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The stress state of hollow cylinders with oval cross-sectionmade of orthotropic and isotropic materials is

analyzed using spatial problem statement and analytical methods of separation of variables,

approximation of functions by discrete Fourier series, and numerical discrete-orthogonalization

method. The reference surface in the cross-section is described by the Cassini oval equation. The

analytical results are presented in the form of plots and tables of distributions of displacements and

stresses and analyzed.
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Introduction. Plates and shells of different thickness and shape are functional elements of structures in the aerospace

industry, mechanical engineering, medicine, construction, etc. Under severe operating conditions, they are subject to static and

dynamic loads, humidity, temperature, electric and magnetic fields [6, 8, 16–18, 21, 22]. To increase the resistance to external

actions, such structures are made of composite materials [13, 23].

Recently, hollow panels with elliptic and oval cross-section have been widely used in construction and architecture [4,

7, 15, 25]. Such panels have aesthetic appearance and, due to different stiffness along the principal axes, they can be aligned so as

to ensure the most effective resistance to loads [24].

The present paper continues studies that approximate functions by Fourier series in solving problems of the stress state

of hollow orthotropic cylinders with noncircular cross-section [9–11].

1. Problem Statement. Let us consider a hollow cylinder using a curvilinear orthogonal coordinate system ( , , )s t with

a reference surface in the plane ( , )s t and the coordinate running along the normal to this surface [2].

The coordinate surface is the mid-surface equidistant from the lateral surfaces. The mid-surface in the cross-section is

described by the Cassini oval equation [5, 19]:
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where is the polar radius, is an angle in the cross-section ( )0 2 , c is the half-distance between the foci; a is the product

of distances between the foci and an arbitrary point. Varying the ratio c/a, we can change the cross-sectional shape into circular (c

= 0, curve 1 in Fig. 1a), elliptic (0 1 2c a/ / , curves 2 and 3 in Fig. 1a), or oval (1 2 1/ /c a curves 4–6 in Fig. 1b).

In the coordinate system chosen, the squared length of a linear element of the cylinder is given by

dS H ds H dt H d
2
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where H H
1 3

1, H R t
2

1 [ / ( )] are Lode’s parameters, R t R
t

( ) is the radius of curvature of the mid-surface directrix.

At its ends, the cylinder has diaphragms that are perfectly rigid in their plane and flexible beyond it. The boundary

conditions at the ends are

s t
u u0 0 0, , at s s l0, . (1.2)

The cylinder is subject to internal pressure uniformly distributed along the t coordinate and varies along the generatrix as

q q s l q
0 0
sin( / ) ( )const .

The boundary conditions on the lateral surfaces are

q
s t

, ,0 0 at
1
,

0 0 0, ,
s t

at
2
. (1.3)

For cylinders of this class, all the stress factors satisfy periodicity conditions along the directrix:

i i

s

i

s

i
s t s t T s t s t T( , , ) ( , , ); ( , , ) ( , , );

; ( , , ) ( , , )u s t u s t T
t

i

t

i
,

where T is the period.

We start with the equations of three-dimensional linear elasticity for an orthotropic body [20]. In setting up the

governing system of differential equations, we assume that the directrix of the mid-surface is an arbitrary continuous curve

without singularities and breaks, the mechanical characteristics can vary across the thickness remaining constant along the

generatrix, and the distribution of the applied loads is arbitrary.
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The functions in terms of which the boundary conditions on the lateral surfaces (1.3) are formulated are represented by

the three stress components , ,
s t

and three displacement components u u u
s t

, , .

The governing system of partial differential equations with variable coefficients of the sixth order representing the

spatial boundary-value problem in the domain 0
1 2 1 2

s l t t t, , follows from the above basic equations and takes

the form
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with the boundary conditions (1.2) and (1.3). The coefficients appearing in (1.4) are determined in terms of the mechanical

characteristics of the cylinder material as follows:
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where E E E
s t
, , are the elastic moduli along the coordinate axes;G G G

t s st
, , are the shear moduli;

t
,

s
,

st
,

t
,

s
, and

ts
are Poisson’s ratios.
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2. Problem-Solving Method. The technique for solving the spatial boundary-value problem for the system of

equations (1.4) with the boundary conditions (1.2) and (1.3) is based on the approximation of the functions by discrete Fourier

series [3] and consists of five stages.

To reduce the problem dimension at the first stage, by virtue of the boundary conditions (1.2), we apply the variable

separation method. To this end, the components of loading and the unknown functions are expanded into Fourier series in the s

coordinate:

X s t X t s
n

n
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n
, , , sin

1

,

Y s t Y t s
n

n

N

n
, , , cos

0

, (2.1)

where X u u q
t t

, , , , , Y u
s s
, ,

n

n

l

s l0 .

Substituting series (2.1) into the governing system of equations (1.4) the boundary conditions (1.3) and separating the

variables, we reduced the spatial boundary-value problem to a two-dimensional one for the amplitudes in series (2.1). The

obtained system of differential equations, as well as (1.4), contains terms that are products of the unknown functions and

coefficients dependent on two coordinates (running along the directrix and thickness) and make it impossible to separate the

directrix variables. To overcome these difficulties, at the second stage, these terms in the governing system of equations are

replaced by complementary functions (hereafter the index n in the notation of the unknown functions and loading components is

omitted):
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The governing system of equations with the complementary functions (2.2) takes the form
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with the boundary conditions

q
s t

, ,0 0 at
1
,

0 0 0, ,
s t

at
2
. (2.4)

Formally, the coefficients of the system of equations (2.3) are independent of the coordinate t and make it possible to

separate the associated variables. To this end, at the third stage, the unknown and complementary functions and the loading

components are expanded into Fourier series in the t coordinate:
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Substituting series (2.5) into the governing system of equations (2.3) and the boundary conditions (2.4) and separating

the variables, we arrive at a one-dimensional boundary-value problem for the amplitudes of series (2.5), which is described by

the system of ordinary differential equations with constant coefficients
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with the boundary conditions

, , , ,
, ,

k k s k t k
q 0 0 at

1
,

, , ,
, ,

k s k t k
0 0 0 at

2
. (2.7)

To integrate this system of equations, at the fourth stage, we employ the stable numerical method of discrete

orthogonalization [1] for all harmonics of series (2.5) simultaneously. Since the number of unknowns in the governing system

(2.6) exceeds the number of equations (due to the complementary functions), the system of equations at each step of the

numerical method is closed by calculating the amplitudes of the complementary functions from the current values of the

amplitudes of the unknown functions at the fifth stage by approximating them by discrete Fourier series [14]. To this end, we set

up tables of values of the complementary functions at a number of points t
i
( , )i R1 of the directrix for a fixed value of the

thickness coordinate using the following formulas:
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Next, using the standard procedure of determining the Fourier coefficients of tabulated functions, we determine these

coefficients. Substituting them into the governing system of equations (2.6), we go to the next step of integration. At the

beginning of integration, the amplitudes of the complementary functions are determined from the amplitudes of the unknown

functions in accordance with the boundary conditions (2.7).
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3. Estimation of Accuracy of the Results. Since the cylinder mid-surface in the cross-section is described in the polar

coordinates ( , ), it is necessary to use an appropriate transformation coefficient when changing from the coordinate t to the

coordinate . For example, for an arbitrary functionV t( ( ), ), we have

dt

d

d

d

V V

t

dt

d

V

t

2

2
1

( ), ,
( )

V

.

The radius of curvature of the mid-surface is given by

R( ) ( )
3 2 2

2 .

The above problem-solving technique consists of five stages (Fig. 2). The error appears at the last two stages due to the

use of the numerical method and discrete Fourier series. The accuracy of the results is controlled by varying the number of
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TABLE 1

u E q
0 0
/ ( = 0)

L
³

L
î

c = 12 c = 16

0 / 2 0 / 2

4 4 –255.367 841.678 –600.247 3066.88

8

4 –254.360 842.721 –599.232 3067.19

8 –254.359 842.720 –599.219 3067.09

32

8 –254.356 842.720 –599.228 3067.15

16 –254.360 842.721 –599.226 3067.12

32 –254.360 842.721 –599.225 3067.12

TABLE 2

/ q
0

L
³

L
î

c = 12 ( = h/2) c = 16 ( = –h/2)

0 /2 0 /2

4 4 –14.3303 26.5745 –4.64614 –92.2256

8

4 –14.2300 27.5761 –4.74678 –92.3335

8 –14.2299 27.5670 –4.74677 –92.3325

32

8 –14.2298 27.5761 –4.74698 –92.3342

16 –14.2299 27.5761 –4.74679 –92.3334

32 –14.2299 27.5761 –4.74679 –92.3334
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TABLE 3

u E q
0 0
/ ( = 0)

M R

c = 12 c = 16

0 /2 0 /2

4

20 –90.6204 446.946 6.85213 495.954

60 –90.6214 446.967 6.85237 495.951

80 –90.6225 446.987 6.85234 495.950

12

20 –254.579 843.080 –627.839 3103.92

60 –254.396 842.733 –596.458 3066.04

80 –254.346 842.727 –596.461 3067.06

17

60 –254.361 842.723 –599.227 3067.14

80 –254.360 842.721 –599.226 3067.12

100 –254.360 842.721 –599.226 3067.12

TABLE 4

/ q
0

M R

c = 12 ( = h/2) c = 16 ( = –h/2)

0 /2 0 /2

4

20 –6.46957 12.9310 –1.37431 –18.8625

60 –6.46950 12.9318 –1.37410 –18.8624

80 –6.46948 12.9326 –1.37426 –18.8620

12

20 –14.2410 27.5935 –5.46985 –92.1152

60 –14.2304 27.5833 –5.02654 –93.4312

80 –14.2300 27.5756 –5.02659 –92.4316

17

60 –14.2298 27.5760 –4.74677 –92.3332

80 –14.2299 27.5761 –4.74679 –92.3334

100 –14.2299 27.5761 –4.74679 –92.3334



integration points and orthogonolization in the numerical method and by varying the number of points on the directrix used to

tabulate the complementary functions and the number of terms in the discrete Fourier series.

To estimate the accuracy of the results, we will determine the stress state of a hollow cylinder with cross-section

described by the Cassini oval equation (1.1). The cylinder is made of an orthotropic material and subject to internal pressure.

Input data are: cylinder length l = 40; thickness h = 2; a = 20, c = 12 and 16 (curves 3 and 5 in Fig. 1, respectively):

E E
s

368
0

. , E E268
0

. , E E11
0

. ,
s

0105. ,
s

0405. ,

0431. , G E
s

05
0

. , G E
s

045
0

. , G E041
0

. .

The results obtained in themiddle (along the cylinder length) cross-section are summarized in Tables 1–4. The accuracy

of the results obtained with the discrete-orthogonalization method is estimated in Tables 1 and 2, and the accuracy of the results

obtained by approximating the complementary functions by discrete Fourier series is estimated in Tables 3 and 4.

Tables 1 and 3 present the values of the normal displacements u , while Tables 2 and 4 summarize stresses in

sections across the thickness. The displacement values are given for the reference surface ( = 0), while the stresses are given for

cylinders with c = 12 on the outer surface ( = h/2) and for cylinders with c = 16 on the inner surface ( = –h/2), where their

amplitudes are maximum.

As can be seen, the results are accurate up to the fifth or sixth decimal places with 32 integration points (L
³
) and 16

orthogonalization points (L
î
).
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From Tables 3 and 4 it follows that the results are accurate up to the fourth or fifth decimal places with 80 points (R) on

the directrix for tabulated values of the complementary functions and 17 terms (M) of the discrete Fourier series.

4. Analysis of the Numerical Results. Using the above approach, we have solved the problem of the stress state of

hollow orthotropic cylinders whose cross-sectional mid-surface described by the Cassini oval equation (1.1). The cylinders are

subject to internal pressure.

The input data: cylinder length l = 40; thickness h = 2; a = 20, c = 0, 8, 12, 14, 16, 18; the mechanical characteristics of

the material: E
s
= 3.68E

0
, E = 2.68E

0
, E = 1.1E

0
, G

s
= 0.5E

0
, G = 0.41E

0
, G

s
= 0.45E

0
,

s
= 0105, = 0.431,

s
=

0.405.

Let us compare the stress state characteristics of these cylinders with those of isotropic cylinders with Young’s modulus

Å = Å
0
and Poisson’s ratio = 0.3.

The results obtained are shown in Fig. 3 for the normal displacements u of the reference surface ( 0), in Fig. 4 for the

stresses on the inner surface ( h / 2), and in Fig. 5 for the stresses on the outer surface ( h / 2). Here the dashed curves

refer to the isotropic cylinders, while the solid curves refer to the orthotropic ones. The curves representing different shapes of

the cylinder cross-section (Fig. 1) are denoted by 1–6.

From Fig. 3 we can see that the use of orthotropic maximal reduces the maximum normal displacements by a factor of 2

to 2.5 for all shapes of the cross-section.

The deviation of the cross-sectional shape from circular results in the redistribution of the displacements u along the

directrix. In the section / 2, the amplitude of the normal displacements is greater than in the section 0by a factor of 3.7

for shape 2, by a factor of 3.3 for shape 3, by a factor of 4.1 for shape 4, by a factor of 5 for shape 5, and by a factor of 5.4 for shape

6. The maximal displacement increases by a factor of 4 for shape 2, by a factor of 11.3 for shape 3, by a factor of 22.5 for shape 4,

by a factor of 41.4 for shape 5, and by a factor of 40.4 for shape 6, compared with the circular cylinder (shape 1).

The distribution of stresses along the directrix is as follows (Figs. 4 and 5). The amplitude of the stress for isotropic

material is maximum on the unloaded outer surface, in the section / 2for shapes 2–5, and in the section 2 5/ for shape

6. In the case of orthotropic material, the stress amplitude is maximum in the section / 2for shapes 2–5 on the outer surface

and for shapes 5 and 6 on the inner surface. The use of orthotropic material cylinders reduces the maximum amplitude by a factor

of 1.2 to 1.5 for shapes 2–4 and increases the maximum amplitude by a factor of 1.2 to 1.8 for shapes 5 and 6.

The greater the deviation of the cross-section from circular, the stronger the nonlinearity of the distribution of stresses

for both materials.

Figure 6 demonstrates the distribution of the stress across the thickness of the orthotropic cylinder with oval

cross-section in various sections of the directrix for shape 2 (Fig. 6a), shape 3 (Fig. 6b), shape 4 (Fig. 6c), shape 5 (Fig. 6d), and

shape 6 (Fig. 6e). Some sections of the directrix spaced at 10within the interval 0 2/ are denoted by 1–6.

From Fig. 6, we can see that the stresses are distributed linearly over the thickness. The stresses on the inner surface

for curves 1–3 hardly differ for all cross-sectional shapes. The same is true of straight lines 4–6 for shape 2 (Fig. 6a). For shape 5

(Fig. 6d), the stresses on the outer surface for straight lines 4–6 are very similar.
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The stress amplitudes on the outer and inner surfaces in the section / 2for shape 4 (Fig. 6c) are almost equal. The

stresses are much greater on the outer surface for shapes 2 and 3 (Figs. 6a and 6b) and on the inner surface for shapes 5 and 6.

Conclusions. The spatial problem of the stress state of hollow orthotropic cylinders with mid-surface described by the

Cassini oval equation has been solved by approximating the functions by discrete Fourier series. The accuracy of the results

obtained with this method and the numerical method of discrete orthogonalization has been estimated. It has been shown that

adequate accuracy can be achieved by increasing the number of integration and orthogonalization points and by varying the

number of tabulated values of the complementary functions and the number of terms in the Fourier series.

The stress state of cylinders made of an isotropic material has been analyzed. It has been shown that varying the

cross-sectional shape in combination with the use of an orthotropic material results in substantial redistribution of the stress state

parameters. The results obtained can be used to select the optimal geometrical andmechanical parameters of functional elements

of cylindrical shell structures with oval cross-section.
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