a plane axisymmetric problem

in which all quantities depend on the radius alone.

The equilibrium equations are simplified and contain only Poisson’s ratio that characterize shear in the isotropy plane:

r rr rr rr
r

2 1

1
0

2
( )

,
,

r rr r
r r

2 1

1

1
0

2
( )

,
,

r zz zz

1

1
0

,
. (45)

The problem can be solved with the classical method by introducing a potential [3,6, 7, 24, 25]:

rr r
r
F

1

,
, F

rr,
,

zz rr
C a

1
( ( )). (46)

The potential ( ) ( )r F r should be determined from the Beltrami–Michell equation [3, 6, 7, 24, 25], which in this case

is transformed to an ordinary differential inhomogeneous equation with variable radius-dependent coefficients and right-hand

side

, ,rr r
r

B

B

B

B r

B

B r

1 12

13

12

22

11

22

2

C

B r

A

A

A

A
r

r22

12

33

23

33 ,

. (47)

The coefficients are defined by

A

A

E r

E r

12

33

( )

( )
,

A

A

E r

E r
r

23

33

( )

( )
( ),

B

B

12

22

2

2
1

,
B

B

B

B

12

13

11

22

1. (48)

With (48), Eq. (47) becomes

, ,

( ) ( ( ))

( ( ))
rr r

r

r r

r r r

1
1

1

1 1
2

2 2

C

r

E r

E r

E r

E r
r r

r

( )

( )

( )

( )
( )

,

. (49)

As can be seen, this equation includes only four elastic parameters, while in the case of constant Poisson’s ratio, the

solution of the homogeneous equation is independent of the variable elastic parameters. However, these parameters will be

present in the general solution since the right-hand side of the equation depends on the ratio of tensile moduli E r E r( ) / ( ) in the

isotropy plane and in the direction of the symmetry axis.

The solution of Eq. (49) takes the form

( ) ( ) ( ) ( )r K r K r K r
1 1 2 2 0 0

, (50)

where
1
( )r and

2
( )r are the general solutions of the inhomogeneous equation (49);

0
( )r is a partial solution of the

inhomogeneous equation (49). The three arbitrary constants K K
0 1
, , and K

2
are determined with allowance for the boundary

condition that assumes absence of the normal stresses on the lateral surface of the cylinder

rr o
r( ) 0 (51)

in the case of presence of integral condition at the cylinder ends, which is written as follows:
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zz

r

r

r rdr P( ) ( / )

0

1

1 2 . (52)

Next, we will consider a simpler variant of an isotropic material. In this case, Eq. (49) becomes

, ,

( )

( )
( ( )

rr r

r

r

r

r r r

K

r
r r

1

1

1 1
1

2

0
)
,r

. (53)

If Poisson’s ratio is constant, Eq. (53), since K r r
r0

1 0/ [ ( ) ]
,

, is transformed from inhomogeneous into

homogeneous:

r r r r
rr r

2 2

1
1 0

, ,
( ) . (54)

Equation (54) is the classical Bessel-type equations. If its solution is substituted into (46), only the stress
zz

r( )

becomes nonzero. Moreover, the equality K K
1 2

0 follows from the boundary conditions.

In what follows, we will consider the variant of a transversely isotropic material and Eqs. (49) where the elastic

parameters Å G E G, , , , exponentially depend on the radius as

Å r E e
mr

( )
0

, G r G e
mr

( )
0

, E r E e
mr

( )
0

,

G r G e
mr

( )
0

, ( )r e
mr

0
. (55)

If Poisson’s ratios are constant, then

( ) ( ) ( ) /r r E G G
0 0 0 0

2 2const, const. (56)

Since

E r E r E E( ) / ( ) /
0 0

const, (57)

to determine the potential, it is necessary to solve the linear equation with variable coefficients

r r r r
rr r

2
2

2
1

1

1 0
, ,

( )
( )

( )

, (58)

which is somewhat complicated compared with formula (54) for an isotropic material.

The solutions of Eqs. (54) are described in various handbooks devoted to differential equations (including [11]). For

example, the equation

r r r r
rr r

2
1 3 1 0

, ,
( ) ( ) (59)

has the solution

( ) ( )

( )

r r r e C C
e dr

r r

r
r

3

3
1 2 3 2

. (60)

The stresses are determined by

rr
r

r
r( ) ( )

1
, ( ) ( )

,
r r

r
,

zz rr
C a r r

1
( ( ( ) ( ))). (61)
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If the stresses are known, the strains are defined by formulas (30) and (31), while the displacements are determined by

well-known elasticity formulas.

Conclusions. Analysis of the simple problem of the compression of a rod under tension–compression shows that the

stress considerably decreases with decrease in the Lamemoduli with distance from the surface to the rod center, while the change

in the cross-section remains almost constant in all cross-sections. The model adopted does not describe change in the tooth

intersection under compression, but demonstrates substantial decrease in the compressive stress in the tooth.

From the analysis of two more complicated equilibrium problems for a cylindrical transversely isotropic body with

radius-dependent elastic parameters, it follows that it is necessary to use more complicated models and mathematical apparatus

under similar statement. Within the framework of both models, we have obtained theoretical representations of potentials in

terms of which all themechanical fields including stresses, strains, and displacements are determined. It has been established that

all the fields strongly depend on the radial coordinate.

Thus, applying the inhomogeneous elasticity theory to the analysis of the stress state of a tooth, expressing its real

inhomogeneity in the radial direction, is promising for a number of specific problems.
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