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The statement andmethod of solving problems on the propagation of axisymmetric harmonic waves in a

highly elastic laminated composite material are considered within the framework of the linearized

theory of elasticity for prestressed bodies. The case of wave propagation along the layers of a composite

material is investigated. The dispersion equations for quasi-transverse waves and their long-wave

approximations are obtained in the cases of perfect bonding and free sliding of the layers. The phase

velocity of long waves is studied for a material with a Treloar elastic potential.
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Introduction. Numerous articles [1–4, 8–14, etc.] are devoted to dynamic processes in prestressed bodies, including

layered materials. The results are also presented in different monographs [5–7, etc.].

Problems on the radial propagation of axisymmetric waves and torsion waves in layered composite materials of

periodic structure with perfectly bonded layers were considered in [5, 7, 10, 14].

Using the general solutions [5, 6, 11], we will obtain the general dispersion equations for compressible and

incompressible materials and the long-wave approximation for quasi-longitudinal and quasi-transverse waves, axisymmetric

waves and symmetric and antisymmetric torsional waves. The dispersion equations were analyzed numerically for relatively

rigid materials with Murnaghan potential.

These results are best exposed in the monographs [5, 7].

Similar analytical results for axisymmetric waves in the case of free sliding of layer were obtained in [1–4, 9].

Numerical analysis in a wide range of frequencies was performed for highly elastic materials with Treloar potential.

The method described in [5, 7] was used in [1–5, 7, 9–11, 14].

In this paper, the problem of axisymmetric wave propagation in a prestressed laminated incompressible composite

material is solved using the three-dimensional linearized theory of elasticity for prestressed bodies. We will numerically analyze

the dispersion relations for long quasi-transverse waves and study the influence of the initial stresses on the speed of propagation.

1. Problem Statement.When studying dynamic axisymmetric processes in prestressed laminated composite materials,

we use Lagrangian coordinates y y
n

n
, which, in the initial stress–strain state, coincide with the Cartesian and Lagrangian

coordinates r y, ,
3
, which, in the initial stress–strain state, coincide with cylindrical coordinates. The coordinates y y

n

n
and

r y, ,
3
are related in an ordinary manner. We will use an extended problem statement, taking into account that in the initial
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stress–strain state the individual components of the composite material can be deformed differently; i. e., we assume that the

individual components of the composite material are not bonded to each other in the initial stress–strain state and come into

complete contact only after the occurrence of the stress–strain state. We introduce a Cartesian coordinate system in the initial

stress–strain state so that the axis y
3
is normal to the interfaces between the layers (Fig. 1).

The materials of the layers are considered to be isotropic hyperelastic and to have arbitrary elastic potentials; in the case

of transversely isotropic hyperelastic layers, we assume that the axis of isotropy is directed along the axisOy
3
. In addition, we

consider prestressed laminated composite materials that consist of alternating layers of two types. Each of these types is

characterized by the same material and initial stress–strain state.

We believe that the initial stress state is homogeneous and is determined by the following relations:

u x j
m

j

m

j

m m

j0
1 1 2

( ) ( ) ( )
( ) , ,const, . (1.1)

We also assume that the following relations are valid for each of the layers:
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In (1.1) and (1.2), the indices in parentheses ( , )j 1 2 refer to the two types of layers; S
tt

j0( )
are the components of the

generalized Lagrangian strain tensor; h
j( )
is the thickness of the jth layer in the initial stress–strain state; h

j( )
is the thickness of

the jth layer in the natural state;
m

j( )
are the elongation coefficients along the respective axes; u

m

j0( )
are the displacements.

We assume that in the general solutions of the spatial dynamic linearized problem of elasticity for prestressed bodies:

u u r y u u u r y
r

j

r

j j j j( ) ( ) ( ) ( ) ( )
, , , , , ,

3 3 3 3
0 ,

u p p r y j
j j j

4 3
1 2

( ) ( ) ( )
, , , , . (1.3)

In this case, we can also assume that in the general solutions of spatial dynamic linearized problems of elasticity with

respect to the general solution of the axisymmetric problem in cylindrical coordinates

( ) ( ) ( )
, , , , ,

j j j
r y j0 1 2

3
. (1.4)

Taking into account (1.4), let us write down the basic relations for incompressible bodies.

For determining the displacements taking into account (1.4), we obtain
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Taking into account (1.4), the components of the stress tensorQ
j( )
, when y

3
const, can be written as

Q
j j j j j
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To determine the functions
( )j

under condition (1.4) we have
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The values of
2

( )j
and

3

( )j
in (1.7) are determined in the same way as in [9], for the materials of each of the layers

under consideration;
( )j

is the density of the material of each layer.

Consider two cases of contact between layers of composite material:

perfect bonding

u u u u
r r
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and free sliding
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Due to the periodicity of the structure, the conditions of the Floquet theorem must also be satisfied:

in the case of perfect bonding
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in the case of free sliding
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Thus, the study of the propagation laws of axisymmetric elastic waves in prestressed incompressible laminated

composite materials is reduced to the solutions of Eqs. (1.7) subject to the interface conditions (1.8) or (1.9) and periodicity

conditions (1.10) or (1.11), corresponding to the Floquet theorem. When satisfying the boundary conditions and the periodicity

conditions, it is necessary to use expressions (1.5) and (1.6).

2. SolutionMethod.Consider the radial propagation of an axisymmetric wave in prestressed incompressible laminated

composite materials. We will only consider the case of a wave that goes “to infinity.” To determine the “true” phase velocity of

axisymmetric waves in a prestressed laminated composite material, as in [5, 7], we assume

( ) ( )( ) ( )
, , , , ,

j j i
r y y H r k e C k j

3

0

3 0

1 1
1 2. (2.1)

In (2.1), k and are the wave number and angular frequency; C is a “true” phase velocity of axisymmetric waves;

H x
0

1( )
( )is the Hankel function of the first kind and zero order, the function ensures the propagation of axisymmetric waves going

“to infinity;”
( )( )

( )
j

y
0

3
is the amplitude function.

Substituting (2.1) into (1.5), we obtain the following expressions for the displacements:
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Similarly, substituting (2.1) into (1.6), to determine the components of the stress tensorQ
j( )
when y

3
const we get
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Substituting (2.1) into (1.7), we obtain the following equation for determining the functions
( )( )

( )
j

y
0

3
:
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Since in (2.2)–(2.4), all relations are written for amplitudes, the conditions of continuity and periodicity are formulated

for amplitudes as well. In this regard, we select adjacent layers (Fig. 1) and assume that the layer denoted by index “1” occupies

the domain 0
3

1
y h

( )
along the axisOy

3
and the layer denoted by index “2” occupies the domain h y

( )2

3
0along the

axis Oy
3
. The conditions of continuity of the stress and displacement vectors, which are formulated for the corresponding

amplitudes, must be satisfied in the following form in the case of perfect bonding and y
3

0:
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and in the case of free sliding:
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Due to the periodicity of this structure, according to the Floquet theorem, the periodicity conditions for amplitude must

also be satisfied:

in the case of perfect bonding:
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and in the case of free sliding:
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Thus, to solve the problem, it is necessary to find the solution of ordinary differential equations (2.4) that satisfies the

continuity conditions (2.5) or (2.6) and the periodicity conditions (2.7) and (2.8), taking into account (2.2) and (2.3).

Consider the patterns of radial propagation of axisymmetric elastic waves along the layers (Fig. 1) in a prestressed

incompressible laminated composite material. The same as the results in the monographs [5, 7], the solution of equations (2.4) is

presented in the form
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To determine the functions
1

2
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and
2
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from (2.4) and (2.9), we have the characteristic equations
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Substituting the amplitudes of displacements (2.2) and stresses (2.3) into the interface conditions (2.5) or (2.6) and the

periodicity conditions (2.7) or (2.8), respectively, we obtain a homogeneous system of eight algebraic equations for the constants

B m j
m

j( )
( , ; , ).1 4 1 2 The system is omitted because of awkwardness. Equating the matrix determinants of this system to zero,

we obtain the dispersion equation for an arbitrary axisymmetric wave that propagates along the layers of the layered composite

material with layers free to slide.

Let us represent solution (2.9) relative to the center of each layer:
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For a prestressed incompressible composite material (as with [5, 7]), we consider a quasi-transverse (shear) wave

propagating along the axisOr and polarized in the plane r Oy
3
. For such a wave, the displacements u

r

j( )
will be antisymmetric

and u
j

3

( )
will be symmetric about the center of the respective layers. According to solutions (2.11), we use
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Considering notation (2.2) and (2.3), substituting (2.11) and (2.12) into the boundary conditions (2.5) or (2.6) and the

periodicity conditions (2.7) or (2.8), respectively, and performing some transformations, we obtain a homogeneous system of

algebraic equations of the fourth order. From the condition of of the existence of its nontrivial solutions we obtain the dispersion

equation
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in the case of free sliding
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In expressions (2.14) and (2.15),C is the “true” phase velocity of the quasi-transverse wave along the axisOr polarized

in the plane r Oy
3
for the corresponding interface conditions between the layers of the composite material. The results in the

form (2.14) for perfect bonding of the layers were obtained in [5, 7].

We introduce the notation
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Using notation (2.16), we can write the dispersion equation (2.13) for a quasi-transverse wave in an incompressible

laminated composite material as

in the case of perfect bonding:
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in the case of free sliding:
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Note that with condition (2.12) and notation (2.16), the continuity conditions (2.5), (2.6) and periodicity conditions

(2.7), (2.8) independently lead to the dispersion equations (2.17) and (2.18), respectively, i. e., under condition (2.12) for solution

(2.11) we have the same continuity and periodicity conditions.

Analysis of formulas (2.17) and (2.18) shows that during the propagation of axisymmetric waves, the layers of the

composite interact.

3. Long-wave (Low-Frequency) Approximation. For the long wavelength (low frequency) approximation, we

assume that
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where
2

k
is the wavelength.

In the case of perfect bonding of the layers for the long-wave (low-frequency) approximation under condition (3.1),

restricting the analysis to the one-term approximation, we obtain the limit estimate for the phase velocity of the quasi-transverse

wave:
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It follows from formula (3.2) that the phase velocity will be non-negative if
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The phase velocity will be minimal (C 0) provided that
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where m
h

h

( )

( )

1

2
is the lamination parameter.

In the case of free sliding of the layers for the long-wave (low-frequency) approximation under condition (3.1),

restricting the analysis to the one-term approximation, we obtain the limit estimate for the phase velocity of the quasi-transverse

wave:
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If h h
( ) ( )1 2

, then
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The phase velocity in the case of free sliding will be non-negative if
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It follows from formula (3.7) that the phase velocity will be zero if
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From formulas (3.3), (3.4), and (3.8), (3.9), it follows that when long axisymmetric waves propagate, the phase velocity

of a quasi-transverse wave, when the layers of the composite material are perfectly bonded, is always greater than in the case of

free sliding.

4. Numerical Results. For numerical analysis, we specify the type of elastic potential. Consider the effect of initial

stresses on the velocity of long quasi-transverse waves in an incompressible composite material with Treloar potential [5]:

w c A j
j j j( ) ( ) ( )

, ,2 1 2
10 1

, (4.1)

where c
j

10

( )
is the elastic constant, A

j

1

( )
is the algebraic invariant.

Let the initial state be
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and we will use the following relations of the mechanical characteristics of the layers:
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Using (4.1) and (4.2), we obtain the components of the tensor
( )j

in (3.2)–(3.11):
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The case of perfect bonding (3.2). With (4.2) and (4.4), formula (3.2) can be written as
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Figure 2 shows the surface corresponding to
C

C
s

2

0 2 2
0

( )
whenm 1in the range of 0 2

1

1( )
and 0 2

1

2( )
. Figure 3

shows the curves corresponding toC 0whenm 0.1 (solid line), whenm 1(dashed line), and whenm 10(dash-and-dot line).

Figures 2 and 3 demonstrate that at certain values of
1

1( )
,

1

2( )
, and the lamination parametermthe phase velocity of longwaves in

the composite material can be zero.

Let us consider some cases of the prestressed composite material.

1)
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1
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1

( ) ( )
(the initial state of the composite material is stress-free).

In this case
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for any values of , , and m.

2)
1

1

1

2
1 1

( ) ( )
, (the first layer is prestressed, the second one is free of stresses).

In this case, to determine the phase velocity, we obtain the formula
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In the range of non-negative values of the phase velocity, the curves corresponding to formula (4.7) at certain values of

the lamination parameter mare shown in Fig. 4.

3)
1

1

1

2
1 1

( ) ( )
, (the first layer is free of stresses, the second one is prestressed).

For the phase velocity we have
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Figure 5 shows the curves corresponding to the non-negative values of the phase velocity at certain values of the

lamination parameter m.
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(the layers of the composite material are equally stressed).

The phase velocity of a long wave can be determined by the formula
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The graphs for the phase velocity of the long wave are shown in Fig. 6.

We can conclude that the phase velocity of the long wave in the case of perfect bonding of the layers can tend to zero at

the appropriate values of the initial stresses and the lamination parameter. In the considered range of initial strains, the effect

occurs if one of the layers (cases 2 and 3) or all layers (case 4) are precompressed.

The case of free sliding (3.7). Taking into account relations (4.2) and (4.4), we represent the formula for determining the

phase velocity (3.7) as
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Figure 7 shows the surface corresponds to the non-negative values of
C

Ñ
s

2

0 2 2( )
in the case of free sliding of the layers.

Traces of the corresponding surfaces on the plane
1

1

1

2( ) ( )
O at different values of the lamination parametermare shown

in Fig. 8.

Figure 8 demonstrates that the phase velocity of a long wave in the case of free sliding can be zero if one of the layers is

compressed and the other one is stretched.

In the case of free sliding, we consider the same examples as in the case of perfect bonding:
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From formulas (4.12)–(4.14) and Figs. 9–11, it follows that the phase velocity of the long wave is zero only in the case

of the stress-frere initial state
1

1

1

2
1

( ) ( )
.

The above formulas, graphs, and conclusions are obtained under condition (4.2).
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Conclusions. Analyzing the effect of the initial stresses, the contact conditions of the layers, and the lamination

parameter on the phase velocity of a long quasi-transverse wave, the following conclusions can be drawn:

The initial stresses significantly affect the phase velocities of long axisymmetric waves in an incompressible laminated

composite material.

The phase velocity of a long wave between perfectly bonded layers of the composite material can tend to zero at certain

values of the initial stresses and the lamination parameter. In the considered range of initial strains, the effect occurs if one of the

layers or all layers are precompressed.

The phase velocity of a long wave in the case of free sliding can be zero if one of the layers of the composite material is

compressed and the other one is stretched. Otherwise, the phase velocity of the long wave is zero only if the initial state is

stress-free.
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