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The problem of electric and stress state in a piezoelectric space with an arbitrary orientated elliptical

crack under homogeneous force and electric loading is considered. The solution to this problem is

obtained on the basis of the triple Fourier transformation and the Fourier transform ofGreen?s function

for an infinite electroelastic space. Testing the approach against particular cases confirms its

effectiveness. The numerical study is carried out, and the stress intensity factors along the elliptical crack

front are studied for different crack orientations in the orthotropic electroelastic space under tension.
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Introduction. The use of piezoelectric materials in the creation of power converters and elements of measuring devices

for various purposes is of great interest in the study and analysis of the concentration of force and electric fields in electroelastic

bodies with defects such as cavities, inclusions, and cracks. The solution of electroelasticity problems in three-dimensional

statement, which takes into account the coupling of the force and electric fields, is associated with significant mathematical

difficulties because, in this case, the initial system of equations of electroelasticity is a coupled system of differential equations of

complex structure [1, 4]. At present, two-dimensional electroelasticity problems have been sufficiently studied. We can note the

studies [8, 9, 20, 23] concerned with the stress state near single cavities, inclusions, cracks, and during the interaction of

concentrators of electric and mechanical fields in piezoelectric material. Structurally similar approaches have been proposed in

[17, 21] to solve three-dimensional coupled equations of electroelasticity for transversely isotropic bodies. The exact solutions

of the electroelasticity problems with the special orientation of the concentrator of force and electric fields relative to the axis of

symmetry of the piezoelectric material were found using the approaches. Thus, when using these approaches, it was usually

assumed that the axis of symmetry of the electroelastic material is oriented along the axis of rotation of the stress concentrator or

it is perpendicular to the plane where the flat crack is located [5–7, 12–14, 17–19, 21, 23]. At the same time, with other

orientations of the concentrators of force and electric fields relative to the axis of symmetry of the piezoelectric material, these

approaches are ineffective in solving spatial problems. Note also that the results of studies on stress intensity factors (SIF) for

elastic isotropic bodies with circular and elliptical cracks are sufficiently studied in the monographs [3, 10]. For electroelastic

bodies (with the mentioned restrictions on the orientation of cracks), similar studies were conducted in [5, 6, 11, 12, 18]; for
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magnetoelastic bodies in [15, 16]. The stress distribution in an orthotropic electroelastic space with a triaxial ellipsoidal

inclusion under tension was studied in [14].

We consider the problem of an arbitrarily oriented elliptical crack in an orthotropic electroelastic medium subject to

uniaxial tension, based on the generalization of the approach [22] (for an anisotropic purely elastic medium with an elliptical

crack), in the case of an orthotropic piezoelectric material. The research uses the triple Fourier transformation of spatial

variables, the Fourier transform of Green’s function for an electroelastic anisotropic medium, as well as Cauchy’s residue

theorems and Gaussian quadrature formulas. For partial cases (where the elliptical crack is in the isotropy plane of the

electroelastic transversely isotropic material), the results coincide with the data obtained by other approaches. The stress

intensity factors (SIF) along the elliptic crack boundary at different orientations in orthotropic electroelastic material were found.

1. Basic Equations and Problem Statement. Let an orthotropic electroelastic material have a flat elliptical crack. We

assume that the electroelastic material is under uniaxial tension directed perpendicular to the plane of the elliptical crack, and the

electric displacement in the same direction is equal to zero. The presence of the crack in the material, as a concentrator of force

and electric fields, leads to the perturbation of electric and stress states.

The complete system of equations of electroelasticity statics has the following form:

equilibrium equation in the absence of body forces

ij j,
0, (1)

equation of forced electrostatics

D E
i i i i, ,

,0 , (2)

kinematic equations

ij i j j i
u u

1

2

( )
, ,

,

equation of state

ij ijmn mn nij n
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,
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where
ij
,

ij
, u

i
, D

i
, E

i
, are the components of stresses, strains, displacements, electric displacements (induction), electric

field, and electric potential, respectively.

The following notation of tensors is also introduced: C
ijmn

, e
imn

, k
ij
are the elastic moduli, piezomoduli, dielectric

constants. For piezoelectric orthotropic bodies, the elastic properties of the material are described by nine independent constants
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independent constants k
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, k
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. The components of the tensor of elastic moduli, piezomoduli, and dielectric constants are

related to the mentioned independent constants as follows:
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The other components of these three tensors are equal to zero.

The equations of statics of electroelasticity with respect to displacements and electric potential for an orthotropic

electroelastic body follow from relations (1)–(3) and the components of tensors (4).
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When studying the problem, it is convenient to introduce a new coordinate systemwhere one of the axes coincides with

the normal to the crack plane. Assume that the original coordinate systemOxyz is related to new (local) systemO x y z
1 1 1

in such

a way that the system can be obtained from the original system by rotating around the axisOx by angle . Then the tensors of

elastic moduli, piezomoduli, and dielectric constants C
ijkl

, e
ijk
, k

ij
in the new coordinate system are

C C
ijkl mnpk im jn kp lq

, e e
ijk mnp im jn kp

, k k
ij mn im jn

, where
ij
is the transformation matrix of the

following form:

ij

1 0 0

0

0

cos sin

sin cos

. (5)

An arbitrary orientation of the flat elliptical crack can be obtained by sequential rotation at angles , , around the axes

of the coordinate system 0 0 0x y z, , , respectively. The transformation matrix T
ij
is found as follows:

T
ij

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

.

This matrix is the result of successive multiplication of three matrices reflecting the right rotation around each of the

coordinate axes obtained similarly to expression (5)

ij
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0

0
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,
ij
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Then we obtain new tensors of elastic moduli, piezomoduli, and dielectric constantsC
ijkl

( , , )
, e

ijk

( , , )
, k

ij

( , , )
using

transformations of tensors:

C C T T T T
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( , , )
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,

k k T T
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where the repeated indices are summed.

Note that we will use the conventional tensor notation of expressions below, i. e., we will mean that the repeated indices

in the expressions are summed. Note also that without fundamentally changing anything in the scheme of solving the problem,

instead of the transformation T
ij

associated with the rotation around the coordinate axes 0 0 0x y z, , , we could enter other

transformation, for example, corresponding to rotations through Euler angles. But for clarity, we chose transformation that

corresponds to successive rotations around three different coordinate axes. To describe the stress and electrical states, we use

more unified notation [7]. We present in the following form:

elastic displacements and electric potential

U
u M

M
M

m
, , , ,

, ,

1 2 3

4

(6)

elastic deformation or electric field

Z

M

M
Mn

mn

n

, , , ,

, , ,

1 2 3

4

(7)
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stress or electrical displacements
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With notation (6)–(9), the equation of state (3) can be written as

iJ iJMn Mn
E Z
( , , )

. (10)

Note that the problem for an orthotropic electroelastic material with an arbitrarily oriented elliptic crack is not divided

into two independent symmetric and antisymmetric problems. The problem is considered in the general statement when the

boundary conditions include both normal and tangential forces, as well as the normal component of the electric displacement

vector on the crack surface:

13
f
( , , )

,
23

g
( , , )

,
33

p
( , , )

, (11)

D D
3

( , , )
, ( , )x x S

1 2
, U x

M
( ) 0 as | |x ,

where S is the crack surface related to the new coordinate system (which is obtained by successive rotation at angles , ,

around the axes of the old system), and the loads must be recorded in the new coordinate system. In the given principal stress

state and electrical displacement in the material, as well as the crack surface that is free from force and electrical influences,

representing the stress and electrical state satisfying equation (10), the superposition of the principal and perturbed states, we

obtain boundary conditions for determination of the disturbed state using (11).

2. Solution Method.When considering the problem, we use Green’s functionG x x
IJ
( ) for an infinite electroelastic

anisotropic space that satisfies the equation

E G x x
kJMn JM kn JM

( , , )

,
( ) 0, (12)

where ( )x x is the Dirac delta function;
JM

is the Kronecker symbol, and the comma after the index indicates differentiation

with respect to the corresponding variable. The triple Fourier transformation can be used to represent Green’s function that

satisfies (12), using as

G x x A D e
JM JM

i
( )

( )

( ) ( )
(

1

2
3

1 x x
d d d
)

1 2 3
. (13)

In expression (13) A
JM

( ) the corresponding algebraic additions of matrix elements are denoted by

{ ( )} { }
( , , )

K E
JM iJMn i n

, (14)

and D( ) is the determinant of the matrix (14) and is a polynomial of the eighth order.

Let us represent the perturbed electric and stress state, generalizing the purely elastic case [22], in terms of unknown

jumps of displacements and electric potential through the crack surface in the form of
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where for the elliptical crack the unknown vector b x( ), in the case of homogeneous force and electric loads in the material, takes

the form

b x b x a x a( ) ( / / )
/

1
1

2

1

2

2

2

2

2 1 2
, (15)

where a a
1 2
, are the semi-axes of the elliptical crack; b is a constant vector of the fourth order, the components of the vector are

complex in the general case. Summation in the expressions is performed for
3

M
, which are the roots of the equation D( ) 0

with a negative imaginary part for x
3

0, and
M

is a vector of the form
M M

( , , ( , ))
1 2 3 1 2

. The components of stress

and electrical displacement are defined by the following expression:
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4
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Carrying out the transformation of expressions (16) similarly to the elastic case [22], the components of stresses and

electrical displacement in the crack plane for homogeneous force and electric fields are obtained in the following form:

iJ iJM

N

x
i

F a a( ) ( / , / ,
( , , )

4
1 1

1

4

0
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M
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where the function F
iJM

( , , )
( , , )

1 2 3
is defined by the expression
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After additional analysis of asymptotic expressions for stresses and electrical displacement in the crack plane, the stress

intensity and electrical displacement factors K K K
I II III
, , , and K

D
are obtained as follows:

k i a x a x a F x a
iJ JM

N

( / / ) ( /
/ ( , , )

1

2

1

4

2

2

2

4 1 4

1

1

4

1

2
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x a x a x a b
N

M2 2

2

3 1 1

2

2 2
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,

K k
I 33

, K k n k n
II 31 1 32 2

, K k n k n
III 31 2 32 1

( ) , K K k
IV D 34
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For the flat elliptical crack, the components of the normal vector to the crack boundary have the form

n x a x a x a
1 1 1

2

1

2

1

4

2

2

2

4 1 2
( / ) / ( / / )

/
,

n x a x a x a
2 2 2

2

1

2

1

4

2

2

2

4 1 2
( / ) / ( / / )

/
.

Satisfying the boundary conditions on the crack surface and evaluating the one-dimensional integrals (17) by Gaussian

quadratures, we determine the unknown displacement jumps and electric displacement through the surface of the elliptical crack,

and then, according to (18), find the stress intensity and electrical displacement factors.

We will test the approach against a partial case of the problemwith known exact solution.We consider the problem of a

flat elliptical crack in a transversely isotropic electroelastic space in the isotropy plane of the piezoelectric material, under
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uniaxial tension
33

0
and shear forces

23

0
. The normal component of electrical displacement D

z

0
is assumed to be zero. In this

case, the stress intensity factors K
I
for the dielectrically impermeable crack, according to [11], do not depend on the properties

of the material and coincide with their expression for a purely elastic isotropic material with the same crack shape and pressure

value
33

0
. In this case, the electric displacement intensity factor K

D
becomes zero along the crack boundary. At the same time,

the stress intensity factorsK
II
,K

III
depend on both the elastic and electrical properties of the material during shear according to

[12]. According to [12], we can take the expressions of K
II
, K

III
for isotropic elastic material at the same shear loads and the

same shape of the flat crack, and instead of Poisson’s ratio in the corresponding expressions, we need to use
piezo

, which is

calculated based on the electroelastic properties of the piezoelectric material. Since the procedure for calculating
piezo

is

detailed in [12], we show in Table 1 only the values found for the piezoceramic materials [12]. The initial data on the properties

of piezoelectric materials used in the calculations are contained in [1, 5, 7, 12]. The second row of Table 1 shows the values of

elast
, which are found only from the elastic properties of the transversely isotropic electroelastic material (without taking into

account electrical properties) [10]. The values of
control

in the third row of Table 1 is found from the expression for
piezo

if we

put electrical permeability and piezoelectric moduli of the electroelastic material close to zero. When calculating the initial

values of the piezomoduli e
31
, e

15
, e

33
and dielectric constants k

11
, k

33
of the corresponding materials, their values were

multiplied by 10
12
. The values of

elast
and

control
, which are calculated using two different expressions, coincide.

Based on the results [11, 12] for an electroelastic transversely isotropic space containing an internal flat elliptical crack

located in the isotropy plane of the material, under uniaxial tension along the axis of symmetry
33

0
and shear

23

0
, as well as

whenD
3

0
0(there is no vector component of electrical displacement that is normal to the surface crack) we obtain the following

expressions of the SIFs along the boundary of the crack:
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TABLE 1

Parameter PZT-4 PXE-5 TsTS-19 PZT-7A BaTiO
3

PZT-5H

piezo
0.48513 0.48815 0.45958 0.47324 0.34369 0.37867

elast
0.35034 0.34591 0.36359 0.35239 0.29768 0.30074

control
0.35034 0.34591 0.36359 0.35239 0.29768 0.30074

TABLE 2

a a
2 1
/

0 /10 /5 3 /10 2 /5 /2

0.7

0.922061

(0.922061)

0.944164

(0.944164)

0.995662

(0.995662)

1.049943

(1.049943)

1.088403

(1.088403)

1.102073

(1.102073)

0.5

0.731778

(0.731780)

0.779345

(0.779347)

0.874177

(0.874179)

0.960134

(960136)

1.015842

(1.015844)

1.034891

(1.034893)

0.3

0.484906

(0.484949)

0.574152

(0.574204)

0.705990

(0.706054)

0.805592

(0.805664)

0.865420

(0.865497)

0.885313

(0.885392)

0.1

0.174191

(0.174455)

0.313217

(0.313690)

0.424300

(0.424943)

0.496109

(0.496860)

0.537334

(0.538148)

0.550841

(0.551676)



K
E k

b

a
a b

I

33

0 1 2

2 2 2 2 1 4

( )

( sin cos )

/

/
, (19)

K ab
k

k k E k k
II

( )

sin

( ) ( )

/1 2

2

23

0

2

1

2

1

2

piezo piezo
K k a b( ) ( sin cos )

/2 2 2 2 1 4

, (20)

K
b

a

k

k
III

3
1 2 2

23

0

2

1
/

( ) cos

(

piezo

piezo
k E k k K k a b
1

2

1

2 2 2 2 2 1 4
) ( ) ( ) ( sin cos )

/

piezo

, (21)

K
D

0,

where k b a( / )
/

1
2 2 1 2

, k b a
1

/ ; K k( ) and E k( ) are complete elliptic integrals of the first and second kind.
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TABLE 3

a a
2 1
/

0 /10 /5 3 /10 2 /5 /2

0.7

0

(0)

0.484247

(0.484247)

0.873452

(0.873452)

1.140050

(1.140050)

1.292851

(1.292852)

1.342522

(1.342523)

0.5

0

(0)

0.486011

(0.486020)

0.824163

(0.824176)

1.032808

(1.032825)

1.147555

(1.147574)

1.184402

(1.184421)

0.3

0

(0)

0.452036

(0.452178)

0.699259

(0.699478)

0.843453

(0.843717)

0.922991

(0.923281)

0.948683

(0.948981)

0.1

0

(0)

0.303017

(0.303738)

0.425474

(0.426487)

0.500851

(0.502043)

0.543613

(0.544907)

0.557573

(0.558898)

TABLE 4

a a
2 1
/

0 /10 /5 3 /10 2 /5 /2

0.7

0.578320

(0.578320)

0.537139

(0.537139)

0.433285

(0.433285)

0.298525

(0.298525)

0.151398

(0.151398)

0

(0)

0.5

0.431202

(0.431210)

0.385068

(0.385074)

0.292024

(0.292029)

0.193174

(0.193177)

0.095988

(0.095990)

0

(0)

0.3

0.267534

(0.267618)

0.214890

(0.214957)

0.148660

(0.148707)

0.094655

(0.094684)

0.046323

(0.046337)

0

(0)

0.1

0.090782

(0.090998)

0.048016

(0.048130)

0.030152

(0.030223)

0.018736

(0.018780)

0.009094

(0.009116)

0

(0)



The results of the comparison based on the two approaches (according to formulas (18) and according to expressions

(19)–(21)) for material PZT-4 are shown in Tables 2–4. Tables 2, 3, and 4 show the calculated values of the SIFs K
I
, K

II
, and

K
III

, respectively. The values of the SIFs found using formulas (17), (18) are given without parentheses, and the values found on

the basis of expressions (19)–(21) are given in parentheses. When finding the jumps of the displacement vector and the electric

potential through the surface of an elliptic crack, the one-dimensional integrals in (17) were evaluated using 24-point Gaussian

quadrature formulas.

Note that approximately the same accuracy of matching the results of calculations by the two approaches took place

over the entire interval [ , ]0 2 of the angle . To control the values, this interval was divided into 100 identical subintervals, the

values were compared at the ends of the subintervals. When calculating the SIFs for the other piezoceramic materials from Table

1 (comparison was performed at the values of angles given in Tables 2–4), the results of calculations by the two approaches

were consistent with the approximately the same accuracy as for the PZT-4 material.

Note also that when testing the calculation algorithm for an orthotropic electroelastic material with an arbitrarily

oriented flat elliptical crack based on formulas (17), (18), the testing was against the partial case for an elliptical crack in a purely

elastic orthotropic material.

3. Analysis of the Numerical Results. Consider an orthotropic piezoelectric material Ba
2
NaNb

5
O
15

with

electroelastic properties (17 independent electroelastic parameters) that are given in [4].

Assume that an elliptical crack is located in the xy plane of the piezoelectric material. Figure 1 shows the distribution of

the SIFK
I
along the front of the elliptical crack under uniaxial tension

zz

0
in this orthotropic electrostatic material. Curves 1, 2,

3 correspond to the following ratios of the semi-axes: b a/ 0.4, 0.6, 0.8. The largest values of SIF are achieved at the points of

the semi-minor axis of the elliptical crack.

Figure 2 shows the change of the SIF K
I
along the crack boundary in the material Ba

2
NaNb

5
O
15

(under uniaxial

tension
zz

0
, b a/ 0.6) depending on the orientation of the crack in the material. Lines 1, 2, 3, 4 correspond to the angles of

rotation 0, /6, /3, /2.

Figure 3 shows the change of the SIF K
I
for an elliptical crack in a transversely isotropic electrostatic material PZT-4

[1] at the same calculation parameters (crack geometry, load, and angles of rotation in the material) as in the previous case. It is

seen that for PZT-4 the values of K
I
more depend on the orientation of the crack in the material than for Ba

2
NaNb

5
O
15
.

Figures 4–6 show the change of K
I
, K

II
, K

III
along the boundary of the elliptical crack in the elastic orthotropic

fiberglass material (orthogonally reinforced 2:1) according to [2, p. 64]. For this material, the distribution of SIF depends

significantly on the orientation of the crack. Figure 4 shows that the value of K
I
is maximum when /3. Figures 5 and 6

show the change in K
II

and K
III

along the front of the elliptical crack under internal pressure. Note that values of K
II

and K
III
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under symmetric loads occur for the flat elliptical crack in the orthotropic material are nonzero when the crack is not in the plane

of symmetry of the material. Curves 1 and 2 in these figures correspond to /6 and /3, and when 0and /2 the

values of K
II

and K
III

are equal to zero along the entire boundary of the crack (in these cases, the crack is located in one of the

planes of symmetry of the orthotropic material).

Conclusions. Thus, this paper has developed an approach to the study of the stress state in an orthotropic electroelastic

space with an arbitrarily oriented flat elliptical crack under homogeneous force and electrical loads. The distribution of stress

intensity factors along the boundary of the flat elliptical crack at different orientations in an orthotropic piezoelectric material

under uniaxial tension has been studied.
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